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ABSTRACT

Wave observations and modeling have recently demonstrated that wave extremes of short-crested seas are

poorly predicted by statistics of time records. Indeed, the highest waves pertain to wave groups at focusing

that have space–time dynamics. Therefore, the statistical prediction of extremes of short-crested sea states

should rely on the multidimensional random wave fields’ assumption. To adapt wave extreme statistics to the

space–time domain, theoretical models using parameters of the directional wave spectrum have been recently

developed. In this paper, the influence of metocean forcings (wind conditions, ambient current, and bottom

depth) on these parameters and hence on wave extremes is studied with a twofold strategy. First, parametric

spectral formulations [Pierson–Moskowitz and Joint North SeaWave Project (JONSWAP) frequency spectra

with cos2 directional distribution function] are considered to represent the dependence of wave extremes

upon wind speed, fetch, and space domain size. Afterward, arbitrary conditions are simulated by using the

SWANnumerical model adapted to store the spectral parameters, and the effects on extremes of current- and

depth-induced shoaling are investigated. Preliminarily, the space–time extremes prediction model adopted is

assessed by means of numerical simulations of Gaussian random seas. Compared to the significant wave

height of the sea state and for a given space domain size, results show that space–time extremes are enhanced

by opposite currents, whereas they are weakened by increasing wind conditions (wind speed and fetch) and by

depth-induced shoaling. In this respect, the remarkable contribution to wave extremes of the size of the space

domain is substantiated.

1. Introduction

During sea storms, marine structures and routing ships

are exposed to severewave conditions that are responsible

for serious damages and occasional sinkings (Sand et al.

1990; Skourup et al. 1997; Socquet-Juglard 2005; Forristall

2007; Dysthe et al. 2008; Forristall 2011; Cavaleri et al.

2012). In this context, it is crucial for engineers, scientists,

and seafarers to be able to predict the actualmaximum sea

surface elevation (or, equivalently, the maximum crest

elevation or maximum wave height) a structure or a ship

could encounter within a specific sea condition.

Traditionally, the sea surface elevation h(x, y, t)

(where x and y are the Cartesian space coordinates and t

is the time) is retrieved recording the time series h(t)

by means of pointlike instruments (e.g., wave gauges,

ultrasonic instruments, and buoys). In this context, the

maximum expected wave heightH and crest elevation

C within a sea state have been defined by means of

time extreme value analysis:Hmax’ 2.0Hs and Cmax ’
1.25Hs (where Hs is the significant wave height) have

thus become rules of thumb for engineers and scien-

tists (Dysthe et al. 2008). Although the probabilistic

character of these estimates intrinsically accounts for

the occurrence of even higher waves, occasionally the

standard wave model framework based on the statis-

tics of time records turned out to be poorly effective

in describing extreme elevations, especially during

short-crested sea states that are typical of storm con-

ditions. Indeed, exceedances of the expected maxi-

mum crest heights as well as damages significantly

above the corresponding level have been observed

and a correct interpretation cannot be found even

using second-order time wave statistics (Forristall

2005, 2006, 2007; Dysthe et al. 2008).

Recently, novel instrumentations [e.g., stereophoto-

grammetric systems (Shemdin et al. 1988; Banner et al.

1989) and radars (Dankert et al. 2003)] supported by in-

creasing computing capabilities have allowed for the
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retrieval of 2D digital maps of the sea surface elevation

h(x, y) evolving over time. The change of the domain

of observation from time to space–time revealed that

during short-crested sea states the maximum sea surface

elevation gathered over an area is larger than that ob-

tained at a single fixed point inside the area. Indeed,

Fedele et al. (2013) observed an increase of themaximum

sea surface elevation with the area by means of a stereo-

photogrammetric system [namely, the Wave Acquisition

Stereo System (WASS) (Benetazzo 2006; Benetazzo et al.

2012)] deployed on top of the oceanographic tower

‘‘Acqua Alta’’ in the northern Adriatic Sea (Italy).

Socquet-Juglard et al. (2005) and Forristall (2005) verified

the same evidence by numerical simulations of short-

crested sea states, while Forristall (2011) observed this

during awave tankexperiment.Besides these, theEuropean

project MaxWave concluded that extending the analysis

to the space domain results in many more individual

waves observed, and hence the standard model criteria

for extreme waves have to be modified (Rosenthal and

Lehner 2008). Indeed, the occurrence of larger waves

in space–time is strictly related to an increase of the

number of waves associated with a genuine dimensional

effect (Baxevani and Rychlik 2006; Fedele 2012).

To interpret the observations of sea state maxima over

space and time, theoretical models have been derived

from the analysis of multidimensional random fields:

the Piterbarg theorem (Piterbarg 1996) and Adler and

Taylor’s Euler characteristics approach (Adler 1981;

Adler and Taylor 2007) have been applied to ocean wave

statistics assuming that the sea surface h(x, y, t) can be

modeled as aGaussian random surface over the 2D space

(x, y) and the time t. These theories opened the door to

space–time extreme value analysis, as they allow one to

estimate the exceedance probability distribution func-

tions (EDFs) and the expected values of extremes over

space and time. Adaptations of space–time extreme

theories to wave analysis, that is, the Piterbarg theorem

(hereinafter PT) and the Fedele (2012) model (herein-

after FM) based uponAdler and Taylor’s approach, have

proved to be accurate in predicting synthetic (Forristall

2005, 2007; Krogstad et al. 2004; Socquet-Juglard et al.

2005), laboratory (Forristall 2011), and open sea maxi-

mum surface elevations over space–time (Fedele et al.

2013; Barbariol et al. 2014). Hence, these models could

represent a change of paradigm in wave statistics and

could support the explanation of the occurrence of ex-

treme waves during storms, as demonstrated by Fedele

(2012). Nevertheless, at present the diffusion of PT and

FM is limited mainly because of the scarce availability of

directional wave spectra, whose specific integral param-

eters are the inputs of space–time extreme models

(Baxevani and Rychlik 2006; Fedele 2012).

Besides this, and most importantly, the coupling of such

probabilistic models with the physical mechanisms sus-

pected tobe responsible forwave extremes’ generation has

not been investigated yet. The spatial focusing due to

current-induced refraction, the dispersive focusing, and

the nonlinear focusing, that is, the so-calledBenjamin–Feir

instability, have been proposed as the main factors that

contribute to the genesis of extremely high waves (Dysthe

et al. 2008). In agreement with the conclusions of the

European project MaxWave (Rosenthal and Lehner

2008), which analyzed several marine accidents in order to

improve the understanding of the physical processes of

extreme waves generation, the influence of the meto-

cean forcings on the space–time extremes should be

assessed in order to detect the favorable conditions for

extreme waves’ occurrence. Indeed, the wind conditions

(i.e., the wind speed and the fetch), the presence of an

oceanic current, and the propagation onto a shallow-

water environment intimately contribute to the sea state

evolution and therefore could play a role in the genera-

tion of extreme waves. Such forcings directly affect the

directionalwave spectrumand, consequently, its integral

parameters.Thus, analyzinghow the spectral parameters

are influenced by the metocean forcings provides an

indirect assessmentof the space–time extremes dependence

upon them.

To this end, we propose two approaches aimed at

computing the integral parameters of the directional

spectrum required by the space–time extremes models,

that is, the mean wave period t, the components of the

mean wavelength Lx and Ly, and the irregularity pa-

rameters axt, axy, and ayt. The first approach is based

upon the analytical integration of parametric directional

wave spectra obtained by combining a deep-water fre-

quency spectrum [i.e., Pierson–Moskowitz or Joint

North Sea Wave Project (JONSWAP)] with the cos2

directional distribution function, representative of

short-crested sea states. Two sets of formulas for the

spectral parameters’ computation in fully developed (i.e.,

Pierson–Moskowitz) or fetch-limited (i.e., JONSWAP)

short-crested sea states are obtained and discussed.

Their dependence upon wind speed and fetch is then

used in order to assess the wind conditions’ effect on

the space–time extremes, which were estimated by

means of FM. In addition, the space domain size effect

on the space–time extremes is assessed. The second

approach makes use of the numerical integration of di-

rectional spectra routinely performed by spectral nu-

merical wave models over arbitrary computational

domains. By taking the computation of the cited integral

parameters into the model, the storage of the output

spectra at each computational grid node and time step,

which may be highly resource demanding, is avoided.
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Therefore, version 40.85 of the Simulating Waves

Nearshore (SWAN) model was adapted in order to de-

velop an ad hoc version specifically suited to spectral

parameters calculation that can be used in combination

with theoretical space–time probabilistic models for

wave extremes’ prediction in arbitrary conditions. Then,

the effects of current- and depth-induced shoaling on

FM space–time extremes are studied using this model.

Before discussing the dependence of space–time ex-

tremes upon metocean forcings, FM performance is as-

sessed by means of numerical simulations of Gaussian

random seas, as in Forristall (2006).

2. Space–time extremes of a sea state

A space–time (hereinafter ST) extreme of a sea state

is defined as the maximum sea surface elevation

within a given time duration T and over a specified sea

surface area S (Krogstad et al. 2004; Fedele 2012),

assuming the wave field stationary over time and ho-

mogeneous over space. If S is larger than the charac-

teristic sizes of waves (say, the wavelength by the wave

crest length), then an ST extreme most likely corre-

sponds to the elevation of the highest crest of a 3D

wave group at focusing (Fedele 2012). It is unlikely to

attain the actual elevation of this crest at a fixed point

of observation (i.e., by taking into account a time-

dependent sea surface elevation), unless the sea state

is long crested or the chosen point is located exactly

where the crest apex occurs. Hence, in short-crested

sea states, wave extremes should be observed bymeans

of instruments spanning the ST domain (e.g., radars or

stereophotogrammetric systems) and predicted as

maxima of multidimensional random fields. This re-

quires that the ST features of the sea state or the di-

rectional wave spectrum are known.

a. Space–time spectral parameters

The features of a sea state that are functional to ST

extremes’ prediction are specific integral parameters of

the directional spectrum S(s, u) and stem from the

spectral moments mijl defined as

mijl 5

ð2p
0

ð‘
0
kixk

j
ys

lS(s, u) ds du , (1)

where s is the radian relative frequency, and u is the

direction of propagation, such that kx 5 k cosu and ky 5
k sinu are the components of the wavenumber vector k.

