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ABSTRACT

The prediction of protein sub-cellular localization is
an important step toward elucidating protein func-
tion. For each query protein sequence, LocTree2 ap-
plies machine learning (profile kernel SVM) to pre-
dict the native sub-cellular localization in 18 classes
for eukaryotes, in six for bacteria and in three for
archaea. The method outputs a score that reflects
the reliability of each prediction. LocTree2 has per-
formed on par with or better than any other state-
of-the-art method. Here, we report the availability of
LocTree3 as a public web server. The server includes
the machine learning-based LocTree2 and improves
over it through the addition of homology-based infer-
ence. Assessed on sequence-unique data, LocTree3
reached an 18-state accuracy Q18 = 80 ± 3% for eu-
karyotes and a six-state accuracy Q6 = 89 ± 4% for
bacteria. The server accepts submissions ranging
from single protein sequences to entire proteomes.
Response time of the unloaded server is about 90 s
for a 300-residue eukaryotic protein and a few hours
for an entire eukaryotic proteome not considering the
generation of the alignments. For over 1000 entirely
sequenced organisms, the predictions are directly
available as downloads. The web server is available
at http://www.rostlab.org/services/loctree3.

INTRODUCTION

Many experimental methods annotate protein localiza-
tion, enriching resources such as SWISS-PROT (1). How-
ever, even for the well-studied yeast, the experimental
data are not nearly complete (2,3). Bridging the sequence-
annotation gap (4) for localization, therefore, calls for
cheaper and faster in silico approaches (5,6). Many machine
learning methods predict the native localization of a pro-
tein from its amino acid sequence; among the best known
are CELLO (7), WoLF PSORT (8), YLoc (9) and PSORTb
(10). A recent study suggested homology-based inference to
outperform machine learning (11). Homology-based infer-
ence proceeds as follows: build a data set with all proteins
of known localization, run a simple pairwise BLAST (12)
against this set, and predict the localization of the first hit.

LocTree2 predicts a single localization for all proteins
in all domains of life through machine learning (13). The
method implements a hierarchical system of Support Vec-
tor Machines (SVMs) to imitate the cascading mechanism
of cellular sorting (14). An independent, recent benchmark
proved LocTree2 to be an excellent successor and/or com-
plement to other top-of-the-line prediction methods (15) in
situations in which no experimental information is available
for the query protein or its homologs.

Here, we introduce LocTree3. It provides the web server
front end for LocTree2, and improves over LocTree2 by in-
cluding information about homologs if available. Thereby,
LocTree3 combines ‘the best of both worlds’, employing ho-
mology when possible and machine learning otherwise. The
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major steps of improvement are as follows: (i) inclusion of
annotation transfer from close homologs with experimen-
tally annotated localization through PSI-BLAST (12); (ii)
runtime reduction of LocTree2 by using a new fast imple-
mentation of the SVM profile kernel (16,17); (iii) Gene On-
tology (18) annotations for prediction results; (iv) caching
of the results for faster processing of the repeated searches
(19,20).

MATERIALS AND METHODS

Data

The number of proteins with experimental annotation for
a single localization in SWISS-PROT release 2011 04 was
34 583 for eukaryotes (18 localization classes, visualized in
Figure 2), 4765 for bacteria (six classes: cytosol, plasma
membrane, periplasmic space, outer membrane, fimbrium
and extra-cellular) and 237 for archaea (three classes: cy-
tosol, plasma membrane and extra-cellular). LocTree2 was
developed on sequence-unique subsets with 1682 eukary-
otic, 479 bacterial and 79 archaeal proteins (Supplemen-
tary Table S1, Supporting Online Material). Sequence-
redundancy was reduced at HVAL ≤ 0 (21,22) through
UniqueProt (23). This is commonly done because the bias
in data sets from sequence similarity often overestimate per-
formance (24). However, in order to assess the power of
homology-based inference, we had to accept some redun-
dancy because homology-based inference performed below
the level of random across sequence-unique proteins (Sup-
plementary Table S2). We accomplished this by running the
sequence-unique 1682 eukaryotic proteins against all exper-
imentally annotated proteins, i.e. against the same release
of SWISS-PROT putting the redundancy back in to en-
able PSI-BLAST lookups. For 995 of the 1682, PSI-BLAST
found a non-trivial (removal of query protein) at E-value ≤
10−3 (25,26); for 687 it did not.

