54 research outputs found

    Dynamic and sequential patterning of the zebrafish posterior hindbrain by retinoic acid

    Get PDF
    AbstractA prominent region of the vertebrate hindbrain is subdivided along the anterior–posterior axis into a series of seven segments, or rhombomeres. The identity of each rhombomere is specified by the expression of conserved transcription factors, including Krox-20, vHnf1, Val (Kreisler, Mafb) and several Hox proteins. Previous work has shown that retinoic acid (RA) signaling plays a critical role in regulating the expression of these factors and that more posterior rhombomeres require higher levels of RA than more anterior rhombomeres. Models to account for RA concentration dependency have proposed either a static RA gradient or increasing time periods of RA exposure. Here, we provide evidence against both of these models. We show that early zebrafish rhombomere-specification genes, including vhnf1 in r5–r6 and hoxd4a in r7, initiate expression sequentially in the hindbrain, each adjacent to the source of RA synthesis in paraxial mesoderm. By knocking down RA signaling, we show that progressively more posterior rhombomeres require increasingly higher levels of RA signaling, and vhnf1 and hoxd4a expression are particularly RA-dependent. RA synthesis is required just at the time of initiation, but not for maintenance, of vhnf1 and hoxd4a expression. Furthermore, a premature RA increase causes premature activation of vhnf1 and hoxd4a expression. Our results support a new model of dynamic RA action in the hindbrain, in which a temporally increasing source of RA is required to sequentially initiate progressively more posterior rhombomere identities

    The cell adhesion molecule Tag1, transmembrane protein Stbm/Vangl2, and Lamininα1 exhibit genetic interactions during migration of facial branchiomotor neurons in zebrafish

    Get PDF
    AbstractInteractions between a neuron and its environment play a major role in neuronal migration. We show here that the cell adhesion molecule Transient Axonal Glycoprotein (Tag1) is necessary for the migration of the facial branchiomotor neurons (FBMNs) in the zebrafish hindbrain. In tag1 morphant embryos, FBMN migration is specifically blocked, with no effect on organization or patterning of other hindbrain neurons. Furthermore, using suboptimal morpholino doses and genetic mutants, we found that tag1, lamininα1 (lama1) and stbm, which encodes a transmembrane protein Vangl2, exhibit pairwise genetic interactions for FBMN migration. Using time-lapse analyses, we found that FBMNs are affected similarly in all three single morphant embryos, with an inability to extend protrusions in a specific direction, and resulting in the failure of caudal migration. These data suggest that tag1, lama1 and vangl2 participate in a common mechanism that integrates signaling between the FBMN and its environment to regulate migration

    Exome Sequencing Identifies a Recurrent De Novo ZSWIM6 Mutation Associated with Acromelic Frontonasal Dysostosis

    Get PDF
    Acromelic frontonasal dysostosis (AFND) is a rare disorder characterized by distinct craniofacial, brain, and limb malformations, including frontonasal dysplasia, interhemispheric lipoma, agenesis of the corpus callosum, tibial hemimelia, preaxial polydactyly of the feet, and intellectual disability. Exome sequencing of one trio and two unrelated probands revealed the same heterozygous variant (c.3487C>T [p. Arg1163Trp]) in a highly conserved protein domain of ZSWIM6; this variant has not been seen in the 1000 Genomes data, dbSNP, or the Exome Sequencing Project. Sanger validation of the three trios confirmed that the variant was de novo and was also present in a fourth isolated proband. In situ hybridization of early zebrafish embryos at 24 hr postfertilization (hpf) demonstrated telencephalic expression of zswim6 and onset of midbrain, hindbrain, and retinal expression at 48 hpf. Immunohistochemistry of later-stage mouse embryos demonstrated tissue-specific expression in the derivatives of all three germ layers. qRT-PCR expression analysis of osteoblast and fibroblast cell lines available from two probands was suggestive of Hedgehog pathway activation, indicating that the ZSWIM6 mutation associated with AFND may lead to the craniofacial, brain and limb malformations through the disruption of Hedgehog signaling