According to Baxevani and Rychlik (2006) and Fedele

(2012), these features, which will hereinafter be referred

to as ‘‘spectral parameters’’, are themeanwave period t,

the mean wavelength components Lx and Ly in a

Cartesian reference frame (x, y), and the irregularity

parameters axt, ayt, and axy expressed as

t5 2p

ffiffiffiffiffiffiffiffiffiffi
m000

m002

s
, Lx5 2p

ffiffiffiffiffiffiffiffiffiffi
m000

m200

s
, Ly5 2p

ffiffiffiffiffiffiffiffiffiffi
m000

m020

s

axt5
m101ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m200m002
p , ayt5

m011ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m020m002

p , axy5
m110ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m020m200
p .

(2)

The average number of ‘‘waves’’ over a ST domain

depends upon the size of the domain (i.e., X, Y, and T)

relative to the average size of the waves (i.e., t, Lx, and

Ly), corrected for the space–time correlation which is

accounted for by axt, ayt, and axy. In the time domain,

the number of waves increases withT or in the presence

of smaller wave periods t. In the space domain, apart

from larger S and a shorter wavelength, the number of

waves increase also by taking shorter wave crest

lengths, that is, the more the sea state is short crested. If

the reference frame is chosen such that the x axis cor-

responds to the mean direction of wave propagation

(u), then Lx and Ly represent the mean wavelength and

the mean wave crest length, respectively. In general,

this orientation can be achieved through a rotation of

the directional spectrum, which does not affect the

estimate of the ST extremes. Under this assumption,

the short crestedness is given by

gs 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m020/m200

q
5Lx/Ly , (3)

which approaches 0 in long-crested conditions and 1 in

short-crested sea states (Baxevani et al. 2003). While

the first set of parameters (i.e., t, Lx, and Ly) accounts

for the geometry of the ST domain, the latter (i.e., axt,

ayt, and axy) describes the kinematic properties of the

sea state. In fact, according to Baxevani and Rychlik

(2006), the irregularity parameters are defined as the

ratio between the highest crests velocity (i.e., the ve-

locity of the specular points) and the sea state drift

velocity (i.e., the principal velocity). Besides, the ir-

regularity parameters account for correlation between

space and time (axt, ayt) or space and space (axy) sea

surface gradients. They can assume absolute values

within 0 and 1 that correspond to the ‘‘confused’’ and

‘‘organized’’ sea state conditions, respectively, and in-

fluence the number of waves in the space–time domain.

Indeed, the more the wave motion is organized, the

smaller is the number of independent waves one has to

expect in the space–time domain. For example, an orga-

nized sea with long-crested waves traveling toward the x

direction has axt 5 1 and null axy and ayt, whereas a

confused sea with two wave systems traveling along the x
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direction from opposite sides has all the parameters

equal to zero. Therefore, as explained in section 2b, in

the confused sea case the probability of encountering

very large waves will be larger.

b. Expected extremes

Theoretical models that predict maxima of the

Gaussian sea surface elevation h(x, y, t) are PT and

FM, which allow us to estimate the asymptotic EDFs of

the sea state ST maxima and the expected values. The

two models differ mainly on the treatment of the

boundaries of the ST domain. In fact, PT assumes that

maxima occur within the ST volume V 5 XYT (where

X is the size along the x axis, Y is the size along the

y axis, and T is the sea state duration over time t).

Hence, the domain must be large enough to contain

the characteristic sizes of the waves, that is, T$ t,X$

Lx, and Y $ Ly. On the contrary, FM assumes that the

maxima can also occur on the boundaries of V, that is,

on its faces and edges, implying that domain sizes can

also be smaller than t, Lx, and Ly. Therefore, in order

to entail the widest range of conditions, we will con-

sider FM for the rest of the study, aware that results

obtained and the following considerations are partially

shared with PT (Barbariol et al. 2014).

FM assumes that the ST extremes hST obey the fol-

lowing EDF:

P(hST/Hs$ h) ’ (16M3h
21 4M2h1M1) exp(28h2) .

(4)

Here, M3, M2, and M1 are the average numbers of

waves within V, on its faces (i.e., XT, YT, and XY) and

on its sides (i.e., X, Y, and T), respectively, and are

defined as

M35 2p
T

t

X

Lx

Y

Ly

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12a2

xt 2a2
yt 2a2

xy 1 2axtaytaxy

q
M25

ffiffiffiffiffiffi
2p

p  
XT

tLx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12a2

xt

q
1

YT

tLy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12a2

yt

q
1

XY

LxLy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12a2

xy

q !
M15

T

t
1

X

Lx

1
Y

Ly
(5)

and depend upon the spectral parameters [Eq. (2)] and

the ST domain size (i.e., X, Y, and T). The asymptotic

limit of Eq. (4) provides the Gumbel-like distribution

of maxima, whose expected value E[hST]5hST is given

by (Fedele 2012)

jST5hST/Hs ’ h01
gE

16h02
(32M3h01 4M2)

(16M3h
2
01 4M2h01M1)

.

(6)

In Eq. (6), h0 is the mode of the asymptotic distribution

and is obtained as the solution of P(hST/Hs $ h) 5 1;

gE’ 0.5772 is the Euler–Mascheroni constant; andHs ’
4:004

ffiffiffiffiffiffiffiffiffiffi
m000

p
. Hereinafter, ‘‘ST extreme’’ will refer to the

expected value jST of Eq. (6), which holds for Gaussian

sea states (as verified in section 5) and represents an

approximation for realistic (non-Gaussian) sea states

that exhibit higher crests due to nonlinearities.

The ‘‘dimension of the waves’’ with respect to the ST

domain can be evaluated by means of the parameter

b (Fedele 2012), expressed as

b5 32
4M2h01 2M1

16M3h
2
01 4M2h01M1

, (7)

which is a statistical indicator of the geometry of the

space–time extremes jST within the volume ST. Pa-

rameter b ranges from 3 to 1, which corresponds to the

limiting cases of fully 3D wave extremes occurring

within the V and 1D extremes over a single (e.g., time)

dimension, respectively. For b values ranging between 3

and 1, extremes are likely to occur also on the bound-

aries of the domain (i.e., faces and sides).

3. Parametric wave spectral formulations

In the context of sea states that depend solely on wind

speed and fetch, the ST extremes jST can be attained

from the spectral parameters [Eq. (2)] of directional

spectra that are analytically integrable (directly or after

some manipulations). In this study, such sea states are

modeled bymeans of deep-water parametricwave spectral

formulations. To this end, the directional spectrum S(s, u)

is decomposed into the frequency spectrum W(s) and

the directional distribution function D(u) (assumed to

be dependent on u only), according to

S(s, u) ’ W(s)D(u) . (8)

First, we consider the Pierson and Moskowitz (1964)

variance density spectrum (hereinafter PM) that provides

good fitting to fully developed sea states. PM is herein

expressed as a function of the wind speed U19.5 (19.5m

above the mean sea level) as

WPM(s)5Ag2s25e2B(g/U
19:5

/s)4 , (9)

whereA5 0.0081 is the Phillips constant, g’ 9.81m s22

is the gravitational acceleration, and B 5 0.74.

1900 JOURNAL OF PHYS ICAL OCEANOGRAPHY VOLUME 45



Younger and fetch-limited seas aremodeled bymeans of

the JONSWAP (hereinafter JON) spectrum (Hasselmann

et al. 1973) that consists of a scaled PM (expressed in terms

of sp 5 0.88g/U19.5) multiplied by a peak enhancement

function (Holthuijsen 2007):

WJON(s)5AJONg
2s25e2P(s/s

o
)24

gexpf2(1/2)[(s/s
o
21)/f]2g

(10)

with P 5 5/4. Parameters AJON, g, sp, and f provide the

scaling of the spectrum, the peak enhancement, the po-

sition of the peak, and the width of the peak, respectively.

It was found that the JON parameters’ relationships with

the wind speedU10 (10m abovemean sea level) and fetch

F can be expressed in terms of power laws through the

dimensionless peak frequency n 5 (sp/2p)U10/g and the

dimensionless fetch F*5Fg/U2
10. We assume the power-

law coefficients from Lewis and Allos (1990) to guarantee

the transition to fully developed conditions as the sea state

evolves (Young 1999): AJON 5 0.032n0.67, g 5 5.87n0.86,

and F*5 47:4n23:03. Then, we express the JON param-

eters as power laws of F*, which implicitly provides

dependence of parameters upon U10 and F:

AJON5 0:032(F*/47:4)20:67/3:03 5 0:045(F/U2
10)

20:22

g5 5:87(F*/47:4)20:86/3:035 9:18(F/U2
10)

20:28

sp 5 2pg/U10(F*/47:4)
21/3:03 5 103:66(FU10)

20:33,

(11)

with f equal to the mean value 0.08, according to Gran

(1992). Typically,AJON 2 [0.0081, 0.0032], g 2 [1, 7] with a

mean value of 3.3, and n 5 (sp/2p)U10/g 2 [0.13, 1‘).
For a constant U10, Eq. (11) shows that spectral parame-

ters decreasewith increasingF, and they tend to the typical

PM values as the sea state tends to fully developed con-

ditions: AJON / A 5 0.0081, g / 1, and n / 0.13.

To model the directional distribution of varianceD(u),

we consider the cos2 function, which depends on the di-

rection u only (Holthuijsen 2007):

D(u)5
2

p
cos(u2 u)2, 2p/2# (u2 u)#p/2 . (12)

To further simplify the analyses, without loss of gener-

ality, we assume amean wave direction u5 0 rad, that is,

propagation along the x axis of a Cartesian reference

frame. In this context, Lx represents the mean wave-

length, Ly is the mean wave crest length, and gs ’ 0.58.

The directional spreading of cos2 is constant and equal to

31.58, whereas it has been shown to be also frequency

dependent in fetch-limited sea states (Ewans 1998).

Nevertheless, we adopt the cos2 distribution to compute

the space–time extremes in short-crested sea states, and

we assess (section 6a) the error with respect to a more

realistic directional spreading function [i.e., cos2s with

(Ewans 1998) frequency-dependent parameterization of

the spreading parameter s].

Directional spectra are finally obtained by combining

one of the cited frequency spectra with the cos2 di-

rectional distribution function, in accordance with Eq.

(8). Therefore, the PM-based directional spectrum

(hereinafter called PM1cos2) is obtained from Eqs. (9)

and (12), while the JON-based spectrum (hereinafter

called JON1cos2) is obtained from Eqs. (10) and (12).

