42 research outputs found
Analysis of the miRNA expression from the adipose tissue surrounding the adrenal neoplasia
BackgroundPrimary aldosteronism (PA) is characterized by several metabolic changes such as insulin resistance, metabolic syndrome, and adipose tissue (AT) inflammation. Mi(cro)RNAs (miRNAs) are a class of non-coding small RNA molecules known to be critical regulators in several cellular processes associated with AT dysfunction. The aim of this study was to evaluate the expression of some miRNAs in visceral and subcutaneous AT in patients undergoing adrenalectomy for aldosterone-secreting adrenal adenoma (APA) compared to the samples of AT obtained in patients undergoing adrenalectomy for non-functioning adrenal mass (NFA).MethodsThe quantitative expression of selected miRNA using real-time PCR was analyzed in surrounding adrenal neoplasia, peri-renal, and subcutaneous AT samples of 16 patients with adrenalectomy (11 patients with APA and 5 patients with NFA).ResultsReal-time PCR cycles for miRNA-132, miRNA-143, and miRNA-221 in fat surrounding adrenal neoplasia and in peri-adrenal AT were significantly higher in APA than in patients with NFA. Unlike patients with NFA, miRNA-132, miRNA-143, miRNA-221, and miRNA-26b were less expressed in surrounding adrenal neoplasia AT compared to subcutaneous AT in patients with APA.ConclusionThis study, conducted on tissue expression of miRNAs, highlights the possible pathophysiological role of some miRNAs in determining the metabolic alterations in patients with PA
After DART: Using the First Full-scale Test of a Kinetic Impactor to Inform a Future Planetary Defense Mission
NASA’s Double Asteroid Redirection Test (DART) is the first full-scale test of an asteroid deflection technology. Results from the hypervelocity kinetic impact and Earth-based observations, coupled with LICIACube and the later Hera mission, will result in measurement of the momentum transfer efficiency accurate to ∼10% and characterization of the Didymos binary system. But DART is a single experiment; how could these results be used in a future planetary defense necessity involving a different asteroid? We examine what aspects of Dimorphos’s response to kinetic impact will be constrained by DART results; how these constraints will help refine knowledge of the physical properties of asteroidal materials and predictive power of impact simulations; what information about a potential Earth impactor could be acquired before a deflection effort; and how design of a deflection mission should be informed by this understanding. We generalize the momentum enhancement factor β, showing that a particular direction-specific β will be directly determined by the DART results, and that a related direction-specific β is a figure of merit for a kinetic impact mission. The DART β determination constrains the ejecta momentum vector, which, with hydrodynamic simulations, constrains the physical properties of Dimorphos’s near-surface. In a hypothetical planetary defense exigency, extrapolating these constraints to a newly discovered asteroid will require Earth-based observations and benefit from in situ reconnaissance. We show representative predictions for momentum transfer based on different levels of reconnaissance and discuss strategic targeting to optimize the deflection and reduce the risk of a counterproductive deflection in the wrong direction
After DART: Using the first full-scale test of a kinetic impactor to inform a future planetary defense mission
NASA's Double Asteroid Redirection Test (DART) is the first full-scale test
of an asteroid deflection technology. Results from the hypervelocity kinetic
impact and Earth-based observations, coupled with LICIACube and the later Hera
mission, will result in measurement of the momentum transfer efficiency
accurate to ~10% and characterization of the Didymos binary system. But DART is
a single experiment; how could these results be used in a future planetary
defense necessity involving a different asteroid? We examine what aspects of
Dimorphos's response to kinetic impact will be constrained by DART results; how
these constraints will help refine knowledge of the physical properties of
asteroidal materials and predictive power of impact simulations; what