    Atypical face shape and genomic structural variants in epilepsy

    Get PDF
    Many pathogenic structural variants of the human genome are known to cause facial dysmorphism. During the past decade, pathogenic structural variants have also been found to be an important class of genetic risk factor for epilepsy. In other fields, face shape has been assessed objectively using 3D stereophotogrammetry and dense surface models. We hypothesized that computer-based analysis of 3D face images would detect subtle facial abnormality in people with epilepsy who carry pathogenic structural variants as determined by chromosome microarray. In 118 children and adults attending three European epilepsy clinics, we used an objective measure called Face Shape Difference to show that those with pathogenic structural variants have a significantly more atypical face shape than those without such variants. This is true when analysing the whole face, or the periorbital region or the perinasal region alone. We then tested the predictive accuracy of our measure in a second group of 63 patients. Using a minimum threshold to detect face shape abnormalities with pathogenic structural variants, we found high sensitivity (4/5, 80% for whole face; 3/5, 60% for periorbital and perinasal regions) and specificity (45/58, 78% for whole face and perinasal regions; 40/58, 69% for periorbital region). We show that the results do not seem to be affected by facial injury, facial expression, intellectual disability, drug history or demographic differences. Finally, we use bioinformatics tools to explore relationships between facial shape and gene expression within the developing forebrain. Stereophotogrammetry and dense surface models are powerful, objective, non-contact methods of detecting relevant face shape abnormalities. We demonstrate that they are useful in identifying atypical face shape in adults or children with structural variants, and they may give insights into the molecular genetics of facial development

    Special Issue “Zebrafish-A Model System for Developmental Biology Study”

    No full text
    For this Special Issue “Zebrafish-A Model System for Developmental Biology Study,” we present a collection of studies, including original research papers and review articles, that focus on advances in developmental biology research and that take advantage of the zebrafish model organism [...

    Comparison of Pronase versus Manual Dechorionation of Zebrafish Embryos for Small Molecule Treatments

    No full text
    Zebrafish are a powerful animal model for small molecule screening. Small molecule treatments of zebrafish embryos usually require that the chorion, an acellular envelope enclosing the embryo, is removed in order for chemical compounds to access the embryo from the bath medium. For large-scale studies requiring hundreds of embryos, manual dechorionation, using forceps, can be a time-consuming and limiting process. Pronase is a non-specific protease that is widely used as an enzymatic alternative for dechorionating zebrafish embryos. However, whether pronase treatments alter the effects of subsequent small molecule treatments has not been addressed. Here, we provide a detailed protocol for large-scale pronase dechorionation of zebrafish embryos. We tested whether pronase treatment can influence the efficacy of drug treatments in zebrafish embryos. We used a zebrafish model for Duchenne muscular dystrophy (DMD) to investigate whether the efficacies of trichostatin-A (TSA) or salermide + oxamflatin, small molecule inhibitors known to ameliorate the zebrafish dmd muscle degeneration phenotype, are significantly altered when embryos are treated with pronase versus manual dechorionation. We also tested the effects of pronase on the ability of the anthracycline cancer drug doxorubicin to induce cardiotoxicity in zebrafish embryos. When comparing pronase- versus forceps-dechorionated embryos used in these small molecule treatments, we found no appreciable effects of pronase on animal survival or on the effects of the small molecules. The significant difference that was detected was a small improvement in the ability of salermide + oxamflatin to ameliorate the dmd phenotype in pronase-treated embryos when compared with manual dechorionation. Our study supports the use of pronase treatment as a dechorionation method for zebrafish drug screening experiments

    Functional testing of a human PBX3 variant in zebrafish reveals a potential modifier role in congenital heart defects

