248 research outputs found

    Expensive Brains: “Brainy” Rodents have Higher Metabolic Rate

    Get PDF
    Brains are the centers of the nervous system of animals, controlling the organ systems of the body and coordinating responses to changes in the ecological and social environment. The evolution of traits that correlate with cognitive ability, such as relative brain size is thus of broad interest. Brain mass relative to body mass (BM) varies among mammals, and diverse factors have been proposed to explain this variation. A recent study provided evidence that energetics play an important role in brain evolution (Isler and van Schaik, 2006). Using composite phylogenies and data drawn from multiple sources, these authors showed that basal metabolic rate (BMR) correlates with brain mass across mammals. However, no such relationship was found within rodents. Here we re-examined the relationship between BMR and brain mass within Rodentia using a novel species-level phylogeny. Our results are sensitive to parameter evaluation; in particular how species mass is estimated. We detect no pattern when applying an approach used by previous studies, where each species BM is represented by two different numbers, one being the individual that happened to be used for BMR estimates of that species. However, this approach may compromise the analysis. When using a single value of BM for each species, whether representing a single individual, or available species mean, our findings provide evidence that brain mass (independent of BM) and BMR are correlated. These findings are thus consistent with the hypothesis that large brains evolve when the payoff for increased brain mass is greater than the energetic cost they incur

    Phylogenetic Analysis of Conservation Priorities for Aquatic Mammals and Their Terrestrial Relatives, with a Comparison of Methods

    Get PDF
    BACKGROUND: Habitat loss and overexploitation are among the primary factors threatening populations of many mammal species. Recently, aquatic mammals have been highlighted as particularly vulnerable. Here we test (1) if aquatic mammals emerge as more phylogenetically urgent conservation priorities than their terrestrial relatives, and (2) if high priority species are receiving sufficient conservation effort. We also compare results among some phylogenetic conservation methods. METHODOLOGY/PRINCIPAL FINDINGS: A phylogenetic analysis of conservation priorities for all 620 species of Cetartiodactyla and Carnivora, including most aquatic mammals. Conservation priority ranking of aquatic versus terrestrial species is approximately proportional to their diversity. However, nearly all obligated freshwater cetartiodactylans are among the top conservation priority species. Further, ∌74% and 40% of fully aquatic cetartiodactylans and carnivores, respectively, are either threatened or data deficient, more so than their terrestrial relatives. Strikingly, only 3% of all 'high priority' species are thought to be stable. An overwhelming 97% of these species thus either show decreasing population trends (87%) or are insufficiently known (10%). Furthermore, a disproportional number of highly evolutionarily distinct species are experiencing population decline, thus, such species should be closely monitored even if not currently threatened. Comparison among methods reveals that exact species ranking differs considerably among methods, nevertheless, most top priority species consistently rank high under any method. While we here favor one approach, we also suggest that a consensus approach may be useful when methods disagree. CONCLUSIONS/SIGNIFICANCE: These results reinforce prior findings, suggesting there is an urgent need to gather basic conservation data for aquatic mammals, and special conservation focus is needed on those confined to freshwater. That evolutionarily distinct--and thus 'biodiverse'--species are faring relatively poorly is alarming and requires further study. Our results offer a detailed guide to phylogeny-based conservation prioritization for these two orders

    Phylogenetic review of tonal sound production in whales in relation to sociality

    Get PDF
    Background It is widely held that in toothed whales, high frequency tonal sounds called \u27whistles\u27 evolved in association with \u27sociality\u27 because in delphinids they are used in a social context. Recently, whistles were hypothesized to be an evolutionary innovation of social dolphins (the \u27dolphin hypothesis\u27). However, both \u27whistles\u27 and \u27sociality\u27 are broad concepts each representing a conglomerate of characters. Many non-delphinids, whether solitary or social, produce tonal sounds that share most of the acoustic characteristics of delphinid whistles. Furthermore, hypotheses of character correlation are best tested in a phylogenetic context, which has hitherto not been done. Here we summarize data from over 300 studies on cetacean tonal sounds and social structure and phylogenetically test existing hypotheses on their co-evolution. Results Whistles are \u27complex\u27 tonal sounds of toothed whales that demark a more inclusive clade than the social dolphins. Whistles are also used by some riverine species that live in simple societies, and have been lost twice within the social delphinoids, all observations that are inconsistent with the dolphin hypothesis as stated. However, cetacean tonal sounds and sociality are intertwined: (1) increased tonal sound modulation significantly correlates with group size and social structure; (2) changes in tonal sound complexity are significantly concentrated on social branches. Also, duration and minimum frequency correlate as do group size and mean minimum frequency. Conclusion Studying the evolutionary correlation of broad concepts, rather than that of their component characters, is fraught with difficulty, while limits of available data restrict the detail in which component character correlations can be analyzed in this case. Our results support the hypothesis that sociality influences the evolution of tonal sound complexity. The level of social and whistle complexity are correlated, suggesting that complex tonal sounds play an important role in social communication. Minimum frequency is higher in species with large groups, and correlates negatively with duration, which may reflect the increased distances over which non-social species communicate. Our findings are generally stable across a range of alternative phylogenies. Our study points to key species where future studies would be particularly valuable for enriching our understanding of the interplay of acoustic communication and sociality