For further testing, we added three new data sets. We col-
lected all proteins for which experimental annotations had
been added between releases 2011 04 and 2013 11. We re-
dundancy reduced those at HVAL ≤ 0. This gave the sets
New2013 hval0 (273 for eukaryotes, 57 for bacteria). Ad-
ditional redundancy reduction to LocTree3 development
data provided too small sets (32 eukaryotic and two bac-
terial proteins) for reliable performance estimates. Next, we
simulated the question ‘how well the method will perform
on the next 1000 new proteins?’ by simply monitoring all
proteins added since we began collecting the data for this
manuscript, i.e. the proteins added since 2013 11 (New2014
with 198 eukaryotic proteins and too few in bacteria to pro-
ceed). Finally, we investigated a third set with all human
proteins (Supplementary Table S3). We deliberately kept
the ‘redundancy’ in this set that exists on the level of an
organism. Note that throughout we have considered only
proteins with single experimental annotations. Our prelim-
inary analysis of proteins with multiple annotations sug-
gested these to constitute a small set of proteins with many
problematic annotations (Supplementary Section S1).

Methods

(1) Homology-based inference: We transferred localization
annotations by homology through PSI-BLAST (12).
For all proteins with experimentally known localiza-
tion, we generated PSI-BLAST profiles using an 80%
non-redundant database combining UniProt (1) and
PDB (27) with two iterations and E-value ≤ 10−3.
These profiles were then aligned against all proteins
with experimental annotation of a single localization in
SWISS-PROT release 2011 04. PSI-BLAST hits to the
input protein were excluded.

(2) LocTree2 (13) utilizes a hierarchical system of SVMs.
At all levels of the tree are binary decisions, which are
made by searching through proteins of annotated local-
ization with short stretches of k-consecutive residues (k
= 3 for archaea, 5 for bacteria and 6 for eukaryota). The
most informative k-mer hit decides on ‘left or right’ for
each fork in the tree until reaching a leaf, i.e. the final
predicted localization class.

(3) LocTree3: Our final method, LocTree3, combines PSI-
BLAST and LocTree2 in the settings where they per-
form best. A single parameter chooses: homology-
based inference, if a profile-2-sequence PSI-BLAST hits
at E-value ≤ 10−3, else: LocTree2 (‘Results’ section and
Supplementary Figures S1 and S2).

(4) Public methods (CELLO 2.5, WoLF PSORT, YLoc,
PSORTb 3.0): We compared LocTree3 to four pub-
licly available leading prediction methods: CELLO 2.5
(7), WoLF PSORT (8), YLoc (9) and PSORTb 3.0
(10). If WoLF PSORT or CELLO 2.5 predicted mul-
tiple locations, and one of those was correct, we al-
ways considered the prediction fully correct. Further-
more, these two methods distinguish cytoskeleton and
cytoplasm; here, we considered both as cytosolic. Be-
cause no method other than LocTree2/3 distinguishes
between membranes other than the cell membrane in
eukaryotes, we merged these two classes, i.e. treated nu-
clear and nuclear-membrane proteins as identical. Plas-
tid and chloroplast proteins were also merged into one
class for a comparison of LocTree3 to other methods.
For a comparison with CELLO 2.5 and PSORTb 3.0
we combined bacterial secreted and fimbrium proteins
into one class and differentiated between Gram-positive
and Gram-negative proteins according to Yu et al. (10).