Spectral parameters [Eq. (2)] are obtained after calcu-

lation of the spectral moments [Eq. (1)]. In deep waters,

according to the linear dispersion relationship, s2 5 gk;

therefore, kx 5 s2/gcos(u), ky 5 s2/g sin(u), and the spec-

tral moments [Eq. (1)] can be rewritten in terms of s only:

mijl 5

ð2p
0

ð‘
0

s2(i1j)1l

gi1j
cosi(u) sinj(u)W(s)D(u) ds du ,

(13)

where the spectral decomposition [Eq. (8)] has been

used to split the directional spectrum S(s, u) into W(s)

andD(u). Since the cos2 directional distribution function

depends on u only, Eq. (13) can be rearranged in order

to separate the integrals:

mijl 5

ð2p
0

cosi(u) sinj(u)D(u) du

ð‘
0

s2(i1j)1l

gi1j
W(s) ds .

(14)

Both the frequency spectra considered are proportional

to s25 above the spectral peak. Then, when the expo-

nent of s in Eq. (14) is equal to 4, that is, 2(i1 j)1 l5 4,

the integral over s is unbounded and spectral moments

cannot be calculated (Ochi 2005). Given such spectral

formulations, all the spectral parameters in Eq. (2), ex-

cept t, are affected by the nonintegrability of the second

integral of Eq. (14). Thus, we limit the upper bound of

integration over s to a cutoff frequency sc. Since spec-

tral parameters and ST extremes will depend to some

extent on the choice of the cutoff frequency sc, we link

sc to the physics of surface gravity waves, assuming it

represents the higher frequency a harmonic wave of the

spectrum could experience in the ordinary gravity waves

range, that is, the gravity–capillary limit sc 5 60 rad s21

(Holthuijsen 2007). A sensitivity analysis to assess the

effect of the sc value on the ST extremes was conducted,

and it is reported in section 3a.

a. PM1cos2 spectral parameters formulae

AssumingW(s)5WPM(s), according to Eqs. (9) and

(12), Eq. (14) can be rewritten as
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mijl 5
2

p
Ag22(i1j)

ð2p
0

cosi12(u) sinj(u) du

3

ðs
c

0

s2(i1j)1l

s5
e2B(g/U

19:5
/s)4 ds , (15)

and it can be integrated to provide the moments of

PM1cos2:

m0005
AU4

19:5

4g2B

m0025
AU2

19:5

ffiffiffiffi
p

p

4
ffiffiffiffi
B

p 5
ffiffiffiffiffiffiffi
pB

p
g2m000U

22
19:5

m0205
AG(0, s)

16
5

BG(0, s)g2

4
m000U

24
19:5

m2005
3AG(0, s)

16
5

3BG(0, s)g2

4
m000U

24
19:5

m1015
2AG(1/4)U19:5

3pB1/4
5
8B3/4g2G(1/4)

3p
m000U

23
19:5

m1105 0

m0115 0, (16)

where G(1/4) and G(0, s) are the Gamma and upper in-

complete Gamma functions (Abramowitz and Stegun 1965),

respectively, and s 5 1.296 3 1027B(g/U19.5)
4. The spectral

parametersofPM1cos2 arederived fromEqs. (16) and (2) as

t5
2p3/4

gB1/4
U19:5

Lx5 a1
p

g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BG(0, s)

p U2
19:55

4p

g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3BG(0, s)

p U2
19:5

Ly5 a2
p

g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BG(0, s)

p U2
19:55

4p

g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BG(0, s)

p U2
19:5

axt 5 a3
G(1/4)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p5/2G(0, s)

p 5
16G(1/4)

33/2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p1/2G(0, s)

p
ayt 5 0

axy 5 0. (17)

Here, spectral parameters have been also shown in a

general formulation using the coefficients a1, a2, and a3
that depend on the power m of a general cosm di-

rectional distribution function [i.e., accounting for

Dm(u)5N(m) cos(u2 u)m, with N(m) a normalization

coefficient depending onm]. In our context, ifm5 2, then

the coefficients assume the values shown in the rightmost

part of Eq. (17): a1 5 4/
ffiffiffi
3

p
, a2 5 4, and a3 5 16/(33/2p).

Parameters Lx, Ly, and axt depend upon the maximum

cutoff frequency sc through s. The function G(0, s) can
be calculated by using its upper limiting function

E1(s)52gE 2 ln(s)2�‘
1 (2s)w/[w(w!)] (Abramowitz

and Stegun 1965). In a wide range of wind speeds (i.e.,

from 1 to 40m s21), we verified that the third term of

E1(s) can be neglected, being eight orders of magni-

tude smaller than the first two terms. Therefore, by

rearranging we obtain a simplified expression for G(0, s),
which is explicitly dependent upon U19.5 and accurate

to within a 1025 root-mean-square error [RMSE 5
ðf�i[E1(si)2fE1(si)]

2g/NÞ1/2, wherefE1(s)52gE 2 ln s]:

G(0, s)’ 4(1:741 lnU19:5) . (18)

It is noteworthy that the mean wave period t is not a

function of m or s, meaning that in this context and by

definition it is independent of the directional spreading

of the spectrum and the cutoff frequency. The expres-

sions obtained for m000 and t are consistent with results

reported by Ochi (2005) for a spectral formulation with

s25 tail. Besides, as Hs 5 2/g
ffiffiffiffiffiffiffiffiffi
A/B

p
U2

19:5, the significant

wave height is proportional to U2
19:5, as indicated by

Kitaigorodskii (1962) for a fully developed sea. The ra-

tiom200/m020 5 3 is independent ofU19.5. Consequently,

the short crestedness associated with the cos2 distribu-

tion (gs5Lx/Ly’ 0.58) is recovered. In accordance with

Baxevani and Rychlik (2006), the irregularity parameters

are null, except for axt, which expresses the correlation

between the sea surface derivatives over the direction of

propagation x and the time t. Therefore, wave motion is

somehow organized along x and a reduced number of ex-

ceedances of a certain threshold has to be expected inside

the space–time domain and on its XT boundary. Instead,

axy and ayt equal zero since cos2 is symmetric about u.

To investigate the effects on the ST extremes of the

cutoff frequency sc value, we performed a sensitivity

analysis considered a PM1cos2 with wind speedU19.5 5
20ms21. The cutoff frequency sc 5 60 rad s21 was mod-

ified to 30 and 90 rad s21 (i.e., 60 rad s21 650%) and

12.56 rad s21 (2.0Hz). ST extremes jST were computed

assuming a sea state duration T5 100t and four different

areas S ranging from 1m2 to 1000 3 1000m2. The varia-

tions with respect to the value associated with sc 5
60 rad s21, expressed as DjST 5 (jSTsc

2 jST60
)/jST60

3 100,

are summarized in Table 1. The maximum absolute var-

iation is 3.2% and occurs for sc 5 12.56 rad s21 and for

S5 1003 100m2, that is, when area sidesX and Y are of

the same order ofmagnitude asLx andLy. Concerning the

spectral parameters, themaximumabsolute variationwith

respect to the values obtainedwith 60 rad s21 is 24.8% (for

Lx and Ly) again when sc 5 12.56 rad s21. We conclude

that while spectral parameters are moderately affected by

sc, the ST extremes are only slightly sensitive to this

choice. In this context, the results of the sensitivity analysis

support the choice of the capillary–gravity limit as an

appropriate cutoff frequency, since, besides the physical

meaning, it represents a practical selection within a range

of frequencies that assure a rather stable estimate of jST.
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Finally, for a more practical computation of the

spectral parameters of PM1cos2, Eq. (17) can be re-

arranged accounting for Eq. (18), assuming the wind

speed at 10-m elevation (i.e., U10 ’ 0.93U19.5 within the

near neutral conditions hypothesis) and taking the

values of constants in place of symbols as

t’ 0:56U10

Lx ’
0:50ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1:811 lnU10

p U2
10

Ly ’
0:86ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1:811 lnU10

p U2
10

axt ’
1:34ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1:811 lnU10

p
ayt 5 0

axy 5 0. (19)

b. JON1cos2 spectral parameters formulas

The procedure used to derive the PM1cos2 spectral

parameters cannot be applied to JON1cos2, since

WJON(s) is not analytically integrable (Holthuijsen

2007). Therefore, spectral moments of JON1cos2 have

to be calculated in an approximate form. Yamaguchi

(1984) obtained approximations for zeroth-, first-, and

second-order moments of WJON(s). Nonetheless, to

compute the JON1cos2 spectral moments up to the

fourth order in frequency, we adopt the procedure used

by Gran (1992) for JON and we adapt it to JON1cos2.

According to Gran (1992), WJON(s) can be approxi-

mated by a peak-enhanced wave spectrum consisting of

two independent components: (i) a broadbanded com-

ponent conforming to a PM spectrum with A 5 AJON

and peak frequency sp (responsible for the low- and

high-frequency tails of the spectrum) and (ii) a nar-

rowbanded component (hereinafter NB) with density

closely centered about sp. Moments of JON1cos2 are

therefore obtained as the sum of the two contributions:

mijl ’mijl,PM 1mijl,NB , (20)

wheremijl,PM are themoments of PM1cos2, andmijl,NB are

the moments of the additional peak that are expressed in

terms of a parameter d, whichGran (1992) estimated to be

d5
m000,NB

m000,PM

’
g2 1

6
, (21)

assuming f 5 0.08 in Eq. (10). Parameter d depends

upon the peak enhancement factor g, such that if g 5 1

then d5 0 and if g 5 7 then d5 1. Thus, using Eq. (21),

mijl,NB can be written as

mijl,NB 5 d
s
2(i1j)1l
p

g(i1j)
m000,PM

ð2p
0

cosi(u) sinj(u)D(u) du .