    Phylogenetic and Ecological Significance in the Evolution of Cetacean Tonal Sounds

    Get PDF
    Cetaceans are aquatic mammals that rely primarily on sound for most daily tasks. A compendium of sounds is emitted for orientation, prey detection, and predator avoidance, and to communicate. Communicative sounds are among the most studied Cetacean signals, particularly those referred to as tonal sounds. Because tonal sounds have been studied especially well in social dolphins, it has been assumed these sounds evolved as a social adaptation. However, whistles have been reported in ‘solitary’ species and have been secondarily lost three times in social lineages. Clearly, therefore, it is necessary to examine closely the association, if any, between whistles and sociality instead of merely assuming it. Several hypotheses have been proposed to explain the evolutionary history of Cetacean tonal sounds. The main goal of this dissertation is to cast light on the evolutionary history of tonal sounds by testing these hypotheses by combining comparative phylogenetic and field methods. This dissertation provides the first species-level phylogeny of Cetacea and phylogenetic tests of evolutionary hypotheses of cetacean communicative signals. Tonal sounds evolution is complex in that has likely been shaped by a combination of factors that may influence different aspects of their acoustical structure. At the inter-specific level, these results suggest that only tonal sound minimum frequency is constrained by body size. Group size also influences tonal sound minimum frequency. Species that live in large groups tend to produce higher frequency tonal sounds. The evolutionary history of tonal sounds and sociality may be intertwined, but in a complex manner rejecting simplistic views such as the hypothesis that tonal sounds evolved ‘for’ social communication in dolphins. Levels of social and tonal sound complexity nevertheless correlate indicating the importance of tonal sounds in social communication. At the intraspecific level, tonal sound variation in frequency and temporal parameters may be product of genetic isolation and local levels of underwater noise. This dissertation provides one of the first insights into the evolution of Cetacean tonal sounds in a phylogenetic context, and points out key species where future studies would be valuable to enrich our understanding of other factors also playing a role in tonal sound evolution

    Patterns of cetacean sighting distribution in the Pacific Exclusive Economic Zone of Costa Rica based on data collected from 1979-2001

    Get PDF
    Nineteen species of cetaceans (families Balaenopteridae, Kogiidae, Physeteridae, Ziphiidae and Delphinidae) occur in the Costa Rican Pacific Exclusive Economic Zone (EEZ). Based on data recorded from the EEZ by the Southwest Fisheries Service Center, Cascadia Research Collective, and CIMAR between 1979- 2001, we mapped the distribution of 18 cetacean species. Our results suggest that the majority of the cetacean species use primarily oceanic waters, particularly those species within the families Balaenopteridae, Kogiidae, Physeteridae and Ziphiidae. Members of the family Delphinidae showed a wide variety of distribution patterns: seven species are widespread throughout the EEZ, four appear to be exclusively pelagic, and two are primarily coastal. Overall, three cetacean species appear to have populations concentrated in coastal waters: Stenella attenuata graffmani, Tursiops truncatus, and Megaptera novaeangliae. These three may be more susceptible to human activities due to the overlap of their ranges with fishery areas (tuna and artisanal fisheries), and an uncontrolled increase of touristic whale watching activities in several parts of their range. The distribution maps represent the first comprehensive representation of cetacean species that inhabit Costa Rican Pacific waters. They provide essential base-line information that may be used to initiate conservation and management efforts of the habitats where these animals reproduce and forage

    Vocal universals and geographic variations in the acoustic repertoire of the common bottlenose dolphin

    Get PDF
    Acoustical geographic variation is common in widely distributed species and it is already described for several taxa, at various scales. In cetaceans, intraspecific variation in acoustic repertoires has been linked to ecological factors, geographical barriers, and social processes. For the common bottlenose dolphin (Tursiops truncatus), studies on acoustic variability are scarce, focus on a single signal type-whistles and on the influence of environmental variables. Here, we analyze the acoustic emissions of nine bottlenose dolphin populations across the Atlantic Ocean and the Mediterranean Sea, and identify common signal types and acoustic variants to assess repertoires' (dis)similarity. Overall, these dolphins present a rich acoustic repertoire, with 24 distinct signal sub-types including: whistles, burst-pulsed sounds, brays and bangs. Acoustic divergence was observed only in social signals, suggesting the relevance of cultural transmission in geographic variation. The repertoire dissimilarity values were remarkably low (from 0.08 to 0.4) and do not reflect the geographic distances among populations. Our findings suggest that acoustic ecology may play an important role in the occurrence of intraspecific variability, as proposed by the 'environmental adaptation hypothesis'. Further work may clarify the boundaries between neighboring populations, and shed light into vocal learning and cultural transmission in bottlenose dolphin societies.Fundação para a CiĂȘncia e Tecnologia - FCTinfo:eu-repo/semantics/publishedVersio

