41 research outputs found
Immunomodulatory Activity of Chlorophytum borivilianum Sant. F
Chlorophytum borivilianum Santapau & Fernandes (Liliaceae) is a very popular herb in traditional Indian medicine and constitute a group of herbs used as ‘Rasayan’ or adaptogen. Ethanolic extract of the roots and its sapogenin were evaluated for their immunomodulatory activity. Effect of azathioprine-induced myelosuppresion and administration of extracts on hematological and serological parameters was determined. Administration of extracts greatly improved survival against Candida albicans infection. An increase in delayed-type hypersensitivity response (DTH), % neutrophil adhesion and in vivo phagocytosis by carbon clearance method was observed after treatment with extracts. Immunostimulant activity of ethanolic extract was more pronounced as compared to sapogenins. The results, thus justifies the traditional use of C. borivilianum as a rasayana drug
Spilanthes acmella ethanolic flower extract: LC-MS alkylamide profiling and its effects on sexual behavior in male rats
According to Indian Systems of Medicine, Spilanthes acmella (L.) Murr. (Family- Asteraceae), is considered effective in the treatment of sexual deficiencies especially due to aging. In the present study, characterization of ethanolic extracts of the Spilanthes acmella flower and its effect on general mating pattern, penile erection and serum hormone levels of normal male Wistar albino rats were investigated and compared with sildenafil citrate. In-vitro nitric oxide release was also investigated in human corpus cavernosum cell line. N-alkylamides are a promising group of naturally occurring bio-actives in Spilanthes spp. Therefore, N-alkylamide profiling of ethanol extract of Spilanthes acmella flowers was performed, using a gradient reversed phase high performance liquid chromatography/electrospray ionization ion trap mass spectrometry (HPLC/ESI-MS) method on an embedded polar column. MS1 and MS2 fragmentation data were used for identification purposes. The extracts (50, 100 and 150 mg/kg body weight/day) and sildenafil citrate (5mg/kg) were administered orally for 28 days. The behavioral parameters were observed at day 0, 15, 28 and after a lapse of 7 and 14 days of discontinuance of drug treatment. Five N-isobutylamides, one 2-methylbutylamide and one 2-phenylethylamide were tentatively identified. The orally administered extract had a dose dependent effect on mounting frequency, intromission frequency and ejaculation frequency. A dose dependent effect was also observed on the FSH, LH and testosterone serum levels. The aphrodisiac potential of an ethanolic Spilanthes acmella extract was demonstrated in-vitro and in-vivo. Study lends support to the traditional utilization of S. acmella as a sexual stimulating agent
Amphotericin B assembles into seven-molecule ion channels: An NMR and molecular dynamics study
Amphotericin B, an antifungal drug with a long history of use, forms fungicidal ion-permeable channels across cell membranes. Using solid-state nuclear magnetic resonance spectroscopy and molecular dynamics simulations, we experimentally elucidated the three-dimensional structure of the molecular assemblies formed by this drug in membranes in the presence of the fungal sterol ergosterol. A stable assembly consisting of seven drug molecules was observed to form an ion conductive channel. The structure is somewhat similar to the upper half of the barrel-stave model proposed in the 1970s but substantially different in the number of molecules and in their arrangement. The present structure explains many previous findings, including structure-activity relationships of the drug, which will be useful for improving drug efficacy and reducing adverse effects
Glucose modifies the effect of endovascular thrombectomy in patients with acute stroke: a pooled-data meta-analysis
Background and Purpose:
Hyperglycemia is a negative prognostic factor following acute ischemic stroke but is not known whether glucose is associated with the effects of endovascular thrombectomy in patients with large vessel stroke. In a pooled-data meta-analysis, we analyzed whether serum glucose is a treatment modifier of the efficacy of endovascular thrombectomy in acute stroke.
Methods:
Seven randomized trials compared endovascular thrombectomy with standard care between 2010 and 2017 (HERMES Collaboration). 1764 patients with large vessel stroke were allocated to endovascular thrombectomy (n=871) or standard care (n=893). Measurements included blood glucose on admission and functional outcome [modified Rankin Scale (mRS) range: 0-6; lower scores indicating less disability] at 3 months. The primary analysis evaluated whether glucose modified the effect of EVT over standard care on functional outcome, using ordinal logistic regression to test the interaction between treatment and glucose level.
Results:
Median (IQR) serum glucose on admission was 120 (104-140) mg/dl [6.6mmol/l (5.7-7.7) mmol/l]. Endovascular thrombectomy (EVT) was better than standard care in the overall pooled-data analysis [common odds ratio (acOR), 2.00 (95% CI 1.69–2.38); however, lower glucose levels were associated with greater effects of EVT over standard care. The interaction was nonlinear such that significant interactions were found in subgroups of patients split at glucose < or > 90mg/dl (5.0mmol/l) [(p=0.019 for interaction, acOR 3.81 (95% CI 1.73–8.41) for patients < 90 mg/dl vs 1.83 (95% CI 1.53–2.19) for patients > 90 mg/dl], and glucose < or > 100mg/dl (5.5mmol/l) [(p=0.004 for interaction, acOR 3.17 (95% CI 2.04–4.93) vs acOR 1.72 (95% CI 1.42–2.08)], but not between subgroups above these levels of glucose.
Conclusions:
Endovascular thrombectomy improved stroke outcomes compared to standard treatment regardless of glucose levels but the treatment effects were larger at lower glucose levels, with significant interaction effects persisting up to 90 to 100mg/dl (5.0-5.5mmol/l). Whether tight control of glucose improves the efficacy of endovascular thrombectomy following large vessel stroke warrants appropriate testing
Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021
Background: Estimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period. Methods: 22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution. Findings: Global all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations. Interpretation: Global adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic
Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021
BACKGROUND: Estimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period. METHODS: 22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution. FINDINGS: Global all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations. INTERPRETATION: Global adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic. FUNDING: Bill & Melinda Gates Foundation
6+: A Novel Approach for Building Extraction from a Medium Resolution Multi-Spectral Satellite
For smart, sustainable cities and urban planning, building extraction through satellite images becomes a crucial activity. It is challenging in the medium spatial resolution. This work proposes a novel methodology named ‘6+’ for improving building extraction in 10 m medium spatial resolution multispectral satellite images. Data resources used are Sentinel-2A satellite images and OpenStreetMap (OSM). The proposed methodology merges the available high-resolution bands, super-resolved Short-Wave InfraRed (SWIR) bands, and an Enhanced Normalized Difference Impervious Surface Index (ENDISI) built-up index-based image to produce enhanced multispectral satellite images that contain additional information on impervious surfaces for improving building extraction results. The proposed methodology produces a novel building extraction dataset named ‘6+’. Another dataset named ‘6 band’ is also prepared for comparison by merging super-resolved bands 11 and 12 along with all the highest spatial resolution bands. The building ground truths are prepared using OSM shapefiles. The models specific for extracting buildings, i.e., BRRNet, JointNet, SegUnet, Dilated-ResUnet, and other Unet based encoder-decoder models with a backbone of various state-of-art image segmentation algorithms, are applied on both datasets. The comparative analyses of all models applied to the ‘6+’ dataset achieve a better performance in terms of F1-Score and Intersection over Union (IoU) than the ‘6 band’ dataset