(22)

Analytic integrationofEq. (22) leads to themoments ofNB:

m000,NB5 d
AJONg

2

4Ps4
p

m002,NB5 d
AJONg

2

4Ps2
p

m020,NB5 d
AJON

16P

m200,NB5 d
3AJON

16P

m101,NB5 d
2AJONg

3pPs
m110,NB5 0

m011,NB5 0. (23)

Hence, according toEq. (20), themoments of JON1cos2 are

m000’ (d1 1)
AJONg

2

4Ps4
p

5 (d1 1)m000,PM

m002’ (d1
ffiffiffiffiffiffiffi
pP

p
)
AJONg

2

4Ps2
p

5 (d1
ffiffiffiffiffiffiffi
pP

p
)m000,PMs2

p

m020’ [d1PG(0, z)]
AJON

16P
5

�
d1PG(0, z)

4g2

�
m000,PMs4

p

m200’ [d1PG(0, z)]
3AJON

16P
5 3

�
d1PG(0, z)

4g2

�
m000,PMs4

p

m101’ [d1P3/4G(1/4)]
2gAJON

3pPsp

5
8

3pg
[d1P3/4G(1/4)]m000,PMs3

p

m1105 0

m0115 0,

(24)

TABLE 1. Effect of the cutoff frequency sc value on the ST extremes, expressed as the variation DjST (%) with respect to the ST extremes

associated with the capillary–gravity limit 60 rad s21 (i.e., 9.5 Hz).

sc (rad s
21) fc (Hz) S 5 12m2 S 5 102m2 S 5 1002m2 S 5 10002m2

12.56 2.0 20.5 22.2 23.2 22.3

30.00 4.8 20.1 20.8 21.1 20.8

90.00 14.3 0.1 0.4 0.5 0.4
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where m000,PM 5AJONg
2/(4Ps4

p) is the total variance

associated with the broadbanded component, which

results from Eq. (16) by taking A 5 AJON and U19.5 5
0.88g/sp. Here, G(0, z) is the upper incomplete Gamma

function and z5 1.2963 1027Ps4
p. The significant wave

height of JON1cos2, after Eqs. (24) and (21), isHs 5
2g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(g1 5)A/6/P

p
s22
p . Finally, the JON1cos2 spectral pa-

rameters are obtained fromEqs. (2) and (24), throughEq. (21):

t’
2p

sp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g1 b1

g1
�
b2

ffiffiffiffiffiffiffi
pP

p
2 1
�s
5

2p

sp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g1 5:0

g1
�
6
ffiffiffiffiffiffiffi
pP

p
2 1
�s

Lx’ a1
pg

s2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g1 b1

g1 b2PG(0, z)2 1

s
5

4pgffiffiffi
3

p
s2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g1 5:0

g1 6PG(0, z)2 1

s

Ly’ a2
pg

s2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g1 b1

g1 b2PG(0, z)2 1

s
5

4pg

s2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g1 5:0

g1 6PG(0, z)2 1

s

axt ’ a3
[g1 b2P

3/4G(1/4)2 1]ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g1b2

ffiffiffiffiffiffiffi
pP

p
2 1

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g1 b2PG(0, z)2 1

p 5
16[g1 6P3/4G(1/4)2 1]

33/2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g1

�
6
ffiffiffiffiffiffiffi
pP

p
2 1
�q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g1 6PG(0, z)2 1
p

ayt 5 0

axy 5 0. (25)

Here, as for PM1cos2, parameters are also shown in a

general formulation where coefficients b1 and b2 add to

the coefficients a1, a2, and a3 obtained for PM1cos2.

They all depend upon the power m of Dm(u). For the

specific case considered (i.e.,m5 2), b1 5 5 and b2 5 6.

Once again, the parametersLx,Ly, and axt depend upon

the cutoff frequency through z, that is, the argument of

the upper incomplete Gamma function. A simplified

expression for G(0, z), which is explicitly dependent

upon sp and accurate within a 1025 order RMSE is

G(0, z)’ 4(3:892 lnsp) . (26)

Similar to what was obtained for PM1cos2, the ratio

m200/m020 is independent of sp and gs ’ 0.58. Besides,

since we chose formulations of the JON parameters of

Eq. (11) that account for the transition to fully developed

conditions, if d 5 0 (i.e., g 5 1), then the PM1cos2 pa-

rameters of Eq. (17) are recovered (taking sp 5 0.88g/

U19.5). The dependence of spectral parameters upon U10

and F was intentionally not achieved in Eq. (25) in order

to provide equations that are as compact as possible.

However, it can be easily obtained by using the parame-

terizations for g and sp provided by Eq. (11).

Though derived analytically, Eq. (25) benefits from the

approximation of Gran (1992) for the JON spectrum, and

hence it is not exact.Thus,weestimated the error introduced

in the computation of spectral parameters by such an ap-

proximation. To this end, we compared the moments and

parameters computed analytically bymeans ofEqs. (17) and

(25) with those computed numerically (i.e., after the nu-

merical integration of a discrete spectrum, accounting for a

high-frequency tail proportional to s25). We assumed the

numerical estimatesasbenchmarks sinceweverified that fora

PM1cos2 spectrum (whose spectral parameter formulas are

exact) the analytical and numerical estimates were exact

within a few per thousand difference, which is the error

introduced by the numerical integration technique. For

JON1cos2, in the range of g between 1 and 7, we obtained

differences between numerical and analytical results within

5%for spectral parameters ofEq. (2) and the significantwave

height,Hs being the most affected parameter, since the JON

approximation mostly affects the zeroth moment (i.e.,m000).

Hence, thanks to the results of the sensitivity analysis on sc

(section 3a), we expect much smaller errors on ST extremes.

Finally, accounting for Eq. (26) and taking the values of

constants in place of symbols, Eq. (25) can be rearranged

for a practical use of JON1cos2 spectral parameters as

t’
6:3

sp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g1 5:0

g1 10:9

s

Lx ’
71:2

s2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g1 5:0

g2 30:0 lnsp1 115:7

s

Ly ’
123:3

s2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g1 5:0

g2 30:0 lnsp 1 115:7

s

axt ’
g1 24:7ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g1 10:9
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g2 30:0 lnsp 1 115:7
q

ayt 5 0

axy 5 0. (27)
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4. Numerical modeling

The numerical integration of arbitrary directional

spectra, that is, in deep to shallow waters and accounting

for generation, propagation, and dissipation processes,

is routinely performed with spectral numerical wave

models. In this context, we adapted the SWAN model

(version 40.85) in order to calculate the integral pa-

rameters [Eq. (2)] of the directional wave spectrum as

output variables, and we hereinafter call this im-

plementation SWAN-ST.With this implementation, the

storage of the output spectra at each computational grid

node and time step, which may be highly demanding of

resources, is avoided.

a. The SWAN model

SWAN is a third-generation spectral wave model that

simulates the generation, evolution, and dissipation of

the directional wave spectrum S(s, u) at each node of a

computational domain by numerically solving the wave

action density equation (Booij et al. 1999):

›A(s, u)

›t
1

›cg,xA(s, u)

›x
1

›cg,yA(s, u)

›y

1
›cg,uA(s, u)

›u
1
›cg,sA(s, u)

›s
5

F(s, u)

s
. (28)

Here, A(s, u)5 rgS(s, u)/s is the wave action variance

density spectrum and r is the water density. Equation

(28) is a radiative, time-dependent transport equation

that accounts for the wind input, the wave–wave in-

teractions, and the dissipation phenomena both in deep

and shallow waters. Processes characterizing wave

propagation, such as shoaling, refraction, and wave–

current interaction, are represented in the left-hand side

of Eq. (28), while wind input, wave–wave interactions,

and dissipations are included in the right-hand side of

Eq. (28), that is, in the source term F(s, u). Tomodel the

processes included in the source term of Eq. (28),

SWAN adopts the Wave Model (WAM) cycle III

(Hasselmann et al. 1988) and WAM cycle IV (Günther
et al. 1992) formulations (SWAN Team 2011). In

addition, SWAN includes depth-induced breaking,

bottom friction, and triad wave–wave interactions in

intermediate/shallow waters. In SWAN, the physical and

spectral spaces are discretized; direction u is represented

by N bins un (n 5 1, . . . , N), divided by a constant step

Du, while frequencies are geometrically distributed in the

prognostic range according to si11 5 1.1si between s1

and sQ, that is, the minimum and maximum cutoff fre-

quencies, respectively. Spectral moments of the spectrum

are computed by adding a diagnostic tail proportional to

s2r beyond sQ. Usually, r equals 4 or 5, but r5 5 is often

preferred to resemble observed spectral tails (Pierson and

Moskowitz 1964; Hasselmann et al. 1973; Forristall 1981).

b. The SWAN-ST implementation

We provided SWAN with new routines to obtain the

parameters of the directional spectrum [Eq. (2)] as

model outputs at each node of the physical domain (x, y)

and each time step. In accordance to what is routinely

done by SWAN, the frequency domain is subdivided

into prognostic (P) and diagnostic (D) ranges. There-

fore, spectral moments are split into two contributions,

such thatmijl 5mijl,P 1mijl,D. In the prognostic range of

frequencies (s1# sq# sQ), the spectrum is numerically

integrated to compute spectral moments according to

mijl,P ’ l �
N

n51
�
Q

q51

k(i1j)
q cosi(un) sin

j(un)s
(21l)
q A(sq, un)Du ,

(29)

where l 5 ln(si11/si). In the diagnostic range of fre-

quencies (sQ , s , ‘), the wave spectrum is analyti-

cally integrated in a way that

mijl,D ’ t[k
(i1j)
Q cosi(uN) sin

j(uN)s
(21l)
Q A(sQ, uN)Du]

(30)

where t5 1/fx[11 x(y2 1)]g, x 5 r 2 l 2 2(i 1 j) 2 1,

and y5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
si11/si

p
. Since the high-frequency tail is chosen

as proportional to s25 when 2(i 1 j) 1 l 6¼ 4, then

x vanishes andmijl,D tends to be unbounded. Therefore,

moments m200, m020, and m101 are obtained by in-

tegrating up to a maximum cutoff frequency sc . sQ:

mijl,D ’mijl,Dc

5 k[k
(i1j)
Q cosiuN sinjuNs

(21l)
Q A(sQ, uN)Du] , (31)

where k5 ln(sc)2 ln(ysQ). The choice of sc is arbitrary

since the chosen value can be directly put into Eq. (31).

In this study, we imposed sc equal to the gravity–

capillary limit, that is, sc 5 60 rad s21, for the reasons

reported in section 3.

