51 research outputs found

    Site-selective functionalization of in-plane nanoelectrode-antennas

    Get PDF
    Stacked organic optoelectronic devices make use of electrode materials with different work functions, leading to efficient large area light emission. In contrast, lateral electrode arrangements offer the possibility to be shaped as resonant optical antennas, radiating light from subwavelength volumes. However, tailoring electronic interface properties of laterally arranged electrodes with nanoscale gaps - to e.g. optimize charge-carrier injection - is rather challenging, yet crucial for further development of highly efficient nanolight sources. Here, we demonstrate site-selective functionalization of laterally arranged micro- and nanoelectrodes by means of different self-assembled monolayers. Upon applying an electric potential across nanoscale gaps, surface-bound molecules are removed selectively from specific electrodes by oxidative desorption. Kelvin-probe force microscopy as well as photoluminescence measurements are employed to verify the success of our approach. Moreover, we obtain asymmetric current-voltage characteristics for metal-organic devices in which just one of the electrodes is coated with 1-octadecanethiol; further demonstrating the potential to tune interface properties of nanoscale objects. Our technique paves the way for laterally arranged optoelectronic devices based on selectively engineered nanoscale interfaces and in principle enables molecular assembly with defined orientation in metallic nano-gaps

    Scope and limitations of ad hoc neural network reconstructions of solar wind parameters

    Full text link
    Solar wind properties are determined by the conditions of their solar source region and transport history. Solar wind parameters, such as proton speed, proton density, proton temperature, magnetic field strength, and the charge state composition of oxygen, are used as proxies to investigate the solar source region of the solar wind. The transport and conditions in the solar source region affect several solar wind parameters simultaneously. The observed redundancy could be caused by a set of hidden variables. We test this assumption by determining how well a function of four of the selected solar wind parameters can model the fifth solar wind parameter. If such a function provided a perfect model, then this solar wind parameter would be uniquely determined from hidden variables of the other four parameters. We used a neural network as a function approximator to model unknown relations between the considered solar wind parameters. This approach is applied to solar wind data from the Advanced Composition Explorer (ACE). The neural network reconstructions are evaluated in comparison to observations. Within the limits defined by the measurement uncertainties, the proton density and proton temperature can be reconstructed well. We also found that the reconstruction is most difficult for solar wind streams preceding and following stream interfaces. For all considered solar wind parameters, but in particular the proton density, temperature, and the oxygen charge-state ratio, parameter reconstruction is hindered by measurement uncertainties. The reconstruction accuracy of sector reversal plasma is noticeably lower than that of streamer belt or coronal hole plasma. The fact that the oxygen charge-state ratio, a non-transport-affected property, is difficult to reconstruct may imply that recovering source-specific information from the transport-affected proton plasma properties is challenging

    Development of Rotaxanes as E-Field-Sensitive Superstructures in Plasmonic Nano-Antennas

    Get PDF
    We present the concept of electrostatic field-driven supramolecular translation within electrically connected plasmonic nano-antennas. The antenna serves as an anchoring point for the mechanically interlocked molecules, as an electrode for the electrostatic field, and as an amplifier of the antenna-enhanced fluorescence. The synthesis of a push-pull donor-Ď€-acceptor chromophore with optical properties aligned to the antenna resonance is described and its immobilization on the surface is demonstrated. Photoluminescence experiments of the chromophore on a gold nano-antenna are shown, highlighting the molecule-antenna coupling and resulting emission intensity increase. The successful synthesis of an electrostatic field-sensitive [2]rotaxane in water is described and the tightrope walk between functionality and water solubility is illustrated by unsuccessful designs. In solution, an enhanced fluorescence quantum yield is observed for the chromophore comprising the mechanically interlocked [2]rotaxane in water and DMSO compared to the reference rod, ideal for future experiments in plasmonic nano-antennas

    Extraction of the frequency moments of spectral densities from imaginary-time correlation function data

    Full text link
    We introduce an exact framework to compute the positive frequency moments M(α)(q)=⟨ωα⟩M^{(\alpha)}(\mathbf{q})=\braket{\omega^\alpha} of different dynamic properties from imaginary-time quantum Monte Carlo data. As a practical example, we obtain the first five moments of the dynamic structure factor S(q,ω)S(\mathbf{q},\omega) of the uniform electron gas at the electronic Fermi temperature based on \emph{ab initio} path integral Monte Carlo simulations. We find excellent agreement with known sum rules for α=1,3\alpha=1,3, and, to our knowledge, present the first results for α=2,4,5\alpha=2,4,5. Our idea can be straightforwardly generalized to other dynamic properties such as the single-particle spectral function A(q,ω)A(\mathbf{q},\omega), and will be useful for a number of applications, including the study of ultracold atoms, exotic warm dense matter, and condensed matter systems

    Peer review analysis in the field of radiation oncology: results from a web-based survey of the Young DEGRO working group

