12 research outputs found

    Landscape of international event-based biosurveillance

    Get PDF
    Event-based biosurveillance is a scientific discipline in which diverse sources of data, many of which are available from the Internet, are characterized prospectively to provide information on infectious disease events. Biosurveillance complements traditional public health surveillance to provide both early warning of infectious disease events and situational awareness. The Global Health Security Action Group of the Global Health Security Initiative is developing a biosurveillance capability that integrates and leverages component systems from member nations. This work discusses these biosurveillance systems and identifies needed future studies

    Web-based infectious disease surveillance systems and public health perspectives: a systematic review

    Get PDF
    This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.Abstract Background Emerging and re-emerging infectious diseases are a significant public health concern, and early detection and immediate response is crucial for disease control. These challenges have led to the need for new approaches and technologies to reinforce the capacity of traditional surveillance systems for detecting emerging infectious diseases. In the last few years, the availability of novel web-based data sources has contributed substantially to infectious disease surveillance. This study explores the burgeoning field of web-based infectious disease surveillance systems by examining their current status, importance, and potential challenges. Methods A systematic review framework was applied to the search, screening, and analysis of web-based infectious disease surveillance systems. We searched PubMed, Web of Science, and Embase databases to extensively review the English literature published between 2000 and 2015. Eleven surveillance systems were chosen for evaluation according to their high frequency of application. Relevant terms, including newly coined terms, development and classification of the surveillance systems, and various characteristics associated with the systems were studied. Results Based on a detailed and informative review of the 11 web-based infectious disease surveillance systems, it was evident that these systems exhibited clear strengths, as compared to traditional surveillance systems, but with some limitations yet to be overcome. The major strengths of the newly emerging surveillance systems are that they are intuitive, adaptable, low-cost, and operated in real-time, all of which are necessary features of an effective public health tool. The most apparent potential challenges of the web-based systems are those of inaccurate interpretation and prediction of health status, and privacy issues, based on an individuals internet activity. Conclusion Despite being in a nascent stage with further modification needed, web-based surveillance systems have evolved to complement traditional national surveillance systems. This review highlights ways in which the strengths of existing systems can be maintained and weaknesses alleviated to implement optimal web surveillance systems

    Global capacity for emerging infectious disease detection

    No full text
    The increasing number of emerging infectious disease events that have spread internationally, such as severe acute respiratory syndrome (SARS) and the 2009 pandemic A/H1N1, highlight the need for improvements in global outbreak surveillance. It is expected that the proliferation of Internet-based reports has resulted in greater communication and improved surveillance and reporting frameworks, especially with the revision of the World Health Organization's (WHO) International Health Regulations (IHR 2005), which went into force in 2007. However, there has been no global quantitative assessment of whether and how outbreak detection and communication processes have actually changed over time. In this study, we analyzed the entire WHO public record of Disease Outbreak News reports from 1996 to 2009 to characterize spatial-temporal trends in the timeliness of outbreak discovery and public communication about the outbreak relative to the estimated outbreak start date. Cox proportional hazards regression analyses show that overall, the timeliness of outbreak discovery improved by 7.3% [hazard ratio (HR) = 1.073, 95% CI (1.038; 1.110)] per year, and public communication improved by 6.2% [HR = 1.062, 95% CI (1.028; 1.096)] per year. However, the degree of improvement varied by geographic region; the only WHO region with statistically significant (α = 0.05) improvement in outbreak discovery was the Western Pacific region [HR = 1.102 per year, 95% CI (1.008; 1.205)], whereas the Eastern Mediterranean [HR = 1.201 per year, 95% CI (1.066; 1.353)] and Western Pacific regions [HR = 1.119 per year, 95% CI (1.025; 1.221)] showed improvement in public communication. These findings provide quantitative historical assessment of timeliness in infectious disease detection and public reporting of outbreaks

    Automated vocabulary discovery for geo-parsing online epidemic intelligence

    Get PDF
    Background Automated surveillance of the Internet provides a timely and sensitive method for alerting on global emerging infectious disease threats. HealthMap is part of a new generation of online systems designed to monitor and visualize, on a real-time basis, disease outbreak alerts as reported by online news media and public health sources. HealthMap is of specific interest for national and international public health organizations and international travelers. A particular task that makes such a surveillance useful is the automated discovery of the geographic references contained in the retrieved outbreak alerts. This task is sometimes referred to as "geo-parsing". A typical approach to geo-parsing would demand an expensive training corpus of alerts manually tagged by a human. Results Given that human readers perform this kind of task by using both their lexical and contextual knowledge, we developed an approach which relies on a relatively small expert-built gazetteer, thus limiting the need of human input, but focuses on learning the context in which geographic references appear. We show in a set of experiments, that this approach exhibits a substantial capacity to discover geographic locations outside of its initial lexicon. Conclusion The results of this analysis provide a framework for future automated global surveillance efforts that reduce manual input and improve timeliness of reporting.Google.orgNational Library of Medicine and the National Institutes of Health (grant G08LM009776-01A2

    An overview of Internet biosurveillance

    No full text
    AbstractInternet biosurveillance utilizes unstructured data from diverse web-based sources to provide early warning and situational awareness of public health threats. The scope of source coverage ranges from local media in the vernacular to international media in widely read languages. Internet biosurveillance is a timely modality that is available to government and public health officials, healthcare workers, and the public and private sector, serving as a real-time complementary approach to traditional indicator-based public health disease surveillance methods. Internet biosurveillance also supports the broader activity of epidemic intelligence. This overview covers the current state of the field of Internet biosurveillance, and provides a perspective on the future of the field
    corecore