51 research outputs found

    07 Climatology of the Northern-Central Adriatic Sea

    Get PDF
    It is well know that the ocean processes exert a great influence on global climate as well as affect the local climate of coastal areas (Russo et al., 2002). Within the Mediterranean region (see Fig. 1a), the presence of the Adriatic Sea influences the atmospheric properties of the surrounding regions over long and short time-scales, and has obviously a relevant influence on human activities and ecosystems (Boldrin et al., 2009).https://digitalcommons.usu.edu/modern_climatology/1006/thumbnail.jp

    Integrated Numerical Models in Coastal Areas: An Example of Their Application in the North Adriatic Sea

    Get PDF
    Recent decades have witnessed considerable developments in the field of integrated numerical models used for simulating dynamic processes in coastal areas, that can now provide quantitative support to decision makers for questions such as erosion and coastal vulnerability. Improvements in various theoretical formulations and an on-going increase in computing power (alongside the growing availability of long-term observations and numerical output from meteorological and sea-state models) allow the implementation of high-resolution and long-term applications.However, the efficient use of these numerical tools is a function of their capacity to describe a variety of physical processes that are ‘integrated’ amongst themselves correctly. Indeed, from the air-sea interface to the turbulent mixing of water masses and the water-sediment interaction, integrated numerical modelling has to face a series of scientific and practical challenges still open. Examples include the non-linear interaction of waves and currents, the problem of turbulence, the modelling of resuspension and sediment-transport processes, the role of longperiod waves in generating beach and dune erosion. Dealing with these using numerical models is necessary for a variety of reasons, from protecting the coast to search-and-rescue activities and support for marine construction work of all types

    Climatology of the Northern-Central Adriatic Sea

    Get PDF
    It is well know that the ocean processes exert a great influence on global climate as well as affect the local climate of coastal areas (Russo et al., 2002). Within the Mediterranean region (see Fig. 1a), the presence of the Adriatic Sea influences the atmospheric properties of the surrounding regions over long and short time-scales, and has obviously a relevant influence on human activities and ecosystems (Boldrin et al., 2009).https://digitalcommons.usu.edu/modern_climatology/1006/thumbnail.jp

    Observation of extreme sea waves in a space-time ensemble

    Get PDF
    In this paper, an observational space-time ensemble of sea surface elevations is investigated in search of the highest waves of the sea state. Wave data were gathered by means of a stereo camera system, which was installed on top of a fixed oceanographic platform located in the Adriatic Sea (Italy). Waves were measured during a mature sea state with an average wind speed of 11 m s-1. By examining the space-time ensemble, the 3D wave groups have been isolated while evolving in the 2D space and grabbed "when and where" they have been close to the apex of their development, thus exhibiting large surface displacements. The authors have selected the groups displaying maximal crest height exceeding the threshold adopted to define rogue waves in a time record, that is, 1.25 times the significant wave height (Hs). The records at the spatial positions where such large crests occurred have been analyzed to derive the empirical distributions of crest and wave heights, which have been compared against standard statistical linear and nonlinear models. Here, the maximal observed wave crests have resulted to be outliers of the standard statistics, behaving as isolated members of the sample, apparently uncorrelated with other waves of the record. However, this study has found that these unexpectedly large wave crests are better approximated by a space-time model for extreme crest heights. The space-time model performance has been improved, deriving a second-order approximation of the linear model, which has provided a fair agreement with the empirical maxima. The present investigation suggests that very large waves may be more numerous than generally expected.In this paper, an observational space-time ensemble of sea surface elevations is investigated in search of the highest waves of the sea state. Wave data were gathered by means of a stereo camera system, which was installed on top of a fixed oceanographic platform located in the Adriatic Sea (Italy). Waves were measured during a mature sea state with an average wind speed of 11 m s(-1). By examining the space-time ensemble, the 3D wave groups have been isolated while evolving in the 2D space and grabbed "when and where" they have been close to the apex of their development, thus exhibiting large surface displacements. The authors have selected the groups displaying maximal crest height exceeding the threshold adopted to define rogue waves in a time record, that is, 1.25 times the significant wave height (H-s). The records at the spatial positions where such large crests occurred have been analyzed to derive the empirical distributions of crest and wave heights, which have been compared against standard statistical linear and nonlinear models. Here, the maximal observed wave crests have resulted to be outliers of the standard statistics, behaving as isolated members of the sample, apparently uncorrelated with other waves of the record. However, this study has found that these unexpectedly large wave crests are better approximated by a space-time model for extreme crest heights. The space-time model performance has been improved, deriving a second-order approximation of the linear model, which has provided a fair agreement with the empirical maxima. The present investigation suggests that very large waves may be more numerous than generally expected

