1,685 research outputs found

    A methodological integrated approach to analyse climate change effects in agri-food sector: The TIMES water-energy-food module

    Get PDF
    The European Union’s 2030 climate and energy policy and the 2030 Agenda for Sustainable Development underline the commitment to mitigate climate change and reduce its impacts by supporting sustainable use of resources. This commitment has become stricter in light of the ambitious climate neutrality target set by the European Green Deal for 2050. Water, Energy and Food are the key variables of the “Nexus Thinking” which face the sustainability challenge with a multi-sectoral approach. The aim of the paper is to show the methodological path toward the implementation of an integrated modeling platform based on the Nexus approach and consolidated energy system analysis methods to represent the agri-food system in a circular economy perspective (from the use of water, energy, biomass, and land to food production). The final aim is to support decision-making connected to climate change mitigation. The IEA-The Integrated MARKAL-EFOM System (TIMES) model generator was used to build up the Basilicata Water, Energy and Food model (TIMES-WEF model), which allows users a comprehensive evaluation of the impacts of climate change on the Basilicata agri-food system in terms of land use, yields and water availability and a critical comparison of these indicators in different scenarios. The paper focuses on the construction of the model’s Reference Energy and Material System of the TIMES model, which integrates water and agricultural commodities into the energy framework, and on the results obtained through the calibration of the model β version to statistical data on agricultural activities.publishersversionpublishe

    Plant-Derived Biostimulants Differentially Modulate Primary and Secondary Metabolites and Improve the Yield Potential of Red and Green Lettuce Cultivars

    Get PDF
    The use of biostimulants in modern agriculture has rapidly expanded in recent years, owing to their beneficial effects on crop yield and product quality, which have come under the scope of intensive research. Accordingly, in the present study we appraised the efficacy of two plantderived biostimulants, the legume-derived protein hydrolysates Trainer®® (PH), and the tropical plant extract Auxym®® (TPE) on two lettuce cultivars (green and red salanova®®) in terms of morpho-physiological and biochemical traits (primary and secondary metabolites). The two cultivars differed in their acquisition capacity for nitrate and other beneficial ions, their photosynthetic and transpiration rates, and their ability to synthetize and accumulate organic acids and protective metabolites. The biostimulant effect was significant for almost all the parameters examined but it was subjected to significant cultivar × biostimulant interactions, denoting a cultivardependent response to biostimulant type. Notwithstanding this interaction, biostimulant application could potentially improve the yield and quality of lettuce by stimulating plant physiological processes, as indicated by the SPAD index (leaf chlorophyll index), ACO2 (assimilation rate), E (transpiration), and WUEi (intrinsic water use efficiency), and by increasing concurrently the plant mineral content (total N, K, Ca, Mg) and the biosynthesis of organic acids (malate, citrate), phenols (caffeic acid, coumaroyl quinic acid isomer 1, dicaffeoylquinic acid isomer 1), and flavonoids (quercetin-3-O-glucuronide, quercetin-3-O-glucoside). Biostimulant action may facilitate the bio-enhancement of certain lettuce cultivars that are otherwise limited by their genetic potential, for the accumulation of specific compounds beneficial to human health

    SARS-CoV-2 and DPP4 inhibition: Is it time to pray for Janus Bifrons?

    Get PDF
    Diabetes could be a risk factor for severity and mortality in patients with coronavirus disease 2019 COVID-19. It has been hypothesized that DPP4 inhibition, a therapy currently available for type 2 diabetes, might represent a target for decreasing the risk of the acute respiratory complications of the COVID-19 infection but (1) lack of demonstration of SARS-CoV2 binding to DPP4 (2) possible protective role of sDPP4 in Middle East respiratory Syndrome (MERS-CoV) (3) demonstrated inhibition and downregulation of DPP4 by HIV1 and MERS-CoV and (4) not exclusive role of the receptor binding in tropism of the Coronavirus family, support that DPP4 inhibition at present doesn't represent a plausible approach to mitigate COVID-19