Reliability index

The reliability of a prediction is given through a reliabil-
ity index ranging from 0 (weak prediction) to 100 (confi-
dent prediction). For LocTree2, the reliability indices are
taken directly from its output. For homology-based infer-
ences from PSI-BLAST, the reliability index was compiled
as a simple function of the percentage pairwise sequence
identity (PIDE) with a threshold at the saturation of PIDE
≤ 20 (Supplementary Figure S1).

Performance evaluation
The performance for a single localization class L was ex-
pressed using accuracy (often also referred to as precision)
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Table 1. Performance for LocTree3 and its sources

Method Eukaryota Q18 (Equation (3)) Bacteria Q6 (Equation (3))

Set2011 hval0
(1682)*4

Without
PSI-BLAST hits

(687) *4
With PSI-BLAST

hits (995)*4
Set2011 hval0

(479)*5

Without
PSI-BLAST hits

(277)*5
With PSI-BLAST

hits (202)*5

PSI-BLAST*1 55 ± 3 na 93 ± 2 40 ± 5 na 94 ± 4
LocTree2*2 65 ± 3 61 ± 5 67 ± 4 84 ± 4 84 ± 5 83 ± 6
LocTree3*3 80 ± 3 89 ± 4

Note: ‘±’ values refer to standard errors (Equation (4)); bold face: ‘winner in each column’.
*1 PSI-BLAST: simple look-up of localization from proteins with known localization, excluding self-hits.
*2 LocTree2: de novo machine learning-based prediction (cross-validated).
*3 LocTree3: takes PSI-BLAST if available and LocTree2, otherwise.
*4Eukaryotic ‘Set2011 hval0’: 1682 sequence-unique eukaryotic proteins with experimental localization annotation from SWISS-PROT release 2011 04;
for 995 of those, PSI-BLAST found hits at E-value ≤ 10−3 in the set of all annotations of release 2011 04, for 687 it did not.
*5Bacterial ‘Set2011 hval0’: SWISS-PROT release 2011 04 had localization annotations for 479 sequence-unique bacterial proteins; for 202 PSI-BLAST
identified hits in the remainder of annotated proteins in 2011 04, for 227 it did not.

and coverage (often also referred to as recall):

Acc(L) = 100 × TP
TP + PF

(1)

Cov(L) = 100 × TP
TP + FN

(2)

with: TP, the true positives (i.e. the number of proteins pre-
dicted and observed in localization L); FP, the false posi-
tives (i.e. the number predicted in L and observed in non-L);
FN, the false negatives (i.e. the number observed in L and
predicted in non-L). We measured the overall performance
by the n-state accuracy Qn:

Qn = number proteins correctly predicted in n classes
total number proteins observed in n classes

(3)

Standard errors were estimated over 1000 bootstrap sets,
i.e. randomly select 15% of proteins without replacement
from the original data set (in our experience this non-
standard procedure yields more long-lived estimates). For
each bootstrap set, the performance xi (e.g. accuracy) is es-
timated through its difference from the overall performance
〈x〉. These 1000 estimates provided the standard deviation
of xi with the typical standard error, where n is the number
of bootstrap sets:

Standard deviation (σ ) =
√∑n

i=1 (xi − 〈x〉)2

n
(4)

Standard error = σ√
n − 1

Runtime analysis

For sequences with pre-calculated PSI-BLAST profiles the
LocTree2 runtime was measured on a Dell M605 machine
with a Six-Core AMD Opteron processor (2.4 GHz, 6MB
and 75 W ACP) running on Linux.

RESULTS

LocTree3 balanced PSI-BLAST and LocTree2

Homology-based inference for a protein of unknown local-
ization U implies to find a protein with known localization
K that is sequence similar to U (e.g. sim(U,K) > T and U �=
K). We experimented with alternative solutions, but avoided
to ‘over-optimize’. We simply chose the threshold T to be
the standard PSI-BLAST E-value of 10−3 (Supplementary
Figure S2, Supporting Online Material). This typically gave
several hits: choosing the one with highest percentage pair-
wise sequence identity slightly outperformed taking the hit
with best E-value (Supplementary Table S4).