    Wave extreme characterization using self-organizing maps

    Get PDF
    Abstract. The self-organizing map (SOM) technique is considered and extended to assess the extremes of a multivariate sea wave climate at a site. The main purpose is to obtain a more complete representation of the sea states, including the most severe states that otherwise would be missed by a SOM. Indeed, it is commonly recognized, and herein confirmed, that a SOM is a good regressor of a sample if the frequency of events is high (e.g., for low/moderate sea states), while a SOM fails if the frequency is low (e.g., for the most severe sea states). Therefore, we have considered a trivariate wave climate (composed by significant wave height, mean wave period and mean wave direction) collected continuously at the Acqua Alta oceanographic tower (northern Adriatic Sea, Italy) during the period 1979–2008. Three different strategies derived by SOM have been tested in order to capture the most extreme events. The first contemplates a pre-processing of the input data set aimed at reducing redundancies; the second, based on the post-processing of SOM outputs, consists in a two-step SOM where the first step is applied to the original data set, and the second step is applied on the events exceeding a given threshold. A complete graphical representation of the outcomes of a two-step SOM is proposed. Results suggest that the post-processing strategy is more effective than the pre-processing one in order to represent the wave climate extremes. An application of the proposed two-step approach is also provided, showing that a proper representation of the extreme wave climate leads to enhanced quantification of, for instance, the alongshore component of the wave energy flux in shallow water. Finally, the third strategy focuses on the peaks of the storms

    Space–Time Wave Extremes: The Role of Metocean Forcings

    Get PDF
    AbstractWave observations and modeling have recently demonstrated that wave extremes of short-crested seas are poorly predicted by statistics of time records. Indeed, the highest waves pertain to wave groups at focusing that have space–time dynamics. Therefore, the statistical prediction of extremes of short-crested sea states should rely on the multidimensional random wave fields' assumption. To adapt wave extreme statistics to the space–time domain, theoretical models using parameters of the directional wave spectrum have been recently developed. In this paper, the influence of metocean forcings (wind conditions, ambient current, and bottom depth) on these parameters and hence on wave extremes is studied with a twofold strategy. First, parametric spectral formulations [Pierson–Moskowitz and Joint North Sea Wave Project (JONSWAP) frequency spectra with cos2 directional distribution function] are considered to represent the dependence of wave extremes upon wind speed, fetch, and space domain size. Afterward, arbitrary conditions are simulated by using the SWAN numerical model adapted to store the spectral parameters, and the effects on extremes of current- and depth-induced shoaling are investigated. Preliminarily, the space–time extremes prediction model adopted is assessed by means of numerical simulations of Gaussian random seas. Compared to the significant wave height of the sea state and for a given space domain size, results show that space–time extremes are enhanced by opposite currents, whereas they are weakened by increasing wind conditions (wind speed and fetch) and by depth-induced shoaling. In this respect, the remarkable contribution to wave extremes of the size of the space domain is substantiated

    Sediment transport modifications induced by submerged artificial reef systems: a case study for the Gulf of Venice

    Get PDF
    Abstract The shallow, gently sloping, sandy-silty seabed of the Venetian coast (Italy) is studded by a number of outcropping rocky systems of different size encouraging the development of peculiar zoobenthic biocenoses with considerably higher biodiversity indexes compared to neighbouring areas. In order to protect and enhance the growth of settling communities, artificial monolithic reefs were deployed close to the most important formations, providing further nesting sites and mechanical hindrance to illegal trawl fishing. In this framework, a multi-step and multi-scale numerical modelling activity was carried out to predict the perturbations induced by the presence of artificial structures on sediment transport over the outcroppings and their implications on turbidity and water quality. After having characterized wave and current circulation climate at the sub-basin scale over a reference year, a set of small scale simulations was carried out to describe the effects of a single monolith under different geometries and hydrodynamic forcings, encompassing the conditions likely occurring at the study sites. A dedicated tool was then developed to compose the information contained in the small-scale database into realistic deployment configurations, and applied in four protected outcroppings identified as test sites. With reference to these cases, under current meteomarine climate the application highlighted a small and localised increase in suspended sediment concentration, suggesting that the implemented deployment strategy is not likely to produce harmful effects on turbidity close to the outcroppings. In a broader context, the activity is oriented at the tuning of a flexible instrument for supporting the decision-making process in benthic environments of outstanding environmental relevance, especially in the Integrated Coastal Zone Management or Maritime Spatial Planning applications. The dissemination of sub-basin scale modelling results via the THREDDS Data Server, together with an user-friendly software for composing single-monolith runs and a graphical interface for exploring the available data, significantly improves the quantitative information collection and sharing among scientists, stakeholders and policy-makers