    No full text
    Whole-genome and exome sequencing efforts are increasingly identifying candidate genetic variants associated with human disease. However, predicting and testing the pathogenicity of a genetic variant remains challenging. Genome editing allows for the rigorous functional testing of human genetic variants in animal models. Congenital heart defects (CHDs) are a prominent example of a human disorder with complex genetics. An inherited sequence variant in the human PBX3 gene (PBX3 p.A136V) has previously been shown to be enriched in a CHD patient cohort, indicating that the PBX3 p.A136V variant could be a modifier allele for CHDs. Pbx genes encode three-amino-acid loop extension (TALE)-class homeodomain-containing DNA-binding proteins with diverse roles in development and disease, and are required for heart development in mouse and zebrafish. Here, we used CRISPR-Cas9 genome editing to directly test whether this Pbx gene variant acts as a genetic modifier in zebrafish heart development. We used a single-stranded oligodeoxynucleotide to precisely introduce the human PBX3 p.A136V variant in the homologous zebrafish pbx4 gene (pbx4 p.A131V). We observed that zebrafish that are homozygous for pbx4 p.A131V are viable as adults. However, the pbx4 p.A131V variant enhances the embryonic cardiac morphogenesis phenotype caused by loss of the known cardiac specification factor, Hand2. Our study is the first example of using precision genome editing in zebrafish to demonstrate a function for a human disease-associated single nucleotide variant of unknown significance. Our work underscores the importance of testing the roles of inherited variants, not just de novo variants, as genetic modifiers of CHDs. Our study provides a novel approach toward advancing our understanding of the complex genetics of CHDs

    Pbx and Prdm1a transcription factors differentially regulate subsets of the fast skeletal muscle program in zebrafish

    Get PDF
    Summary The basic helix–loop–helix factor Myod initiates skeletal muscle differentiation by directly and sequentially activating sets of muscle differentiation genes, including those encoding muscle contractile proteins. We hypothesize that Pbx homeodomain proteins direct Myod to a subset of its transcriptional targets, in particular fast-twitch muscle differentiation genes, thereby regulating the competence of muscle precursor cells to differentiate. We have previously shown that Pbx proteins bind with Myod on the promoter of the zebrafish fast muscle gene mylpfa and that Pbx proteins are required for Myod to activate mylpfa expression and the fast-twitch muscle-specific differentiation program in zebrafish embryos. Here we have investigated the interactions of Pbx with another muscle fiber-type regulator, Prdm1a, a SET-domain DNA-binding factor that directly represses mylpfa expression and fast muscle differentiation. The prdm1a mutant phenotype, early and increased fast muscle differentiation, is the opposite of the Pbx-null phenotype, delayed and reduced fast muscle differentiation. To determine whether Pbx and Prdm1a have opposing activities on a common set of genes, we used RNA-seq analysis to globally assess gene expression in zebrafish embryos with single- and double-losses-of-function for Pbx and Prdm1a. We find that the levels of expression of certain fast muscle genes are increased or approximately wild type in pbx2/4-MO;prdm1a−/− embryos, suggesting that Pbx activity normally counters the repressive action of Prdm1a for a subset of the fast muscle program. However, other fast muscle genes require Pbx but are not regulated by Prdm1a. Thus, our findings reveal that subsets of the fast muscle program are differentially regulated by Pbx and Prdm1a. Our findings provide an example of how Pbx homeodomain proteins act in a balance with other transcription factors to regulate subsets of a cellular differentiation program

    Cell Fate

    No full text
    The fundamental question of how an undifferentiated progenitor cell adopts a more specialized cell fate that then contributes to the development of specialized tissues, organs, organ systems and ultimately a unique individual of a given species has intrigued cell and developmental biologists for many years. Advances in molecular and cell biology have enabled investigators to identify genetic and epigenetic factors that contribute to these processes with increasing detail and also to define the various molecular characteristics of each cell fate with greater precision. Understanding these processes have also provided greater insights into disorders in which the normal mechanisms of cell fate determination are altered, such as in cancer and inherited malformations. With these advances have come techniques that facilitate the manipulation of cell fate, which have the potential to revolutionize the field of medicine by facilitating the repair and/or regeneration of diseased organs. Given the rapid advances that are occurring in the field, the articles in this eBook are both relevant and timely. These articles originally appeared online as part of the Research Topic “Cell Fate” overseen by my colleagues Dr. Lin, Dr. Buttitta, Dr. Maves, Dr. Dilworth, Dr. Paladini and myself and have been viewed extensively. Because of their popularity, they are now made available as an eBook, in a more easily downloadable form. Michael T. Chi
    corecore