Surprisingly, homology inference outperformed our ad-
vanced machine learning tool LocTree2 for half of our orig-
inal data (995 of 1682 eukaryotic and 202 of 479 bacterial
proteins, Table 1). However, when we forced PSI-BLAST
to return hits for all proteins, LocTree2 consistently outper-
formed the PSI-BLAST protocol (Table 1).

These first results suggested a simple protocol: use PSI-
BLAST if applicable, LocTree2 if not. We dubbed the
method that realized this protocol LocTree3. The combi-
nation outperformed both its sources, reaching an overall
performance of Q18 = 80 ± 3% in classifying eukaryotic
proteins in 18 classes (10 non-membrane and 8 membrane
classes) and bacterial proteins in six classes at Q6 = 89 ±
4% (Table 1). LocTree3 predicted eukaryotic extra-cellular
proteins best (Acc: 88% and Cov: 96%), followed by nuclear
proteins (Acc: 81% and Cov: 86%; Supplementary Figure
S3A, Supplementary Table S5). For bacteria, the prediction
of plasma membrane proteins was most accurate (Acc: 96%
and Cov: 95%), followed by cytosolic proteins (Acc: 91%
and Cov: 90%; Supplementary Figure S3B, Supplementary
Table S5).

LocTree3 outperformed other methods
For both eukaryotes and bacteria, LocTree3 significantly
outperformed its competitors on all data sets tested (Ta-
ble 2 and Supplementary Table S6). Finally, we used all ex-
perimentally annotated human proteins to benchmark the
methods and found LocTree3 again to provide the most ac-
curate predictions (Supplementary Table S7). The complete
human set contained 5016 proteins; LocTree3 reached Q10
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Table 2. Performance comparison for state-of-the-art prediction methods

Eukaryota Q10 (Equation (3)) Bacteria Q5 (Equation (3))

Method
Set2011 hval0

(1682)*2
New2013 hval0

(273)*3 New2014 (198)*4 Set2011 hval0 (479)*2 New2013 hval0 (57)*3

Cello 2.5*1 65 ± 3 64 ± 7 81 ± 7 82 ± 4 70 ± 14
PSORTb 3.0*1 - - - 57 ± 5 51 ± 15
Wolf Psort*1 60 ± 3 65 ± 7 77 ± 7 - -
YLoc*1 60 ± 3 63 ± 7 66 ± 8 - -
LocTree2 65 ± 3 66 ± 7 85 ± 6 86 ± 4 81 ± 11
LocTree3 81 ± 3 73 ± 7 84 ± 6 90 ± 3 84 ± 11

Note: ‘±’ values refer to standard errors (Equation (4)); bold face: ‘winner in each column’.
*1Cello 2.5 (7), PSORTb 3.0 (10), Wolf Psort (8), YLoc (9) as described in ‘Materials and Methods’ section.
*2Set2011 hval0 (as in Table 1): 1682 sequence unique eukaryotic and 479 bacterial proteins used for development of LocTree3.
*3New2013 hval0: 273 eukaryotic and 75 bacterial proteins added to SWISS-PROT between releases 2011 04 and 2013 11, sequence homology reduced
at HVAL < 0.
*4New2014: 198 eukaryotic proteins added to SWISS-PROT between releases 2013 11 and 2014 03 (not redundancy-reduced).

= 89%, followed by YLoc, Cello 2.5 and Wolf Psort with
76, 75 and 71% respectively (Supplementary Table S7). Loc-
Tree3 appears best when compared on the same number of
classes, and it also is the method that distinguishes in most
detail with 18 classes for eukaryotes (compared to 12 for
Cello 2.5 and Wolf PSORT; 11 for YLoc).