Equations (29)–(31) were implemented into the SWAN

source code. To this end, two subroutines were written:

one aimedat computing the spectralmoments as described

above and one aimed at computing the spectral parame-

ters according to Eq. (2). In addition, the original source

code was adapted in order to include the new subroutines

and to allow the computation of five additional output

variables: Lx, Ly, axt, ayt, and axy (t corresponds to the

SWAN output variable T02). The subroutines and mod-

ules that were modified are those in charge of output

variables’ initialization and output requests’ processing.
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To validate the SWAN-ST implementation, a re-

gression test was performed by first simulating the prop-

agationof aPM1cos2 directional spectrumwithSWAN-ST

and then by comparing the spectral parameters computed

by the model with the spectral parameters analytically

obtained from Eq. (19). In fact, we expected a corre-

spondence of the two sets of parameters within some

differences introduced by the model numerics. To this

end, we simulated the stationary 1D propagation of a

PM1cos2 directional spectrum withHs5 4m imposed as

boundary condition at the first node of a computational

domain 500km long with a 1-km resolution grid. The

prognostic frequency range, consisting of 32 geo-

metrically distributed frequencies, spans within 0.31 and

3.14 rad s21 (i.e., from 0.05 to 1.00Hz). Directions were

discretized using 180 equally spaced values within the full

circle [0, 2p) rad. To consistently compare the spectral

parameters obtained from Eq. (19), without loss of

generality, we imposed peak direction up 5 0 rad,

which corresponds to the x-axis direction (u5 up since

PM1cos2 is symmetric). No source term was included,

since we were only interested in the propagative terms of

Eq. (28). From the comparison between analytical and

numerical results emerged that differences were smaller

than 1% for all the spectral parameters. Thus, we con-

cluded that the SWAN-ST implementation provides

reliable estimates of the spectral parameters of Eq. (2).

Since most of the sea state energy/variance content is

generally represented within the prognostic range of the

wave spectrum, we also assessed the contribution of the

diagnostic tail to the ST extremes jST. In fact, it was

proven that the highest-frequency components of the

spectral tail produce small ripples on the surface of high

waves, without affecting the crest, trough, and wave

heights significantly (Boccotti 2000). A sensitivity anal-

ysis was therefore conducted by comparing the ST ex-

tremes obtained accounting only for the prognostic

frequency range of the spectrum with those obtained

accounting for the whole prognostic and diagnostic

range. Practically, parameters in the prognostic range

were computed by means of the moments in Eq. (29),

while parameters in the whole range were computed by

adding to Eq. (29) either the moments in Eq. (30) or the

moments in Eq. (31), assuming sc 5 60 rad s21. We

adopted the same physical and spectral discretization

used for the regression test as well as the same general

setup (i.e., stationary 1D propagation without source

terms). However, in order to evaluate the effect of the

peak to maximum cutoff frequency ratio (sp/sQ, where

sQ 5 3.14 rad s21), we accounted for four different sea

states withHs 5 1.0, 2.0, 4.0, and 8.0m, pointing out that

sp 5 0:4
ffiffiffiffiffiffiffiffiffiffi
g/Hs

p
for PM. We tested four different sizes of

the space domain S: 1 3 1m2, 103 10m2, 1003 100m2,

and 1000 3 1000m2 (time domain extension T was con-

stant and equal to 1800 s). The results are presented in

Table 2 in terms of variations DjST 5 (jSTNT
2

jSTT
)/jSTT

3 100: that is, with (subscript T) and

without (subscript NT) the spectral tail.

We note in Table 2 that DjST are always negative,

meaning that neglecting the tail contribution leads to

lower jST. For each Hs, the maximum absolute DjST is

obtained when S is in the same order of magnitude as

LxLy, while the global absolute maximum is 5.7%, which

points out that, in the tested ranges of S and Hs, the ST

extremes are only slightly sensitive to the tail contribu-

tion, consistent with the Boccotti’s results. Additionally,

differences are smaller for the highest sea states. In fact,

DjST diminishes for decreasing sp/sQ, which is reason-

able since higher sea states are associated with lower sp,

and hence the prognostic range encompasses the most of

the spectral variance, more than what happens for lower

sea states. Furthermore, the largest areas (i.e., 100 3
100m2 and 10003 1000m2) show the lowest variabilities

overHs. This can be explained by the means of the wave

dimensionb; indeed for large areas, b’ 3, and it seems to

be unaffected by the tail contribution and by the signifi-

cant wave height. Besides this, results of this sensitivity

analysis allowed us to estimate which is the effect of ne-

glecting the spectral tail, which is a reasonable choice

when its shape is unknown or is not correctly represented

by the available parameterizations.

5. Assessment of FM predictions

Preliminarily, ST extremes predicted by FM were

compared to the ST extremes obtained from numerical

simulations of Gaussian random seas with PM1cos2 and

JON1cos2 directional spectra. This approach was used

among the others by Forristall (2006) to show the

agreement between simulated and predicted (according

to PT) ST extremes. To generate a large number of re-

alizations of the Gaussian process h(x, y, t) from a pre-

scribed directional spectrum, we employed the Wave

Analysis for Fatigue and Oceanography (WAFO) tool-

box (WAFO Group 2011) for MATLAB, which has al-

ready been applied for simulations of wave extremes

TABLE 2. Effect of the spectral tail contribution on the ST ex-

tremes estimate, expressed as the variation DjST (%), that is, with

and without the spectral tail.

Hs

(m) sp/sQ S 5 12m2 S 5 102m2 S 5 1002m2 S 5 10002m2

1.0 0.20 22.9 25.7 24.6 23.5

2.0 0.14 21.7 24.9 24.4 23.2

4.0 0.10 20.9 23.9 24.2 23.1

8.0 0.07 20.5 22.7 24.1 23.0
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(e.g., Gemmrich and Garrett 2008). Hence, a PM spec-

trum and a JON spectrum were alternatively combined

with the cos2 directional distribution to simulate a fully

developed sea state and a fetch-limited sea state, re-

spectively. The frequency spectra were imposed in order

to simulate sea states with Hs 5 1.0m, Lx ’ 14m, and

Ly ’ 14m. The frequency–direction domain was dis-

cretized using 7200 equally spaced frequencies between

2.8 3 1024 (i.e., the frequency resolution) and 2Hz and

180 directions with 28 resolution. For each sea state, we

generated 100 independent realizations of h(x, y, t), with

spatial resolutions Dx 5 Dy 5 0.5m and temporal reso-

lution Dt 5 0.25 s. Then, from each realization we ex-

tracted the maxima hST over five ST volumes Vj (j5 1, 2,

3, 4, 5) with the same duration T 5 1 hour and different

areas Sj 5 j2LxLy. In Table 3, the expected extremes hST

from numerical simulations are compared to the theo-

retical predictions of FM.

The numerical simulations provided hST ranging be-

tween 1.24 and 1.42m, with coefficients of variation

(standard deviation to expected value ratio) below 7%.

The theoretical predictions of FM gave hST ranging from

1.23 to 1.40m. In this context, the discrepancy between

theoretical FM extremes and simulated expected ex-

tremes [(hSTFM
2hSTsim

)/hSTsim
3 100] is smaller than

1.5% (in magnitude). We did not observe a significant

trend of the error with respect to the area size nor a better

performance with one sea state or the other. Therefore,

even if we limited the significant wave height and the area

of the domain in order to contain the computational ef-

fort, results in Table 3 point out an excellent agreement

between simulated and predicted ST extremes for all

the areas taken into account. Moreover, the FM per-

formance is also remarkable if ST predictions are

compared to the expected extremes at a point from

standard Gaussian time statistics (i.e., Rayleigh), which

are 0.97 (PM1cos2) and 0.98m (JON1cos2).

6. Results

To evaluatemetocean forcings’ effects on ST extremes,

analyses were conducted by the means of the analytical

formulation and the numerical implementation of the

spectral parameters discussed in sections 3 and 4. In

particular, equations of the PM1cos2 and JON1cos2

spectral parameters were used to investigate the de-

pendence upon the wind speed and fetch. In addition, in

order to assess the spatial effect on ST extremes, the

dependence of the space domain size was investigated.

Afterward, the SWAN-ST implementation was em-

ployed to study the effects of current- and depth-induced

shoaling.

a. Wind speed and fetch effects

The ST extremes jST were computed by feeding Eq.

(6) with the spectral parameters obtained fromEqs. (19)

and (27). The ranges of wind speed (U5 U10) and fetch

F were chosen such thatU varied within 10 and 20ms21

[i.e., approximately the Pierson and Moskowitz (1964)

experimental range], while F varied from 1 to 250km.

Thus, only the frequency part of the considered spectra

was interested by the wind variability, whereas the

cos2 distribution remained unchanged. Doing so, we

achieved ST extremes of single independent sea states

undergoing different wind conditions. The space domain

size S varied from 1 to 106m2 in order to span a wide

range of sea areas and assume the hypothesis of homo-

geneity was reasonably fulfilled. Focusing on the spatial

contribution to jST rather than on the temporal contri-

bution, the duration of the sea states was fixed, imposing

T 5 100t in order to maintain a constant number of

waves over the time domain while changing wind con-

ditions [100 wave periods being a reasonable number to

achievemeaningful statistical properties and stationarity

of the sea states (Boccotti 2000; Holthuijsen 2007)].

The ST extremes jST(U, S) for PM1cos2 and the ST

extremes jST(U, F, S) for JON1cos2 are shown in

Figs. 1 and 2, respectively. In fully developed conditions

(Fig. 1), jST(U, S) ranges from 0.8 to 1.5, growing for

increasing S and reducing for increasing U. The de-

pendence upon U seems weaker than that upon S; in-

deed, the whole range of the jST(U, S) variability is

covered bymodifying S for a givenU, while modifyingU

for a given S, the maximum jST(U, S) variation is only

TABLE 3. Assessment of FM model performance for two Gaussian sea states (PM1cos2 and JON1cos2) through the comparison of

simulated (given with standard deviation) and predicted hST (m).

S 5 12LxLym
2 S 5 22LxLym

2 S 5 32LxLym
2 S 5 42LxLym

2 S 5 52LxLym
2

PM1cos2

Simulated 1.24 6 0.08 1.32 6 0.07 1.35 6 0.06 1.38 6 0.06 1.40 6 0.06

Predicted 1.23 1.30 1.34 1.37 1.39

JON1cos2

Simulated 1.24 6 0.07 1.31 6 0.07 1.36 6 0.07 1.40 6 0.07 1.42 6 0.07

Predicted 1.25 1.31 1.35 1.38 1.40
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20% of the total variation observed. In fetch-limited

seas (Fig. 2), jST(U, F, S) ranges from 0.8 to 1.7, growing

for increasing S and reducing for increasing U and F. In

this context, F has a stronger effect than U. Indeed, a

jST(U, F, S) variation equal to the 30% of the total at

most is found modifying F from 1 to 250 km, whereas a

variation of 10% at most is found modifying U from 10

to 20ms21. As for jST(U, S), the dependence of

jST(U, F, S) upon S seems to be much more effective

than those upon U and F. Comparing the bottom-right

panel of Fig. 2 to Fig. 1 reveals that at F 5 250 km, the

sea states, especially those with the smallestU, are close

to the transition to fully developed condition.

