150 research outputs found

    High quality factor 1-D Er 3+ -activated dielectric microcavity fabricated by RF-sputtering

    Get PDF
    Rare earth-activated 1-D photonic crystals were fabricated by RF-sputtering technique. The cavity is constituted by an Er3+-doped SiO2 active layer inserted between two Bragg reflectors consisting of ten pairs of SiO2/TiO2 layers. Scanning electron microscopy is employed to put in evidence the quality of the sample, the homogeneities of the layers thickness and the good adhesion among them. Near infrared transmittance and variable angle reflectance spectra confirm the presence of a stop band from 1500 nm to 2000 nm with a cavity resonance centered at 1749 nm at 0° and a quality factor of 890. The influence of the cavity on the 4I13/2 -> 4I15/2 emission band of Er3+ ion is also demonstrated

    SnO2 based glasses : A viable photonic system

    Get PDF
    The present work focuses on sol-gel derived SnO2-based thin glass-ceramic films doped with Er3+ ions, fabricated by dipcoating technique. Our goal is to find a viable fabrication protocol to obtain them. Thin films with a variety of composition were synthesized and their structural, optical and spectroscopic properties were investigated. The FTIR spectra and X-ray diffraction patterns were used to characterize the structure of the thin films. The transparency of the thin film was tested by UV-Vis transmittance measurements. The energy transfer dynamic was investigated by time-resolved spectroscopy and photoluminescence measurements

    About the role of phase matching between a coated microsphere and a tapered fiber: experimental study

    No full text
    nombre de pages 10International audienceCoatings of spherical optical microresonators are widely employed for different applications. Here the effect of the thickness of a homogeneous coating layer on the coupling of light from a tapered fiber to a coated microsphere has been studied. Spherical silica microresonators were coated using a 70SiO2 - 30HfO2 glass doped with 0.3 mol% Er3+ ions. The coupling of a 1480 nm pump laser inside the sphere has been assessed using a tapered optical fiber and observing the 1530-1580 nm Er3+ emission outcoupled to the same tapered fiber. The measurements were done for different coating thicknesses and compared with theoretical calculations to understand the relationship of the detected signal with the whispering gallery mode electric field profiles

    Protocole de fabrication par voie colloïdalede cristaux photoniques 3D

    No full text
    session 7 " Cristaux photoniques "National audienceNous présentons ici les détails d'un processus sol-gel utilisé pour synthétiser des sphères de silice, en portant une attention particulière aux conditions expérimentales permettant de contrôler leur taille. Nous avons élaboré un protocole dans le but d'obtenir des microsphères avec une faible dispersion, et démontré que de larges domaines cristallins ordonnés d'opale synthétique montrant une " stop band " peuvent être produits en quelques jours par déposition verticale et sédimentation assistée par évaporation. La microscopie électronique à balayage a été employée pour caractériser les échantillons. Des mesures de réflexion et transmission ont été effectuées pour mettre en évidence la haute qualité des opales réalisées

    Glass-based 1-D dielectric microcavities

    Get PDF
    We have developed a reliable RF sputtering techniques allowing to fabricate glass-based one dimensional microcavities, with high quality factor. This property is strongly related to the modification of the density of states due to the confinement of the gain medium in a photonic band gap structure. In this short review we present some of the more recent results obtained by our team exploiting these 1D microcavities. In particular we present: (1) Er3+ luminescence enhancement of the 4I13/2 → 4I15/2 transition; (2) broad band filters based on disordered 1-D photonic structures; (3) threshold defect-mode lasing action in a hybrid structure