    Iodine Biofortification Counters Micronutrient Deficiency and Improve Functional Quality of Open Field Grown Curly Endive

    Get PDF
    Human iodine (I) shortage disorders are documented as an imperative world-wide health issue for a great number of people. The World Health Organization (WHO) recommends I consumption through ingestion of seafood and biofortified food such as vegetables. The current work was carried out to appraise the effects of different I concentrations (0, 50, 250, and 500 mg L-1), supplied via foliar spray on curly endive grown in the fall or spring–summer season. Head fresh weight, stem diameter, head height, and soluble solid content (SSC) were negatively correlated to I dosage. The highest head dry matter content was recorded in plants supplied with 250 mg I L-1, both in the fall and spring–summer season, and in those cultivated in the fall season and supplied with 50 mg I L-1. The highest ascorbic acid concentration was recorded in plants cultivated in the spring–summer season and biofortified with the highest I dosage. The highest fructose and glucose concentrations in leaf tissues were obtained in plants cultivated in the spring–summer season and treated with 250 mg I L-1. Plants sprayed with 250 mg I L-1 and cultivated in the fall season had the highest I leaf concentration. Overall, our results evidently suggested that an I application of 250 mg L-1 in both growing seasons effectively enhanced plant quality and functional parameters in curly endive plants

    Identification of suitable zones for manual drilling using borehole data, thematic maps and remote sensing

    Get PDF
    Manual drilling is a possible option to increase access to safe water with low cost techniques, but it can be applied only where hydrogeological conditions are suitable. To improve the method to produce maps of suitable zones for manual drilling, a research project has been carried out in Senegal and Guinea. The main objective is to elaborate a new method of interpretation of hydrogeological data and integrate indirect environmental information obtained from public data, available all over the world. The final results are more reliable and detailed maps to support manual drilling implementation, as well specific tools and method to process water point data. This paper presents the results obtained in Senegal and suggests some recommendations for future application

    Randomised phase II trial of CAPTEM or FOLFIRI as SEcond-line therapy in NEuroendocrine CArcinomas and exploratory analysis of predictive role of PET/CT imaging and biological markers (SENECA trial): A study protocol

    Get PDF
    Introduction Patients with metastatic or locally advanced, non-resectable, grade 3 poorly differentiated gastroenteropancreatic (GEP) and lung neuroendocrine carcinomas (NECs) are usually treated with in first-line platinum compounds. There is no standard second-line treatment on progression. Accurate biomarkers are needed to facilitate diagnosis and prognostic assessment of patients with NEC. Methods and analysis The SEcond-line therapy in NEuroendocrine CArcinomas (SENECA) study is a randomised, non-comparative, multicentre phase II trial designed to evaluate the efficacy and safety of folinic acid, 5-fluorouracil and irinotecan (FOLFIRI) or capecitabine plus temozolomide (CAPTEM) regimens after failure of first-line chemotherapy in patients with lung NEC and GEP-NEC. Secondary aims are to correlate the serum miRNA profile and primary mutational status of MEN1, DAXX, ATRX and RB-1 with prognosis and outcome and to investigate the prognostic and predictive role of the Ki-67 score and 18-fluorodeoxyglucose positron emission tomography/computed tomography (18 F-FDG PET/CT) or 68 Ga-PET/CT. The main eligibility criteria are age ≥18 years; metastatic or locally advanced, non-resectable, grade 3 lung or GEP-NECs; progression to first-line platinum-based chemotherapy. A Bryant and Day design taking into account treatment activity and toxicity was used to estimate the sample size. All analyses will be performed separately for each treatment group in the intention-to-treat population. A total of 112 patients (56/arm) will be randomly assigned (1:1) to receive FOLFIRI every 14 days or CAPTEM every 28 days until disease progression or unacceptable toxicity or for a maximum of 6 months. Patients undergo testing for specific biomarkers in primary tumour tissue and for miRNA in blood samples. MiRNA profiling will be performed in the first 20 patients who agree to participate in the biological substudy. Ethics and dissemination The SENECA trial, supported by Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST), was authorised by the locals Ethics Committee and the Italian Medicines Agency (AIFA). Results will be widely disseminated via peer-reviewed manuscripts, conference presentations and reports to relevant authorities. The study is currently open in Italy. Trail registration number NCT03387592; Pre-results. EudraCT-2016-000767-17. Protocol version Clinical Study Protocol Version 1, 7 November 2016

