3,670 research outputs found

    Spontaneous Symmetry Breaking of Population between Two Dynamic Attractors in a Driven Atomic Trap: Ising-class Phase Transition

    Full text link
    We have observed spontaneous symmetry breaking of atomic populations in the dynamic phase-space double-potential system, which is produced in the parametrically driven magneto-optical trap of atoms. We find that the system exhibits similar characteristics of the Ising-class phase transition and the critical value of the control parameter, which is the total atomic number, can be calculated. In particular, the collective effect of the laser shadow becomes dominant at large atomic number, which is responsible for the population asymmetry of the dynamic two-state system. This study may be useful for investigation of dynamic phase transition and temporal behaviour of critical phenomena.Comment: 4 pages, 4 figure

    Early findings from a large-scale user study of CHESTNUT: Validations and implications

    Get PDF
    Towards a serendipitous recommender system with user-centred understanding, we have built CHESTNUT , an Information Theory-based Movie Recommender System, which introduced a more comprehensive understanding of the concept. Although off-line evaluations have already demonstrated that CHESTNUT has greatly improved serendip-ity performance, feedback on CHESTNUT from real-world users through online services are still unclear now. In order to evaluate how serendip-itous results could be delivered by CHESTNUT , we consequently designed , organized and conducted large-scale user study, which involved 104 participants from 10 campuses in 3 countries. Our preliminary feedback has shown that, compared with mainstream collaborative filtering techniques, though CHESTNUT limited users' feelings of unex-pectedness to some extent, it showed significant improvement in their feelings about certain metrics being both beneficial and interesting, which substantially increased users' experience of serendipity. Based on them, we have summarized three key takeaways, which would be beneficial for further designs and engineering of serendipitous recommender systems, from our perspective. All details of our large-scale user study could be found at https://github.com/unnc-idl-ucc/Early-Lessons-From-CHESTNU

    Allele-Specific Chromatin Immunoprecipitation Studies Show Genetic Influence on Chromatin State in Human Genome

    Get PDF
    Several recent studies have shown a genetic influence on gene expression variation, including variation between the two chromosomes within an individual and variation between individuals at the population level. We hypothesized that genetic inheritance may also affect variation in chromatin states. To test this hypothesis, we analyzed chromatin states in 12 lymphoblastoid cells derived from two Centre d'Etude du Polymorphisme Humain families using an allele-specific chromatin immunoprecipitation (ChIP-on-chip) assay with Affymetrix 10K SNP chip. We performed the allele-specific ChIP-on-chip assays for the 12 lymphoblastoid cells using antibodies targeting at RNA polymerase II and five post-translation modified forms of the histone H3 protein. The use of multiple cell lines from the Centre d'Etude du Polymorphisme Humain families allowed us to evaluate variation of chromatin states across pedigrees. These studies demonstrated that chromatin state clustered by family. Our results support the idea that genetic inheritance can determine the epigenetic state of the chromatin as shown previously in model organisms. To our knowledge, this is the first demonstration in humans that genetics may be an important factor that influences global chromatin state mediated by histone modification, the hallmark of the epigenetic phenomena

    Low-temperature properties of classical, geometrically frustrated antiferromagnets

    Full text link
    We study the ground-state and low-energy properties of classical vector spin models with nearest-neighbour antiferromagnetic interactions on a class of geometrically frustrated lattices which includes the kagome and pyrochlore lattices. We explore the behaviour of these magnets that results from their large ground-state degeneracies, emphasising universal features and systematic differences between individual models. We investigate the circumstances under which thermal fluctuations select a particular subset of the ground states, and find that this happens only for the models with the smallest ground-state degeneracies. For the pyrochlore magnets, we give an explicit construction of all ground states, and show that they are not separated by internal energy barriers. We study the precessional spin dynamics of the Heisenberg pyrochlore antiferromagnet. There is no freezing transition or selection of preferred states. Instead, the relaxation time at low temperature, T, is of order hbar/(k_B T). We argue that this behaviour can also be expected in some other systems, including the Heisenberg model for the compound SrCr_8Ga_4O_{19}.Comment: to appear in Phys. Rev.

    Bringing "The Moth" to Light: A Planet-Sculpting Scenario for the HD 61005 Debris Disk

    Full text link
    The HD 61005 debris disk ("The Moth") stands out from the growing collection of spatially resolved circumstellar disks by virtue of its unusual swept-back morphology, brightness asymmetries, and dust ring offset. Despite several suggestions for the physical mechanisms creating these features, no definitive answer has been found. In this work, we demonstrate the plausibility of a scenario in which the disk material is shaped dynamically by an eccentric, inclined planet. We present new Keck NIRC2 scattered-light angular differential imaging of the disk at 1.2-2.3 microns that further constrains its outer morphology (projected separations of 27-135 AU). We also present complementary Gemini Planet Imager 1.6 micron total intensity and polarized light detections that probe down to projected separations less than 10 AU. To test our planet-sculpting hypothesis, we employed secular perturbation theory to construct parent body and dust distributions that informed scattered-light models. We found that this method produced models with morphological and photometric features similar to those seen in the data, supporting the premise of a planet-perturbed disk. Briefly, our results indicate a disk parent body population with a semimajor axis of 40-52 AU and an interior planet with an eccentricity of at least 0.2. Many permutations of planet mass and semimajor axis are allowed, ranging from an Earth mass at 35 AU to a Jupiter mass at 5 AU.Comment: Accepted to AJ; added Figure 5 and minor text edit