    Get PDF
    PURPOSE To evaluate the reviewing behaviour in the German-speaking countries in order to provide recommendations to increase the attractiveness of reviewing activity in the field of radiation oncology. METHODS In November 2019, a survey was conducted by the Young DEGRO working group (jDEGRO) using the online platform “eSurveyCreator”. The questionnaire consisted of 29 items examining a~broad range of factors that influence reviewing motivation and performance. RESULTS A total of 281 responses were received. Of these, 154 (55%) were completed and included in the evaluation. The most important factors for journal selection criteria and peer review performance in the field of radiation oncology are the scientific background of the manuscript (85%), reputation of the journal (59%) and a~high impact factor (IF; 40%). Reasons for declining an invitation to review include the scientific background of the article (60%), assumed effort (55%) and a low IF (27%). A~double-blind review process is preferred by 70% of respondents to a single-blind (16%) or an open review process (14%). If compensation was offered, 59% of participants would review articles more often. Only 12% of the participants have received compensation for their reviewing activities so far. As compensation for the effort of reviewing, 55% of the respondents would prefer free access to the journal's articles, 45% a discount for their own manuscripts, 40% reduced congress fees and 39% compensation for expenses. CONCLUSION The scientific content of the manuscript, reputation of the journal and a~high IF determine the attractiveness for peer reviewing in the field of radiation oncology. The majority of participants prefer a~double-blind peer review process and would conduct more reviews if compensation was available. Free access to journal articles, discounts for publication costs or congress fees, or an expense allowance were identified to increase attractiveness of the review process

    Expression of 3q Oncogene SEC62 Predicts Survival in Head and Neck Squamous Cell Carcinoma Patients Treated with Primary Chemoradiation

    Get PDF
    Primary chemoradiotherapy (CRT) is an established treatment option for locally advanced head and neck squamous cell carcinomas (HNSCC) usually combining intensity modified radiotherapy with concurrent platinum-based chemotherapy. Though the majority of patients can be cured with this regimen, treatment response is highly heterogeneous and can hardly be predicted. SEC62 represents a metastasis stimulating oncogene that is frequently overexpressed in various cancer entities and is associated with poor outcome. Its role in HNSCC patients undergoing CRT has not been investigated so far. A total of 127 HNSCC patients treated with primary CRT were included in this study. The median follow-up was 5.4 years. Pretherapeutic tissue samples of the primary tumors were used for immunohistochemistry targeting SEC62. SEC62 expression, clinical and histopathological parameters, as well as patient outcome, were correlated in univariate and multivariate survival analyses. High SEC62 expression correlated with a significantly shorter overall survival (p = 0.015) and advanced lymph node metastases (p = 0.024). Further significant predictors of poor overall and progression-free survival included response to therapy (RECIST1.1), nodal status, distant metastases, tobacco consumption, recurrence of disease, and UICC stage. In a multivariate Cox hazard proportional regression analysis, only SEC62 expression (p = 0.046) and response to therapy (p < 0.0001) maintained statistical significance as independent predictors of the patients’ overall survival. This study identified SEC62 as an independent prognostic biomarker in HNSCC patients treated with primary CRT. The role of SEC62 as a potential therapeutic target and its interaction with radiation-induced molecular alterations in head and neck cancer cells should further be investigated

    LocTree3 prediction of localization

    Get PDF
    The prediction of protein sub-cellular localization is an important step toward elucidating protein function. For each query protein sequence, LocTree2 applies machine learning (profile kernel SVM) to predict the native sub-cellular localization in 18 classes for eukaryotes, in six for bacteria and in three for archaea. The method outputs a score that reflects the reliability of each prediction. LocTree2 has performed on par with or better than any other state-of-the-art method. Here, we report the availability of LocTree3 as a public web server. The server includes the machine learning-based LocTree2 and improves over it through the addition of homology-based inference. Assessed on sequence-unique data, LocTree3 reached an 18-state accuracy Q18 = 80 ± 3% for eukaryotes and a six-state accuracy Q6 = 89 ± 4% for bacteria. The server accepts submissions ranging from single protein sequences to entire proteomes. Response time of the unloaded server is about 90 s for a 300-residue eukaryotic protein and a few hours for an entire eukaryotic proteome not considering the generation of the alignments. For over 1000 entirely sequenced organisms, the predictions are directly available as downloads. The web server is available at http://www.rostlab.org/services/loctree3

    Homology-based inference sets the bar high for protein function prediction

    Get PDF
    Background: Any method that de novo predicts protein function should do better than random. More challenging, it also ought to outperform simple homology-based inference. Methods: Here, we describe a few methods that predict protein function exclusively through homology. Together, they set the bar or lower limit for future improvements. Results and conclusions: During the development of these methods, we faced two surprises. Firstly, our most successful implementation for the baseline ranked very high at CAFA1. In fact, our best combination of homology-based methods fared only slightly worse than the top-of-the-line prediction method from the Jones group. Secondly, although the concept of homology-based inference is simple, this work revealed that the precise details of the implementation are crucial: not only did the methods span from top to bottom performers at CAFA, but also the reasons for these differences were unexpected. In this work, we also propose a new rigorous measure to compare predicted and experimental annotations. It puts more emphasis on the details of protein function than the other measures employed by CAFA and may best reflect the expectations of users. Clearly, the definition of proper goals remains one major objective for CAFA
    • …
    corecore