    Ag-Sensitized Yb3+ Emission in Glass-Ceramics

    Get PDF
    Rare earth doped materials play a very important role in the development of many photonic devices, such as optical amplifiers and lasers, frequency converters, solar concentrators, up to quantum information storage devices. Among the rare earth ions, ytterbium is certainly one of the most frequently investigated and employed. The absorption and emission properties of Yb3+ ions are related to transitions between the two energy levels 2F7/2 (ground state) and 2F5/2 (excited state), involving photon energies around 1.26 eV (980 nm). Therefore, Yb3+ cannot directly absorb UV or visible light, and it is often used in combination with other rare earth ions like Pr3+, Tm3+, and Tb3+, which act as energy transfer centres. Nevertheless, even in those co-doped materials, the absorption bandwidth can be limited, and the cross section is small. In this paper, we report a broadband and efficient energy transfer process between Ag dimers/multimers and Yb3+ ions, which results in a strong PL emission around 980 nm under UV light excitation. Silica-zirconia (70% SiO2-30% ZrO2) glass-ceramic films doped by 4 mol.% Yb3+ ions and an additional 5 mol.% of Na2O were prepared by sol-gel synthesis followed by a thermal annealing at 1000 °C. Ag introduction was then obtained by ion-exchange in a molten salt bath and the samples were subsequently annealed in air at 430 °C to induce the migration and aggregation of the metal. The structural, compositional, and optical properties were investigated, providing evidence for efficient broadband sensitization of the rare earth ions by energy transfer from Ag dimers/multimers, which could have important applications in different fields, such as PV solar cells and light-emitting near-infrared (NIR) devices

    Red photonic glasses and confined structures

    Get PDF
    We present some recent results obtained by our team in rare earth doped photonic glasses and confined structures, in order to give some highlights regarding the state of art in glass photonics. To evidence the unique properties of transparent glass ceramics we compare spectroscopic and structural properties between the parent glass and the glass ceramics. Starting from planar waveguides we move to spherical microresonators, a very interesting class of photonic confined structures. We also conclude the short review with some remarks about the perspective for glass photonics

    Low Temperature Deposition of SiNx Thin Films by the LPCVD Method

    Get PDF
    Thin silicon rich nitride (SiNx) films were deposited using the LPCVD (Low Pressure Chemical Vapor Deposition) method. Silane diluted in argon and ammonia were used as the reactant gasses, and the low temperature deposition at 570 °C was used. The films were deposited on silicon (111) substrates. Films with the different values of the nitrogen content were deposited by varying the ratio of the flows of ammonia and silane in the horizontal tube reactor. The films were characterized in terms on the surface quality (by scanning electron microscopy), in terms of the nitrogen content x by time of flight elastic recoil detection analysis and by Raman and FTIR spectroscopy. The thickness and dielectric constant were measured by ellipsometry. The films were found to have a very smooth, homogeneous surface with nitrogen content that vary from x = 0 to x = 1 in dependence on the deposition parameters. The intensity of the Si–N stretching peak has shown strong correlation with the film thickness measured by ellipsometry. The films showed a smooth surface layer and the value of dielectric constant easily controllable by the ratio of the flow of the gases in the reactor. (doi: 10.5562/cca1970

    Coherent emission from fully Er 3+ doped monolithic 1-D dielectric microcavity fabricated by rf-sputtering

    Get PDF
    All Er3+ doped dielectric 1-D microcavity was fabricated by rf sputtering technique. The microcavity was constituted by half wave Er3+ doped SiO2 active layer inserted between two Bragg reflectors consists of ten pairs of SiO2/TiO2 layers also doped with Er3+ ions. The scanning electron microscopy was used to check the morphology of the structure. Transmission measurements confirm the third and first order cavity resonance at 530 nm and 1560 nm, respectively. The photoluminescence measurements were obtained by optically exciting at the third order cavity resonance using 514.5 nm Ar+ laser with an excitation angle of 30°. The Full Width at Half Maximum of the emission peak at 1560 nm decrease with the pump power until the spectral resolution of the detection system of ∼1.0 nm. Moreover, the emission intensity presents a non-linear behavior with the pump power and a threshold at about 24 mW was observed with saturation of the signal at above 185 mW of pump power
    corecore