information about a potential Earth impactor could be acquired before a
deflection effort; and how design of a deflection mission should be informed by
this understanding. We generalize the momentum enhancement factor ,
showing that a particular direction-specific will be directly
determined by the DART results, and that a related direction-specific
is a figure of merit for a kinetic impact mission. The DART
determination constrains the ejecta momentum vector, which, with hydrodynamic
simulations, constrains the physical properties of Dimorphos's near-surface. In
a hypothetical planetary defense exigency, extrapolating these constraints to a
newly discovered asteroid will require Earth-based observations and benefit
from in-situ reconnaissance. We show representative predictions for momentum
transfer based on different levels of reconnaissance and discuss strategic
targeting to optimize the deflection and reduce the risk of a counterproductive
deflection in the wrong direction
After DART: Using the First Full-scale Test of a Kinetic Impactor to Inform a Future Planetary Defense Mission
After DART: Using the First Full-scale Test of a Kinetic Impactor to Inform a Future
Planetary Defense Mission
Thomas S. Statler 1 , Sabina D. Raducan 2 , Olivier S. Barnouin 3 , Mallory E. DeCoster 3 , Steven R. Chesley 4 ,
Brent Barbee 5
, Harrison F. Agrusa 6 , Saverio Cambioni 7 , Andrew F. Cheng 3 , Elisabetta Dotto 8
, Siegfried Eggl9 ,
Eugene G. Fahnestock 4
, Fabio Ferrari 2 , Dawn Graninger 3 , Alain Herique 10
, Isabel Herreros 11
, Masatoshi Hirabayashi 12,13 ,
Stavro Ivanovski 14
, Martin Jutzi 2
, Özgür Karatekin 15
, Alice Lucchetti 16
, Robert Luther 17 , Rahil Makadia 9 ,
Francesco Marzari 18 , Patrick Michel 19 , Naomi Murdoch 20
, Ryota Nakano13 , Jens Ormö 11 , Maurizio Pajola 16 ,
Andrew S. Rivkin3 , Alessandro Rossi 21 , Paul Sánchez 22 , Stephen R. Schwartz 23
, Stefania Soldini 24
, Damya Souami 19
,
Angela Stickle 3 , Paolo Tortora 25
, Josep M. Trigo-Rodríguez 26,27 , Flaviane Venditti 28 , Jean-Baptiste Vincent 29
, and
Kai Wünnemann 17,30
1 Planetary Defense Coordination Office and Planetary Science Division, NASA Headquarters, 300 Hidden Figures Way SW, Washington, DC 20546, USA
[email protected]
2 Space Research and Planetary Sciences, Physics Institute, University of Bern, Bern, 3012, Switzerland
3 Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723, USA
4 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
5 NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
6 Department of Astronomy, University of Maryland, College Park, MD 20742, USA
7 Department of Earth, Atmospheric & Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
8 INAF-Osservatorio Astronomico di Roma, Rome, I-00078, Italy
9 Department of Aerospace Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
10 Univ. Grenoble Alpes, CNRS, CNES, IPAG, F-38000 Grenoble, France
11 Centro de Astrobiología CSIC-INTA, Instituto Nacional de Técnica Aeroespacial, E-28850 Torrejón de Ardoz, Spain
12 Department of Geosciences, Auburn University, Auburn, AL 36849, USA
13 Department of Aerospace Engineering, Auburn University, Auburn, AL 36849, USA
14 INAF- Osservatorio Astronomico di Trieste, Trieste I-34143, Italy
15 Royal Observatory of Belgium, Belgium
16 INAF-Astronomical Observatory of Padova, Padova I-35122, Italy
17 Museum für Naturkunde—Leibniz Institute for Evolution and Biodiversity Science, Germany
18 University of Padova, Padova, Italy
19 Université Côte d’Azur, Observatoire de la Côte d’Azur, CNRS, Laboratoire Lagrange, Nice F-06304, France
20 Institut Supérieur de l’Aéronautique et de l’Espace (ISAE-SUPAERO), Université de Toulouse, Toulouse, France
21 IFAC-CNR, Sesto Fiorentino I-50019, Italy
22 Colorado Center for Astrodynamics Research, University of Colorado Boulder, Boulder, CO 80303, USA
23 Planetary Science Institute, Tucson, AZ 85719, USA
24 Department of Mechanical, Materials and Aerospace Engineering, University of Liverpool, Liverpool, UK
25 Alma Mater Studiorum—Università di Bologna, Department of Industrial Engineering, Interdepartmental Center for Industrial Research in Aerospace, Via
Fontanelle 40—Forlì (FC)—I-47121, Italy
26 Institute of Space Sciences (ICE, CSIC), Cerdanyola del Vallès, E-08193 Barcelona, Catalonia, Spain