    Multi-view horizon-driven sea plane estimation for stereo wave imaging on moving vessels

    Get PDF
    In the last few years we faced an increased popularity of stereo imaging as an effective tool to investigate wind sea waves at short and medium scales. Given the advances of computer vision techniques, the recovery of a scattered point-cloud from a sea surface area is nowadays a well consolidated technique producing excellent results both in terms of wave data resolution and accuracy. Nevertheless, almost all the subsequent analyses tasks, from the recovery of directional wave spectra to the estimation of significant wave height, are bound to two limiting conditions. First, wave data are required to be aligned to the mean sea plane. Second, a uniform distribution of 3D point samples is assumed. Since the stereo-camera rig is placed tilted with respect to the sea surface, perspective distortion do not allow these conditions to be met. Errors due to this problem are even more challenging if the optical instrumentation is mounted on a moving vessel, so that the mean sea plane cannot be simply obtained by averaging data from multiple subsequent frames. We address the first problem with two main contributions. First, we propose a novel horizon estimation technique to recover the attitude of a moving stereo rig with respect to the sea plane. Second, an effective weighting scheme is described to account for the non-uniform sampling of the scattered data in the estimation of the sea-plane distance. The interplay of the two allows us to provide a precise point cloud alignment without any external positioning sensor or rig viewpoint pre-calibration. The advantages of the proposed technique are evaluated throughout an experimental section spanning both synthetic and real-world scenarios

    Assessment of Climate Change Impacts in the North Adriatic Coastal Area. Part II: Consequences for Coastal Erosion Impacts at the Regional Scale

    Get PDF
    Coastal erosion is an issue of major concern for coastal managers and is expected to increase in magnitude and severity due to global climate change. This paper analyzes the potential consequences of climate change on coastal erosion (e.g., impacts on beaches, wetlands and protected areas) by applying a Regional Risk Assessment (RRA) methodology to the North Adriatic (NA) coast of Italy. The approach employs hazard scenarios from a multi-model chain in order to project the spatial and temporal patterns of relevant coastal erosion stressors (i.e., increases in mean sea-level, changes in wave height and variations in the sediment mobility at the sea bottom) under the A1B climate change scenario. Site-specific environmental and socio-economic indicators (e.g., vegetation cover, geomorphology, population) and hazard metrics are then aggregated by means of Multi-Criteria Decision Analysis (MCDA) with the aim to provide an example of exposure, susceptibility, risk and damage maps for the NA region. Among seasonal exposure maps winter and autumn depict the worse situation in 2070–2100, and locally around the Po river delta. Risk maps highlight that the receptors at higher risk are beaches, wetlands and river mouths. The work presents the results of the RRA tested in the NA region, discussing how spatial risk mapping can be used to establish relative priorities for intervention, to identify hot-spot areas and to provide a basis for the definition of coastal adaptation and management strategies.publishedVersio

    Wave propagation over posidonia oceanica: large scale experiments

    Get PDF
    Posidonia oceanica meadows are considered to be of high importance to the environmental conservation in the Mediterranean Sea, supporting a highly biodiverse habitat and protecting from coastal erosion. In the CIEM wave flume of LIM/UPC (Barcelona, Spain) large scale experiments have been conducted for measuring wave attenuation, transmission and energy dissipation over artificial P. oceanica in intermediate and shallow waters. The effects of submergence ratio hs/D (hs = height of seagrass, D = water depth) and seagrass density (number of stems per squared meter) on the above characteristics are investigated. Mean velocities above and within the simulated P. oceanica are measured and the wave induced flow within the seagrass, which influences processes such as nutrient uptake, waste removal and larval dispersion, is estimated. A meadow with a total length of 10.70 m was constructed using polypropylene artificial plants. Measurements of wave height at different locations along the meadow indicate attenuation of waves for three different submergence ratios (hs/D), two seagrass densities (stems/m2) and various wave conditions. Results are also analysed with regard to the wave induced flow within the field and the effects of hs/D and seagrass density on mean flow characteristics are investigated based on measurements of mean velocities taken within the meadow.Peer ReviewedPostprint (published version
    • …
    corecore