    Foraging habits and levels of mercury in a resident population of bottlenose dolphins (Tursiops truncatus) in Bocas del Toro Archipelago, Caribbean Sea, Panama

    Get PDF
    International audienceA small and genetically isolated bottlenose dolphin (Tursiops truncatus) population that resides year-round in the Bocas del Toro Archipelago-Panama (BDT). Photo-identification and genetic data showed that this dolphin population is highly phylopatric and is formed exclusively by individuals of the “inshore form”. This study aimed to investigate the trophic ecology and mercury concentrations of bottlenose dolphin in BDT to assess their coastal habits. We collected muscle samples (n=175) of 11 potential fish prey species, and skin samples from free-ranging dolphins in BDT (n=37) and La Guajira-Colombia (n=7) to compare isotopic niche width. Results showed that BDT dolphins have a coastal feeding habit, belong to the “inshore form” (ÎŽ13C= -13.05±1.89‰), and have low mercury concentrations (mean=1,637±1,387 ng g-1dw). However, this element is biomagnified in the BDT food chain, showing a marginal dolphins health risk (RQ=1.00). These results call for preventive dolphin conservation measures and continue monitoring the pollutant levels

    Dolphin communication during widespread systematic noise reduction-a natural experiment amid COVID-19 lockdowns

    Get PDF
    Underwater noise from human activities is recognized as a world-wide problem, with important repercussions on the acoustic communication of aquatic mammals. During the COVID-19 pandemic, the government of Panama went into a nationwide lockdown to limit the spread of the virus. This lockdown resulted in the closing of tourism infrastructure and limited mobility in both land and coastal areas. We used this “natural experiment” as an opportunity to study the impact of tour-boat activities on dolphin communication by using passive acoustic monitoring data collected before and during the lockdown at Dolphin Bay, Bocas del Toro, Panama. During the lockdown, tour-boat activity was absent, but boats transporting people and supplies were allowed to circulate. The shift in type of boat activity within the lockdown resulted in lower ambient noise levels and more frequent detections of dolphin sounds. We also detected a more diverse whistle repertoire during the lockdown than in the pre-lockdown period, even when accounting for variation in sample coverage. A Random Forest Analysis classified whistles between the two periods with high accuracy (92.4% accuracy, Îș = 0.85) based primarily on whistle modulation and duration. During the lockdown, whistles were longer in duration and less modulated than pre-lockdown. Our study shows that a shift in boat traffic activity can generate significant changes in dolphin habitat, and in their communicative signals, an important consideration given ongoing unregulated ecotourism in the region

    Quantifying parameters of bottlenose dolphin signature whistles

    Get PDF
    Author Posting. © The Author(s), 2009. This is the author's version of the work. It is posted here by permission of John Wiley & Sons for personal use, not for redistribution. The definitive version was published in Marine Mammal Science 25 (2009): 976-986, doi:10.1111/j.1748-7692.2009.00289.x.Bottlenose dolphins (Tursiops truncatus) produce individually distinctive vocalizations called signature whistles, first described by Melba and David Caldwell (1965). The Caldwells observed that isolated, captive dolphins produced whistles with individually distinctive frequency contours, or patterns of frequency changes over time, and hypothesized that these whistles were used to transmit identity information (Caldwell and Caldwell 1965; Caldwell et al. 1990). Since the Caldwell’s work with isolated, captive dolphins, several studies have documented signature whistles in a variety of contexts, including free-swimming captive dolphins (e.g., Janik and Slater 1998; Tyack 1986), briefly restrained wild dolphins (e.g., Sayigh et al. 1990, 2007, Watwood et al. 2005), and free-ranging wild dolphins (e.g., Watwood 2003; Watwood et al. 2004, 2005; Buckstaff 2004; Cook et al. 2004). Janik and Slater (1998) demonstrated that signature whistles are used to maintain group cohesion, thus supporting the Caldwells’ hypothesis. Janik et al. (2006) verified experimentally that bottlenose dolphins respond to signature whistles produced by familiar conspecifics even after voice featured have been removed, reinforcing the notion that the contour of a signature whistle carries identity information.This work was funded by a Protect Wild Dolphins grant from the Harbor Branch Oceanographic Institution, issued to LSS and RSW
    • 

    corecore