27 Institut d’Estudis Espacials de Catalunya (IEEC), Ed. Nexus, E-08034 Barcelona, Catalonia, Spain
28 Arecibo Observatory, University of Central Florida, HC-3 Box 53995, Arecibo, PR 00612, USA
29 German Aerospace Center, DLR Berlin, Germany
30 Freie Universität Berlin, Germany
Received 2022 August 9; revised 2022 September 18; accepted 2022 September 22; published 2022 October 28
Abstract
NASA’s Double Asteroid Redirection Test (DART) is the first full-scale test of an asteroid deflection technology.
Results from the hypervelocity kinetic impact and Earth-based observations, coupled with LICIACube and the later
Hera mission, will result in measurement of the momentum transfer efficiency accurate to ∼10% and
characterization of the Didymos binary system. But DART is a single experiment; how could these results be used
in a future planetary defense necessity involving a different asteroid? We examine what aspects of Dimorphos’s
response to kinetic impact will be constrained by DART results; how these constraints will help refine knowledge
of the physical properties of asteroidal materials and predictive power of impact simulations; what information
about a potential Earth impactor could be acquired before a deflection effort; and how design of a deflection
mission should be informed by this understanding. We generalize the momentum enhancement factor β, showing
that a particular direction-specific β will be directly determined by the DART results, and that a related direction-
specific β is a figure of merit for a kinetic impact mission. The DART β determination constrains the ejecta
momentum vector, which, with hydrodynamic simulations, constrains the physical properties of Dimorphos’s near-
surface. In a hypothetical planetary defense exigency, extrapolating these constraints to a newly discovered
asteroid will require Earth-based observations and benefit from in situ reconnaissance. We show representative predictions for momentum transfer based on different levels of reconnaissance and discuss strategic targeting to
optimize the deflection and reduce the risk of a counterproductive deflection in the wrong direction
Diversity and ethics in trauma and acute care surgery teams: results from an international survey
Background Investigating the context of trauma and acute care surgery, the article aims at understanding the factors that can enhance some ethical aspects, namely the importance of patient consent, the perceptiveness of the ethical role of the trauma leader, and the perceived importance of ethics as an educational subject. Methods The article employs an international questionnaire promoted by the World Society of Emergency Surgery. Results Through the analysis of 402 fully filled questionnaires by surgeons from 72 different countries, the three main ethical topics are investigated through the lens of gender, membership of an academic or non-academic institution, an official trauma team, and a diverse group. In general terms, results highlight greater attention paid by surgeons belonging to academic institutions, official trauma teams, and diverse groups. Conclusions Our results underline that some organizational factors (e.g., the fact that the team belongs to a university context or is more diverse) might lead to the development of a higher sensibility on ethical matters. Embracing cultural diversity forces trauma teams to deal with different mindsets. Organizations should, therefore, consider those elements in defining their organizational procedures. Level of evidence Trauma and acute care teams work under tremendous pressure and complex circumstances, with their members needing to make ethical decisions quickly. The international survey allowed to shed light on how team assembly decisions might represent an opportunity to coordinate team member actions and increase performance
Global disparities in surgeons’ workloads, academic engagement and rest periods: the on-calL shIft fOr geNEral SurgeonS (LIONESS) study