Reliability index enables users to focus on best predictions

LocTree3 measures the confidence of each prediction
through a reliability index (RI) that scales from 0 (low confi-
dence) to 100 (high confidence). Technically, RI reflects the
strength of a prediction. Our task as developers was to pro-
vide a measure that allows users to translate this strength
into estimates for performance. Indeed, our RI strongly cor-
related with accuracy (Figure 1): when choosing the 50%
most strongly predicted eukaryotic proteins, 95% of the pre-
dictions were correct (RI > 70, Figure 1: black arrow).
For bacterial proteins the same level of accuracy was also
reached for about half of all proteins (but at RI > 80, Figure
1: gray arrow). For users not familiar with reliability indices
it is important to point out that the choice of the ‘top N’
does not require knowing the answer. Instead, any user can
make this choice for any prediction and can read of Figure
1 what to expect from the choice.

About 90 s runtime without alignment

At this point, the PredictProtein cache (19,20) holds >11.7
million pre-computed PSI-BLAST profiles that are quickly
retrieved by LocTree3. Due to a recent acceleration of the
profile kernel (16,17), the runtime of LocTree2 could be re-
duced by up to 100 times, such that now an average SVM
kernel lookup takes about 90 s for a typical eukaryotic pro-
tein (bacteria: 4s, archaea: 2s).

Due to considerable ‘start-up’ overhead, the runtime in-
creases sub-linearly with the number of queries. This ren-
ders the server fit for queries with entire proteomes, typi-
cally requiring few minutes for archaeal, <1 h for bacterial
and <1 day for eukaryotic proteomes. If the PSI-BLAST
profiles have to be created first, runtimes increase manifold,
as creating a profile takes 10–500 times longer than running
LocTree2. Interested users may download the LocTree3 De-

Figure 1. Reliable predictions more accurate. The reliability index (RI)
of LocTree3 relates the strength of a prediction to the performance. The
curves show the percentage accuracy/coverage (‘Materials and Methods’
section) for LocTree3 predictions above a given RI. Increasing the RI im-
plies that we look at some subset of all predictions; the subset is given by the
curves with squares. For instance, half of all eukaryotic proteins are pre-
dicted at RI > 70 (black cross-line). For this top 50%, performance rises
from the average Q18 = 80% to Q18 = 95% (black line with circles, black
arrow). Similar values are reached for RI > 80 for bacteria (gray cross-line;
note that in this case Q6 = 95% is a six-state accuracy as opposed to the
18-state value for eukaryotes).

bian package from the web server and run it on their ma-
chines.

Prediction workflow

Users submit one or more FASTA-formatted protein se-
quences. For each sequence, the server first checks for the
pre-calculated results in the PredictProtein cache. If avail-
able, the result is returned immediately (minus queue wait-
ing time); if not, the server retrieves a PSI-BLAST profile
through the PredictProtein pipeline (19,20). The profile is
used to identify hits in a database of experimentally anno-
tated proteins. If no hits are identified, the profile triggers a
de novo prediction by LocTree2.
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Figure 2. Example output for protein RP9 HUMAN. For every input pro-
tein sequence the LocTree3 prediction result contains: (i) protein identifier,
(ii) reliability index, (iii) expected accuracy of the prediction, (iv) localiza-
tion class, (v) GO term(s) and identifier(s) and (vi) source of the prediction.
The predicted localization is highlighted in the schematic representation
of the cell (here: nucleus). For LocTree2 predictions (shown here), we pro-
vide a visualization of the decision tree and the decision path leading to
the final prediction. The reliability index is formed through the product of
values along the decision path. For PSI-BLAST predictions, we provide a
sequence alignment of the query protein to its best hit instead of the tree.