As shown in Figs. 1 and 2, the wave dimension b is

mostly affected by S, approaching 1 for the smallest S and

3 for the largest areas. Conversely,b isweaklymodified by

U and F. Actually, b and jST levels are almost equidistant,

revealing a common behavior with respect to S. Most

likely, this is because of the average number of wavesM3,

M2, andM1 but particularlyM3. Indeed over a ST domain,

as shown in Eqs. (6) and (7), jST and b are principally

governed byM3; themoreM3 is large, themore jST grows

and b tends to 3. This condition can be achieved by in-

creasing S5XY for a given sea state or by reducing t,Lx,

and Ly and increasing axt, axy, and ayt for a given S.

The dependence of the spectral parameters upon U

and F, expressed through Eqs. (19) and (27), is displayed

in Fig. 3 for fully developed sea states, as a function

of U, and for fetch-limited sea states, as a function of

the dimensionless fetch F*5Fg/U2 and in terms of

the dimensionless spectral parameters t*5 tg/U and

Li*5Lig/U
2 (i 5 x, y). In fully developed conditions, t,

Lx, and Ly increase with U. The ratio Lx/Ly, that is, the

short crestedness of the sea state, remains constant (gs’
0.58) because the directional distribution of variance is

not modified by wind in the analysis. Because of this, the

irregularity parameters remain null, except axt, which

slightly decreases with U, meaning that the sea state

tends to be slightly more confused. Actually, the de-

pendence of axt upon U appears to be weak, and hence

for the reasons explained above t, Lx, and Ly act as the

driving factors for the reduction of jST shown in Fig. 1.

Parameters t, Lx, and Ly increase in fetch-limited con-

ditions too; for smaller F* the increase is rapid, while for

larger F* the increase is slower, and parameters appear

to tend to the fully developed condition values. The

short crestedness is conserved in the analysis, while the

ST randomness of the sea state, expressed by the irreg-

ularity parameters, slightly changes according to the

change of axt. This rapidly decreases within the smallest

F* range and then settles on a value approximately

constant over F*. Thus, also in fetch-limited conditions,

the reduction of jST shown in Fig. 2 is mainly driven by

the growth of t, Lx, and Ly.

Wind speed U and fetch F have shown considerable

effects on the spectral parameters, particularly on the

geometric parameters t, Lx, and Ly. Indeed, in fully

developed conditions, U forces them to increase until

they doubled (t) and almost tripled (Lx and Ly) at

20m s21 with respect to the 10ms21 values. This has

generally a direct effect on the average numbers of

waves, and thus one could expect a direct effect on the

ST extremes too. Nevertheless, the corresponding jST
variation due to U is very weak compared to that of the

spectral parameters, being at 20m s21 only 18% of the

10m s21 value. Similar considerations can be drawn for

fetch-limited sea states. From the analysis, it emerges

that the spectral parameters variations are damped out

in Eq. (6), which leads to ST extreme estimates that are

only slightly sensitive to variations in the number of

waves, as noted by Holthuijsen (2007) for a time domain

extreme statistics.

The cos2 function employed in this study provided a

reasonable though simplified representation of the di-

rectional distribution in short-crested seas (Holthuijsen

2007). Indeed, it is unimodal and frequency indepen-

dent, whereas realistic sea states have been proven to be

bimodal (for s . sp) and frequency dependent in the

distribution of energy (Ewans 1998). To evaluate the

error ascribable to the use of a constant spreading dis-

tribution in fetch-limited seas, we tested the use of a

distribution which models a frequency-dependent

spreading. To this end, we considered the cos2s di-

rectional distribution function with the parameteriza-

tion proposed by Ewans (1998) for the spreading

parameter s. Hence, the directional spreading (which is

FIG. 1. Dimensionless space–time extremes jST for PM1cos2

directional spectrum, as a function of wind speed U and space

domain size S. Time domain size is T 5 100t. Black solid lines

represent wave dimension b.
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minimum at the peak frequency) increased both toward

larger and smaller frequencies, in agreement with ob-

servations of directional spectra at sea. In this context,

we compared the spectral parameters and the jST pre-

dictions of FM obtained from two directional spectra

sharing the same frequency part (i.e., JON with AJON 5
0.014, sp5 1.2 rad s21, g5 2.0, and f5 0.08) but having

different directional distribution: a JON1cos2 and a

JON1cos2s, assuming the latter as the reference. Spec-

tral parameters were obtained by means of the numerical

integration of the spectra, whose frequency-direction

domain was discretized as in section 5. We tested a

wide range of S (from 1 to 106m2), observing significant

differences in the spectral parameters Lx (14%), Ly

(223%), and axt (27%). Nevertheless, such variations,

though considerable, are not responsible for similar

changes in the ST extremes, as previously shown in this

section. Indeed, the jST obtained with the simplified cos2

distribution are only 1% smaller than those obtained

with the more realistic cos2s distribution. As an addi-

tional verification, we also compared the ST extremes

computed from a JON1cos2 spectrum with the extremes

FIG. 2. Dimensionless space–time extremes jST for JON1cos2 directional spectrum, as a function of wind speed

U and space domain size S, for six different fetches: F15 1 km, F25 50 km, F35 100 km, F45 150 km, F55 200 km,

and F6 5 250 km. Time domain size is T 5 100t. Black solid lines represent wave dimension b.
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retrieved from numerical simulations of Gaussian

JON1cos2s sea states. To this aim, a set of 100 re-

alizations h(x, y, t) of a JON1cos2s sea state was gen-

erated using WAFO (using the same domain

discretization and JON spectrum of section 5), and the

expected ST extremes detected over five ST volumes

with the same duration (T5 1 hour) and different areas

(Sj 5 j2LxLy with j 5 1, 2, 3, 4, 5, Lx ’ 16m, and Ly ’
19m) were compared to the FM predictions of a

JON1cos2 sea state sharing the JON spectrum. Such

predictions, though obtained by means of a simplified

directional distribution function, are in agreement with

the simulations within a 1% error.

b. Current- and depth-induced shoaling effects

We investigated the effects of current- and depth-

induced shoalings on ST extremes by means of the

SWAN-ST implementation. To analyze the contributions

of complex processes (e.g., wave–current interactions)

separately, in this paper we focused on the shoaling effect

only, thus neglecting, for instance, the refractive phe-

nomena induced by different wave–current directions and

planimetric bottom variations. Shoaling is completely

modeled within the propagative terms in the left-hand

side of Eq. (28), and it could be altered by dissipative

phenomena [e.g., wave breaking or bottom friction

(Holthuijsen 2007)], and hence no source term was ac-

counted for in Eq. (28). We performed stationary model

runs over a 1D domain, imposing (at the deep-water

boundary) the propagation of a PM1cos2 over an ambi-

ent current or over a sloping bottom, andwe simulated the

spectral parameters at each grid node of the model do-

main. Themodel setup used has already been described in

section 4. We tested four different sea states with Hs,0 5
1.0, 2.0, 4.0, and 8.0m (subscript 0 referring to still or deep

water conditions), andwe computed the extremes over ST

FIG. 3. Spectral parameters for (left) PM1cos2 and (right) JON1cos2 directional spectra. For JON1cos2,

dimensionless parameters are plotted.
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domains centered on the grid nodes. Since we already

discussed the effect on jST of the space domain size S,

herein the ST domain size for each sea state tested was

fixed (i.e., S5 XY5 Lx,0Ly,0 and T5 100t0). Unlike the

analytical analysis of section 6a, using a numerical model

we did not impose any constraint to the directional dis-

tribution function that was free to evolve under the dif-

ferent forcings effect, starting from an initial common

spectral shape.

1) CURRENT-INDUCED SHOALING

Current-induced shoaling effects were investigated by

imposing the transition from the propagation over still

waters (i.e., current speed Vx 5 0ms21 in the first half

of the domain) to the propagation over a moving me-

dium (i.e., Vx 6¼ 0 in the last half of the domain).

Eight different current speeds were tested, that is,

20.4, 20.3, 20.2, 20.1, 0.1, 0.2, 0.3, and 0.4m s21, lim-

iting the analysis to 20.4m s21, which is the critical

speed Vx,c 5 2c/4 over which the highest harmonic of

the spectrum (i.e., with 1.0-Hz relative frequency and

phase speed c 5 1.56m s21) is affected by energy

blocking and energy reflection phenomena (Phillips

1977). The tail contribution to the spectral moments was

not accounted for in this specific analysis because we

could not control how the spectrum is modified by the

current effect outside the prognostic frequency range.

Prior to studying the effect of current-induced shoal-

ing on ST extremes, we analyzed the effects on Hs

(Fig. 4); it increases in upcurrent conditions (15% at

most, at 20.4m s21), and it decreases in downcurrent

conditions (9% at most, at 0.4ms21), in agreement with

current-induced shoaling (Holthuijsen 2007). Moreover,

the higherHs in still waters, the smaller the modifications

under the current effect. A similar effect on ST extremes

is depicted in Fig. 4; jST increases upcurrent (4% atmost)

and decreases downcurrent (2% at most). The trends

shown suggest that such variations should be even larger

in the presence of stronger currents. Under the effect of a

current, sea states with different Hs,0 show comparable

variations of jST (at 20.4ms21, the range of variations

relative to the maximum is less than 1%), although the

range of variations of the spectral parameters and Hs is

larger, especially on an opposite current (at 20.4ms21,

the range of variations relative to the maximum is up to

10%). This is a consequence of jST being normalized by

Hs and not much sensitive to the number of waves’ var-

iations. Results also indicate that the dimensional ST

extremes, hST 5 jSTHs, are magnified over an opposite

current by the increase of Hs and jST. While the Hs in-

crease has been already motivated, the jST increase can

be explained by an increase in the number of waves (i.e.,

M3,M2, andM1), which is in turn caused by a decrease of

the spectral parameters. This is confirmed by the results

shown in Fig. 5, where t, Lx, Ly, and axt decrease on an

opposite current (ayt and axy variations are negligible,

and hence they are not plotted), indicating an average

shortening of waves in time (16% atmost on t) and space

(40% at most on Lx). The decrease of t is in agreement

with the frequency downshifting typical of shoaling

(Holthuijsen 2007), and the decrease of Lx is consistent

with the kinematics of waves on a moving medium

(Phillips 1977). Also,Ly shorten on average (8% at most)

and since Lx variation is considerably larger than Ly

variation, thenwaves appear longer crested (gs, gs,0). In

addition, the sea state tends to be more confused, as in-

dicated by the decrease ofaxt (10%atmost). Instead, on a

following current, t, Lx, Ly, and axt increase (Fig. 5),

causing the average number of waves to reduce and in

turn causing jST to decrease. Apart from Lx, whose

FIG. 4. Current-induced shoaling effects on (left) space–time extremes jST and (right) significant wave height Hs.