    Delineating Genetic Alterations for Tumor Progression in the MCF10A Series of Breast Cancer Cell Lines

    Get PDF
    To gain insight into the role of genomic alterations in breast cancer progression, we conducted a comprehensive genetic characterization of a series of four cell lines derived from MCF10A. MCF10A is an immortalized mammary epithelial cell line (MEC); MCF10AT is a premalignant cell line generated from MCF10A by transformation with an activated HRAS gene; MCF10CA1h and MCF10CA1a, both derived from MCF10AT xenografts, form well-differentiated and poorly-differentiated malignant tumors in the xenograft models, respectively. We analyzed DNA copy number variation using the Affymetrix 500 K SNP arrays with the goal of identifying gene-specific amplification and deletion events. In addition to a previously noted deletion in the CDKN2A locus, our studies identified MYC amplification in all four cell lines. Additionally, we found intragenic deletions in several genes, including LRP1B in MCF10CA1h and MCF10CA1a, FHIT and CDH13 in MCF10CA1h, and RUNX1 in MCF10CA1a. We confirmed the deletion of RUNX1 in MCF10CA1a by DNA and RNA analyses, as well as the absence of the RUNX1 protein in that cell line. Furthermore, we found that RUNX1 expression was reduced in high-grade primary breast tumors compared to low/mid-grade tumors. Mutational analysis identified an activating PIK3CA mutation, H1047R, in MCF10CA1h and MCF10CA1a, which correlates with an increase of AKT1 phosphorylation at Ser473 and Thr308. Furthermore, we showed increased expression levels for genes located in the genomic regions with copy number gain. Thus, our genetic analyses have uncovered sequential molecular events that delineate breast tumor progression. These events include CDKN2A deletion and MYC amplification in immortalization, HRAS activation in transformation, PIK3CA activation in the formation of malignant tumors, and RUNX1 deletion associated with poorly-differentiated malignant tumors

    Identification and Characterization of \u3cem\u3eOGG1\u3c/em\u3e Mutations in Patients with Alzheimer\u27s Disease

    Get PDF
    Patients with Alzheimer\u27s disease (AD) exhibit higher levels of 8-oxo-guanine (8-oxoG) DNA lesions in their brain, suggesting a reduced or defective 8-oxoG repair. To test this hypothesis, this study investigated 14 AD patients and 10 age-matched controls for mutations of the major 8-oxoG removal gene OGG1. Whereas no alterations were detected in any control samples, four AD patients exhibited mutations in OGG1, two carried a common single base (C796) deletion that alters the carboxyl terminal sequence of OGG1, and the other two had nucleotide alterations leading to single amino acid substitutions. In vitro biochemical assays revealed that the protein encoded by the C796-deleted OGG1 completely lost its 8-oxoG glycosylase activity, and that the two single residue-substituted OGG1 proteins showed a significant reduction in the glycosylase activity. These results were consistent with the fact that nuclear extracts derived from a limited number of AD patients with OGG1 mutations exhibited greatly reduced 8-oxoG glycosylase activity compared with age-matched controls and AD patients without OGG1 alterations. Our findings suggest that defects in OGG1 may be important in the pathogenesis of AD in a significant fraction of AD patients and provide new insight into the molecular basis for the disease

    Time-delayed spread of viruses in growing plaques

    Get PDF
    The spread of viruses in growing plaques predicted by classical models is greater than that measured experimentally. There is a widespread belief that this discrepancy is due to biological factors. Here we show that the observed speeds can be satisfactorily predicted by a purely physical model that takes into account the delay time due to virus reproduction inside infected cells. No free or adjustable parameters are used

    Treatment of Rotator Cuff Tears: New Modalities and Innovations

    Get PDF
    Although frequently performed, rotator cuff repair carries a not insignificant failure rate. A number of studies including biomechanical and clinical studies have attempted to identify factors affecting rotator cuff repair and healing. Poor prognostic factors likely include age, fatty atrophy of rotator cuff muscles, large tear size, chronicity, and smoking. Recent rotator cuff tear research has been devoted to addressing both biologic and structural concerns of repair. Adjuvant repair techniques aimed at improving biology have emerged, and many are now clinically available and include biologic patch augmentation, bone marrow aspirate, platelet-rich plasma, and utilizing local bone marrow egress. Novel structural techniques have been developed to augment, alter, or replicate the structural properties of rotator cuff, particularly in the setting of irreparable rotator cuff tears. These include subacromial balloon spacers, tendon transfers, superior capsular reconstruction, anterior cable reconstruction, bursal acromial reconstruction, and biologic tuberoplasty. This chapter will examine these novel biological and structural techniques and review available clinical outcomes
    corecore