    Lights and shadows on the use of metformin in pregnancy: from the preconception phase to breastfeeding and beyond

    Get PDF
    During pregnancy, the complex hormonal changes lead to a progressive decrease of insulin sensitivity that can drive the onset of gestational diabetes (GDM) or worsen an already-known condition of insulin resistance like type 2 diabetes, polycystic ovarian syndrome (PCOS), and obesity, with complications for the mother and the fetus. Metformin during pregnancy is proving to be safe in a growing number of studies, although it freely crosses the placenta, leading to a fetal level similar to maternal concentration. The aim of this literature review is to analyze the main available evidence on the use of metformin during, throughout, and beyond pregnancy, including fertilization, lactation, and medium-term effects on offspring. Analyzed studies support the safety and efficacy of metformin during pregnancy. In pregnant women with GDM and type 2 diabetes, metformin improves obstetric and perinatal outcomes. There is no evidence that it prevents GDM in women with pregestational insulin resistance or improves lipid profile and risk of GDM in pregnant women with PCOS or obesity. Metformin could have a role in reducing the risk of preeclampsia in pregnant women with severe obesity, the risk of late miscarriages and preterm delivery in women with PCOS, and the risk of ovarian hyperstimulation syndrome, increasing the clinical pregnancy rate in women with PCOS undergoing in vitro fertilization (IVF/FIVET). Offspring of mothers with GDM exposed to metformin have no significant differences in body composition compared with insulin treatment, while it appears to be protective for metabolic and cardiovascular risk

    Performance and results of the RICH detector for kaon physics in Hall A at Jefferson Lab

    Get PDF
    Abstract A proximity focusing RICH detector has been constructed for the hadron High Resolution Spectrometer (HRS) of Jefferson Lab Experimental Hall-A. This detector is intended to provide excellent hadron identification up to a momentum of 2.5 GeV / c . The RICH uses a 15 mm thick liquid perfluorohexane radiator in proximity focusing geometry to produce Cherenkov photons traversing a 100 mm thick proximity gap filled with pure methane and converted into electrons by a thin film of CsI deposited on the cathode plane of a MWPC. The detector has been successfully employed in the fixed target, high luminosity and high resolution hypernuclear spectroscopy experiment. With its use as a kaon identifier in the 2 GeV / c region, the very large contribution from pions and protons to the hypernuclear spectrum was reduced to a negligible level. The basic parameters and the resulting performance obtained during the experiment are reported in this paper

    Detector Array Readout with Traveling Wave Amplifiers

    Get PDF
    Reducing noise to the quantum limit over a large bandwidth is a fundamental requirement for future applications operating at millikelvin temperatures, such as the neutrino mass measurement, the next-generation X-ray observatory, the CMB measurement, the dark matter and axion detection, and the rapid high-fidelity readout of superconducting qubits. The read out sensitivity of arrays of microcalorimeter detectors, resonant axion-detectors, and qubits, is currently limited by the noise temperature and bandwidth of the cryogenic amplifers. The Detector Array Readout with Traveling Wave Amplifers project has the goal of developing high-performing innovative traveling wave parametric amplifers with a high gain, a high saturation power, and a quantum-limited or nearly quantum-limited noise. The practical development follows two diferent promising approaches, one based on the Josephson junctions and the other one based on the kinetic inductance of a high-resistivity superconductor. In this contribution, we present the aims of the project, the adopted design solutions and preliminary results from simulations and measurements
    corecore