Subscript 0 refers to still water conditions, that is, Vx 5 0m s21. Time domain size is T 5 100t; space domain size is

S5XY5Lx,0Ly,0.
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variation is comparable to the upcurrent decrease, the

increase of the other spectral parameters is (at most)

halved with respect to the decrease shown with opposite

current. Moreover, waves on the following current are

more short crested than in still waters (viz., gs , gs,0),

though more organized (viz., axt . axt,0).

2) DEPTH-INDUCED SHOALING

Depth-induced shoaling effects on spectral parame-

ters and ST extremes were investigated by imposing the

wave propagation over a sloping bottom whose depth,

starting from a deep-water condition (i.e., 350m), de-

creased to a minimum depth. The minimum depths,

ranging from 2 to 125m depending on the test, were

chosen in order to observe the shoaling process in all the

spectral components of the tested spectra.

As a first step, we analyzed the Hs variation toward

the shallow depths. In Fig. 6,Hs initially decreases below

the deep-water value and then grows above it consis-

tently with the antibunching and bunching of energy

peculiar of shoaling (Holthuijsen 2007). It is noteworthy

that in the shallowest part, the remarkable Hs growth

(up to almost 40% ofHs,0) should be realistically limited

by shallow-water dissipation processes such as bottom

friction and depth-induced breaking. The variation of

jST with bottom depth is somehow reversed with re-

spected to that of Hs (Fig. 6). Indeed, jST slightly in-

creases over the deepest bottoms and then drops toward

the shallowest, counteracting the Hs reduction and in-

crement, respectively. Nevertheless, modifications in-

duced by depth-induced shoaling on jST are significantly

weaker than those induced onHs, and as a consequence,

dimensional maxima, hST 5 jSTHs, vary according toHs.

All the sea states tested show similar tendencies, and as

for current-induced shoaling, the variations experienced

by the spectral parameters and Hs for different Hs,0 are

largely reduced for jST, whose variations in the presence

of different Hs,0 are significantly reduced due to nor-

malization and due to the slight sensitivity of jST to the

number of waves’ variation. The growth and decay of

jST can be motivated by the spectral parameters’ vari-

ations under the depth-induced shoaling effect, illus-

trated in Fig. 7 (ayt and axy remain null). Indeed,

approaching the shallow waters, at first t decreases (up

to 5% of the deep-water value t0) and then increases (up

to 15% of t0) because of the spectral frequency shifting

FIG. 5. Current-induced shoaling effects on spectral parameters (except axy and ayt whose variations can be

neglected). Subscript 0 refers to still water conditions, that is, Vx 5 0m s21.
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typical of shoaling: upshifting over the largest depths

and downshifting over the smallest depths (Holthuijsen

2007). Parameter Lx monotonically decreases (40% of

Lx,0 at most) from deep to shallow waters due to the

phase speed slow down, whereas Ly shows an initial

slight decrease followed by an increase (80% of Ly,0 at

most). It follows that gs � gs,0, and hence waves in

shallow waters appear much more long crested than in

deep waters. At the same time the sea state is more or-

ganized, with axt larger than in deep waters.

7. Conclusions

In this paper, we presented an analytical and numer-

ical study aimed at discussing the influence of metocean

forcings on the space–time extremes of short-crested sea

states. In particular, the roles of the wind conditions and

wave interaction with an ocean current and with the

bottom were investigated by analyzing the effects on the

space–time integral parameters of the directional spec-

trum. Space–time extreme jST estimates were based

upon the Fedele model, whose performance was as-

sessed by comparing the theoretical predictions to the

expected values from numerical simulations of Gaussian

sea states, showing an excellent agreement.

To investigate the wind conditions effect, we attained

two sets of formulations for deepwaters’ fully developed

(Pierson–Moskowitz) and fetch-limited (JONSWAP)

sea states to express the dependence of spectral pa-

rameters upon the wind speed and fetch.We pointed out

that such formulations depend upon a cutoff frequency

sc (imposed to ensure the boundedness of the higher-

order moments) and upon the power m of the cosm di-

rectional distribution function (herein m 5 2). The

cutoff frequency was influential on the spectral param-

eters but significantly less relevant for space–time ex-

tremes computation. In the future, the procedure herein

used could be generalized to attain more general for-

mulations that depend upon arbitrary cutoff frequency

and directional spreading. Nevertheless, we assessed

that the jST estimate obtained using the cos2 directional

distribution almost matches that one obtained using a

more realistic directional distribution (with frequency-

dependent spreading).

To investigate the effects of current- and depth-

induced shoaling, we adapted the SWAN numerical

wave model in order to store the relevant integrated

spectral parameters at the nodes of the computational

grid, as a resources-saving alternative to the storage of

the spectra. Running a 1D model we found that the di-

agnostic spectral tail adds a small contribution to the

space–time extremes, which could be neglected when

the tail parameterization is not given for sure. In the future,

the effects of wave steepness, which may be not negligible

in the presence of strong opposing currents or approaching

the shore, as well as the effects of bottom friction should be

studied in the context of a higher-order wave model, and

depth-induced breaking should be explored.

The main results presented in the paper are summa-

rized as follows:

d Compared to the significant wave height Hs, the

increasing wind conditions turned out to have a weak-

ening effect on the space–time extremes (both in fully

developed and fetch-limited conditions). Indeed, we

generally observed a reduction of jST increasing the

wind speed and the fetch (for a given space domain

size S) as a consequence of the spectral parameters’

variations inside the space–time domain. Hence, the

FIG. 6. Depth-induced shoaling effects on (left) space–time extremes jST and (right) significant wave height Hs.

Subscript 0 refers to deep-water conditions. Time domain size is T5 100 t0; space domain size is S5XY5 Lx,0Lx,0.
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wind effect on the dimensional extremes hST 5 jSTHs

is to reduce the increment expected in presence of

more severe wind conditions. As a matter of fact, the

reduction of jST counteracts the increase of Hs, thus

reducing the increment of hST.
d The current-induced shoaling was found to amplify

the space–time extremes in the presence of opposite

currents and to reduce them in presence of following

currents (for given S andHs) as a result of the spectral

parameters modifications. Therefore, the upcurrent

effect on hST is to further increase the increment ex-

pected due to the Hs contribution, and the down-

current effect is to intensify the expected reduction.
d The depth-induced shoaling exerted a weakening effect

on the space–time extremes, since we observed a jST
reduction in the shallow depths caused by the spectral

parameters variations. Such reduction counteracted the

typical depth-induced increase ofHs toward the shore, thus

reducing the increment of hST expected in shallow waters.
d The space domain size S had a strong influence on the

space–time extremes, as expected. Indeed, a signifi-

cant increase of jST was obtained enlarging S for a

given sea state, providing evidence to support the role

of the space domain size S in the prediction of ex-

tremes at sea.

Acknowledgments.The research was supported by the

Flagship Project RITMARE—The Italian Research for

the Sea coordinated by the Italian National Research

Council and funded by the Italian Ministry of Educa-

tion, University and Research within the National Re-

search Program 2011–2013. The authors gratefully

acknowledge Prof. Francesco Fedele fromGeorgiaTech

(Atlanta, Georgia, United States) for useful comments.

The SWAN model (version 40.85) was modified under

the terms of the GNU General Public License.

REFERENCES

Abramowitz, M., and I. A. Stegun, Eds., 1965: Handbook of

Mathematical Functions with Formulas, Graphs, and Mathe-

matical Tables. National Bureau of Standards Applied

Mathematics Series, Vol. 55, Dover, 1046 pp.

Adler, R. J., 1981: The Geometry of Random Fields. John Wiley &

Sons, 280 pp.

——, and J. E. Taylor, 2007: Random Fields and Geometry,

Springer Monogr. Math., Vol. 115, Springer, 448 pp.

FIG. 7. Depth-induced shoaling effects on spectral parameters (exceptaxy and aytwhose variations can be neglected).

Subscript 0 refers to deep-water conditions.

1914 JOURNAL OF PHYS ICAL OCEANOGRAPHY VOLUME 45



Banner, M., J. Trinder, and I. Jones, 1989: Wavenumber spectra of

short gravity waves. J. Fluid Mech., 198, 321–344, doi:10.1017/

S0022112089000157.

Barbariol, F., A. Benetazzo, F. Bergamasco, S. Carniel, and

M. Sclavo, 2014: Stochastic space-time extremes of wind

sea states: Validation and modeling. Proc. ASME 2014

33rd Int. Conf. on Ocean, Offshore and Arctic Engineering,

San Francisco, CA, ASME, 11 pp., doi:10.1115/

OMAE2014-23997.

Baxevani, A., and I. Rychlik, 2006: Maxima for Gaussian seas.

Ocean Eng., 33, 895–911, doi:10.1016/j.oceaneng.2005.06.006.

——, K. Podgórski, and I. Rychlik, 2003: Velocities for mov-

ing random surfaces. Probab. Eng. Mech., 18, 251–271,

doi:10.1016/S0266-8920(03)00029-8.

Benetazzo, A., 2006: Measurements of short water waves using

stereo matched image sequences.Coastal Eng., 53, 1013–1032,

doi:10.1016/j.coastaleng.2006.06.012.

——, F. Fedele, G. Gallego, P. Shih, and A. Yezzi, 2012: Offshore

stereo measurements of gravity waves. Coastal Eng., 64, 127–
138, doi:10.1016/j.coastaleng.2012.01.007.

Boccotti, P., 2000:WaveMechanics forOceanEngineering.Vol. 64,

Elsevier Oceanography Series, Elsevier, 496 pp.

Booij, N., R. Ris, and L. Holthuijsen, 1999: A third-generation

wave model for coastal regions. I: Model description and

validation. J. Geophys. Res., 104, 7649–7666, doi:10.1029/

98JC02622.

Cavaleri, L., L. Bertotti, L. Torrisi, E. Bitner-Gregersen, M. Serio,

and M. Onorato, 2012: Rogue waves in crossing seas: The

Louis Majesty accident. J. Geophys. Res., 117, C00J10,

doi:10.1029/2012JC007923.