For every query protein, the result contains four basic val-
ues: (i) the protein identifier as provided by the user, (ii) the
reliability score of a prediction on a 0–100 scale with 100
being the most confident prediction, (iii) single predicted
localization class and (iv) GO term(s) and GO identifier(s)
matching the predicted class. Every result is supported by
the information on whether it comes from a PSI-BLAST
homology search or a LocTree2 de novo prediction. In case
of the former, the web site provides ‘per click’ on the pre-
diction result the experimental SWISS-PROT annotation
of the best hit and its PSI-BLAST alignment to the query
protein. In case of the latter, ‘the click’ on the result will for-
ward to the visual representation of the LocTree2 decision
tree and the decision path leading to the final prediction.
In addition, every result is supported by a schematic rep-
resentation of the biological cell highlighting the predicted
localization (Figure 2).

Predictions pre-calculated for over 1000 organisms

LocTree3 predictions for over 1000 complete eukary-
otic and prokaryotic proteomes are available on the web
server (http://rostlab.org/services/loctree3/proteomes/). Pre-
dictions are based on sequence sets from the Euro-
pean Bioinformatics Institute (EBI: http://www.ebi.ac.uk/
genomes/ and http://www.ebi.ac.uk/reference proteomes/).
The high-throughput annotation and prediction of pro-
tein sub-cellular localization allows organism-wide compar-
isons of protein localization patterns and the reconstruc-
tion of evolutionary relations (Goldberg et al., in prepara-
tion). Predictions for the newly completed proteomes will
be added to the web server on a semi-annual basis.

DISCUSSION

PSI-BLAST has certainly changed the way we do sequence
analysis more than any tool (possibly excluding PubMed
and Google). Furthermore, this tool has been improving
continuously since its first publication in 1997 adding im-
portant value beyond that from growing databases (25).

LocTree2 uses advanced SVM profile kernels (16). Al-
though it explicitly uses local sequence similarity, LocTree2
arguably falls into the class of de novo methods simply be-
cause it reaches its predictions through levels of sequence
similarity that are not available directly from sequence com-
parisons. Nevertheless, we found that a simple PSI-BLAST
protocol could outperform LocTree2 for about half of the
proteins in our data set (Table 1), an observation in line
with the findings of Imai and Nakai (11). Unfortunately,
homology-based inferences became random for the other
proteins, dropping the overall average substantially below
that for LocTree2 (Table 2). Thus, it would be a very bad
idea to annotate an entire proteome only with homology-
based inference.

Our new method LocTree3 successfully navigates a path
through homology-based and de novo prediction of local-
ization (Tables 1-2, Supplementary Tables S5–S7, Section
S2). The method is so good that it reaches 18-state over-
all accuracy (Q18, Equation (3)) >95% for half of all the
proteins that are most strongly predicted, i.e. have highest
reliability (Figure 1). For any new query, users can read off
the results whether or not their protein is likely to fall into
this top set of ‘>95%’ (RI > 70 for eukaryotes, RI > 80 for
bacteria, Figure 1), and whether the prediction comes from
a homology search with PSI-BLAST or a de novo prediction
with LocTree2. For instance, LocTree3 predicts 77% of the
entire proteome in human through homology-based infer-
ence (a few other highlights from Supplementary Table S8:
yeast 68%, Arabidopsis 61%, Caenorhabditis elegans 47%).
However, for yeast only 17% of the predictions originated
from direct homology inference, the remainder came from
direct experimental annotations (Supplementary Table S8).
For human, the corresponding numbers were 30% experi-
mental, 47% through homology inference (Supplementary
Table S8). Unfortunately, LocTree2 cannot recover for mis-
takes made by the homology lookup and all our assessment
is based on taking the homology lookup when available.
Investigating reasons why homology-based inference was
wrong did not give a clear answer (Supplementary Section
S3). Due to its high overall performance, reduced prediction
time and cached prediction results, LocTree3 web server op-
timizes well for the handling of large-scale data. Therefore,
this web server and its downloadable software should pro-
vide an ideal starting point to aid the prediction of protein
function through localization predictions.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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