: The workload of general surgeons is multifaceted, encompassing not only surgical procedures but also a myriad of other responsibilities. From April to May 2023, we conducted a CHERRIES-compliant internet-based survey analyzing clinical practice, academic engagement, and post-on-call rest. The questionnaire featured six sections with 35 questions. Statistical analysis used Chi-square tests, ANOVA, and logistic regression (SPSS® v. 28). The survey received a total of 1.046 responses (65.4%). Over 78.0% of responders came from Europe, 65.1% came from a general surgery unit; 92.8% of European and 87.5% of North American respondents were involved in research, compared to 71.7% in Africa. Europe led in publishing research studies (6.6 ± 8.6 yearly). Teaching involvement was high in North America (100%) and Africa (91.7%). Surgeons reported an average of 6.7 ± 4.9 on-call shifts per month, with European and North American surgeons experiencing 6.5 ± 4.9 and 7.8 ± 4.1 on-calls monthly, respectively. African surgeons had the highest on-call frequency (8.7 ± 6.1). Post-on-call, only 35.1% of respondents received a day off. Europeans were most likely (40%) to have a day off, while African surgeons were least likely (6.7%). On the adjusted multivariable analysis HDI (Human Development Index) (aOR 1.993) hospital capacity > 400 beds (aOR 2.423), working in a specialty surgery unit (aOR 2.087), and making the on-call in-house (aOR 5.446), significantly predicted the likelihood of having a day off after an on-call shift. Our study revealed critical insights into the disparities in workload, access to research, and professional opportunities for surgeons across different continents, underscored by the HDI
Achievement of the planetary defense investigations of the Double Asteroid Redirection Test (DART) mission
NASA's Double Asteroid Redirection Test (DART) mission was the first to demonstrate asteroid deflection, and the mission's Level 1 requirements guided its planetary defense investigations. Here, we summarize DART's achievement of those requirements. On 2022 September 26, the DART spacecraft impacted Dimorphos, the secondary member of the Didymos near-Earth asteroid binary system, demonstrating an autonomously navigated kinetic impact into an asteroid with limited prior knowledge for planetary defense. Months of subsequent Earth-based observations showed that the binary orbital period was changed by –33.24 minutes, with two independent analysis methods each reporting a 1σ uncertainty of 1.4 s. Dynamical models determined that the momentum enhancement factor, β, resulting from DART's kinetic impact test is between 2.4 and 4.9, depending on the mass of Dimorphos, which remains the largest source of uncertainty. Over five dozen telescopes across the globe and in space, along with the Light Italian CubeSat for Imaging of Asteroids, have contributed to DART's investigations. These combined investigations have addressed topics related to the ejecta, dynamics, impact event, and properties of both asteroids in the binary system. A year following DART's successful impact into Dimorphos, the mission has achieved its planetary defense requirements, although work to further understand DART's kinetic impact test and the Didymos system will continue. In particular, ESA's Hera mission is planned to perform extensive measurements in 2027 during its rendezvous with the Didymos–Dimorphos system, building on DART to advance our knowledge and continue the ongoing international collaboration for planetary defense
Topographically controlled, breaking-wave-induced macrovortices. Part 1. Widely separated breakwaters
In this and the companion paper (Part 2) we examine experimentally, computationally,
and analytically the behaviour of breaking-wave-induced macrovortices during startup
conditions. Widely separated breakwaters and rip current topographies are chosen
as opposite ends of the parameter space. Part 1 examines generation mechanisms
using phase-resolving and phase-averaged approximations, and suggests several simple
predictive relations for general behaviour. Vortex trajectories and shedding periods
for wave breaking on widely spaced breakwaters are also considered in detail. Results
show broad agreement with theoretical trajectories. Predictions of vortex shedding
periods on breakwater heads show excellent agreement with computations. Part 2
examines startup macrovortices on rip current topographies using computations and
laboratory experiments, and changes in behaviour as the system transitions from wide
to narrow gap width