Dankert, H., J. Horstmann, S. Lehner, and W. Rosenthal, 2003:

Detection of wave groups in SAR images and radar image

sequences. IEEE Trans. Geosci. Remote Sens., 41, 1437–1446,

doi:10.1109/TGRS.2003.811815.

Dysthe, K., H. E. Krogstad, and P. Müller, 2008: Oceanic rogue

waves. Annu. Rev. Fluid Mech., 40, 287–310, doi:10.1146/

annurev.fluid.40.111406.102203.

Ewans, K. C., 1998:Observations of the directional spectrumof fetch-

limited waves. J. Phys. Oceanogr., 28, 495–512, doi:10.1175/

1520-0485(1998)028,0495:OOTDSO.2.0.CO;2.

Fedele, F., 2012: Space–time extremes in short-crested storm

seas. J. Phys. Oceanogr., 42, 1601–1615, doi:10.1175/

JPO-D-11-0179.1.

——, A. Benetazzo, G. Gallego, P.-C. Shih, A. Yezzi, F. Barbariol,

and F. Ardhuin, 2013: Space-time measurements of oceanic

sea states. Ocean Modell., 70, 103–115, doi:10.1016/

j.ocemod.2013.01.001.

Forristall, G. Z., 1981: Measurements of a saturated range in ocean

wave spectra. J. Geophys. Res., 86, 8075–8084, doi:10.1029/
JC086iC09p08075.

——, 2005: Understanding rogue waves: Are new physics really

necessary. Rogue Waves: ‘Aha Huliko‘a Hawaiian Winter

Workshop, Honolulu, HI, University of Hawai‘i at M�anoa,

29–35. [Available online at http://www.soest.hawaii.edu/

PubServices/2005pdfs/Forristall.pdf.]

——, 2006: Maximum crest wave heights over an area and the air

gap problem. Proc. 25th Int. Conf. on Offshore Mechanics and

Arctic Engineering, Hamburg, Germany, ASME, 11–15,

doi:10.1115/OMAE2006-92022.

——, 2007: Wave crest heights and deck damage in Hurricanes

Ivan, Katrina, and Rita.Offshore Technology Conf.,Houston,

TX, Offshore Technology Conference, OTC-18620-MS,

doi:10.4043/18620-MS.

——, 2011: Maximum crest heights under a model TLP deck. Proc.

ASME 2011 30th Int. Conf. on Ocean, Offshore and Arctic

Engineering, Rotterdam, Netherlands, ASME, 571–577,

doi:10.1115/OMAE2011-49837.

Gemmrich, J., and C. Garrett, 2008: Unexpected waves. J. Phys.

Oceanogr., 38, 2330–2336, doi:10.1175/2008JPO3960.1.

Gran, S., 1992: A Course in Ocean Engineering. Developments in

Marine Technology Series, Vol. 8, Elsevier, 583 pp.

Günther, H., S. Hasselmann, and P. A. Janssen, 1992: The WAM

Model: Cycle 4. DKRZ, 91 pp.

Hasselmann, K., and Coauthors, 1973: Measurements of Wind-

Wave Growth and Swell Decay during the Joint North Sea

Wave Project (JONSWAP). Deutsche Hydrographisches In-

stitut, 95 pp.

Hasselmann, S., and Coauthors, 1988: The WAM model—A

third generation ocean wave prediction model. J. Phys.

Oceanogr., 18, 1775–1810, doi:10.1175/1520-0485(1988)018,1775:

TWMTGO.2.0.CO;2.

Holthuijsen, L. H., 2007: Waves in Oceanic and Coastal Waters.

Cambridge University Press, 387 pp.

Kitaigorodskii, S., 1962: Applications of the theory of similarity to

the analysis of wind-generated wave motion as a stochastic

process. Izv. Geophys. Ser. Acad. Sci., USSR, 1, 105–117.
Krogstad, H. E., J. Liu, H. Socquet-Juglard, K. B. Dysthe, and

K. Trulsen, 2004: Spatial extreme value analysis of nonlinear

simulations of random surface waves. Proc. ASME 23rd Int.

Conf. on Offshore Mechanics and Arctic Engineering,

Vancouver, BC, Canada, ASME, 285–295, doi:10.1115/

OMAE2004-51336.

Lewis, A., and R. Allos, 1990: JONSWAP’s parameters: Sorting

out the inconsistencies. Ocean Eng., 17, 409–415, doi:10.1016/

0029-8018(90)90032-2.

Ochi, M., 2005: Ocean Waves: The Stochastic Approach. Cam-

bridge Ocean Technology Series, Vol. 6, Cambridge Univer-

sity Press, 332 pp.

Phillips, O. M., 1977: The Dynamics of the Upper Ocean. Cam-

bridge University Press, 336 pp.

Pierson, J.W. J., andL.Moskowitz, 1964:A proposed spectral form

for fully developed wind seas based on the similarity theory of

S.A. Kitaigorodskii. J. Geophys. Res., 69, 5181–5190,

doi:10.1029/JZ069i024p05181.

Piterbarg, V. I., 1996: Asymptotic Methods in the Theory of

Gaussian Processes and Fields. Transl. Math. Monogr., Vol.

148, 206 pp.

Rosenthal, W., and S. Lehner, 2008: Rogue waves: Results of the

MaxWave project. J. Offshore Mech. Arct. Eng., 130, 021006,

doi:10.1115/1.2918126.

Sand, S. E., N. O. Hansen, P. Klinting, O. T. Gudmestad, and M. J.

Sterndorff, 1990: Freak wave kinematics. Water Wave Kine-

matics, Springer, 535–549.

Shemdin, O. H., H. M. Tran, and S. Wu, 1988: Directional

measurement of short ocean waves with stereophotogra-

phy. J. Geophys. Res., 93, 13 891–13 901, doi:10.1029/

JC093iC11p13891.

Skourup, J., N.-E. O. Hansen, and K. Andreasen, 1997: Non-

Gaussian extreme waves in the central North Sea.

J. Offshore Mech. Arct. Eng., 119, 146–150, doi:10.1115/

1.2829061

Socquet-Juglard, H., 2005: Spectral evolution and probability dis-

tributions of surface ocean gravity waves and extreme waves.

D.Sc. thesis, University of Bergen, 71 pp.

——, K. Dysthe, K. Trulsen, H. E. Krogstad, and J. Liu, 2005:

Probability distributions of surface gravity waves during

JULY 2015 BARBAR IOL ET AL . 1915

http://dx.doi.org/10.1017/S0022112089000157
http://dx.doi.org/10.1017/S0022112089000157
http://dx.doi.org/10.1115/OMAE2014-23997
http://dx.doi.org/10.1115/OMAE2014-23997
http://dx.doi.org/10.1016/j.oceaneng.2005.06.006
http://dx.doi.org/10.1016/S0266-8920(03)00029-8
http://dx.doi.org/10.1016/j.coastaleng.2006.06.012
http://dx.doi.org/10.1016/j.coastaleng.2012.01.007
http://dx.doi.org/10.1029/98JC02622
http://dx.doi.org/10.1029/98JC02622
http://dx.doi.org/10.1029/2012JC007923
http://dx.doi.org/10.1109/TGRS.2003.811815
http://dx.doi.org/10.1146/annurev.fluid.40.111406.102203
http://dx.doi.org/10.1146/annurev.fluid.40.111406.102203
http://dx.doi.org/10.1175/1520-0485(1998)028<0495:OOTDSO>2.0.CO;2
http://dx.doi.org/10.1175/1520-0485(1998)028<0495:OOTDSO>2.0.CO;2
http://dx.doi.org/10.1175/JPO-D-11-0179.1
http://dx.doi.org/10.1175/JPO-D-11-0179.1
http://dx.doi.org/10.1016/j.ocemod.2013.01.001
http://dx.doi.org/10.1016/j.ocemod.2013.01.001
http://dx.doi.org/10.1029/JC086iC09p08075
http://dx.doi.org/10.1029/JC086iC09p08075
http://www.soest.hawaii.edu/PubServices/2005pdfs/Forristall.pdf
http://www.soest.hawaii.edu/PubServices/2005pdfs/Forristall.pdf
http://dx.doi.org/10.1115/OMAE2006-92022
http://dx.doi.org/10.4043/18620-MS
http://dx.doi.org/10.1115/OMAE2011-49837
http://dx.doi.org/10.1175/2008JPO3960.1
http://dx.doi.org/10.1175/1520-0485(1988)018<1775:TWMTGO>2.0.CO;2
http://dx.doi.org/10.1175/1520-0485(1988)018<1775:TWMTGO>2.0.CO;2
http://dx.doi.org/10.1115/OMAE2004-51336
http://dx.doi.org/10.1115/OMAE2004-51336
http://dx.doi.org/10.1016/0029-8018(90)90032-2
http://dx.doi.org/10.1016/0029-8018(90)90032-2
http://dx.doi.org/10.1029/JZ069i024p05181
http://dx.doi.org/10.1115/1.2918126
http://dx.doi.org/10.1029/JC093iC11p13891
http://dx.doi.org/10.1029/JC093iC11p13891
http://dx.doi.org/10.1115/1.2829061
http://dx.doi.org/10.1115/1.2829061


spectral changes. J. Fluid Mech., 542, 195–216, doi:10.1017/

S0022112005006312.

SWAN Team, 2011: SWAN cycle III, version 40.85: Scientific and

technical documentation. Delft University of Technology,

accessed 4 June 2015. [Available online at swanmodel.

sourceforge.net.]

WAFO Group, 2011: WAFO—A MATLAB toolbox for analysis

of random waves and loads: Tutorial for WAFO version 2.5.

Centre for Mathematical Statistics, Lund University Rep.,

185 pp. [Available online at www.maths.lth.se/matstat/wafo/

documentation/wafotutor25.pdf.]

Yamaguchi, M., 1984: Approximate expressions for integral

properties of the JONSWAP spectrum. Proc. Japan. Soc. Civ.

Eng., 345, 149–152.

Young, I. R., 1999:Wind Generated Ocean Waves. Elsevier Ocean

Engineering Series, Vol. 2, Elsevier, 288 pp.

1916 JOURNAL OF PHYS ICAL OCEANOGRAPHY VOLUME 45

http://dx.doi.org/10.1017/S0022112005006312
http://dx.doi.org/10.1017/S0022112005006312
http://swanmodel.sourceforge.net
http://swanmodel.sourceforge.net
http://www.maths.lth.se/matstat/wafo/documentation/wafotutor25.pdf
http://www.maths.lth.se/matstat/wafo/documentation/wafotutor25.pdf

