2,737 research outputs found
Insertion device for pressure testing
Test device which introduces either pressure or vacuum into a test pipe or tube, is insertable into the tested item where it secures itself into position and requires no external support. The unit has an operating range from zero to 25,000 psig and to any vacuum level that available equipment can reach
A Markov Chain Monte Carlo technique to sample transport and source parameters of Galactic cosmic rays: II. Results for the diffusion model combining B/C and radioactive nuclei
On-going measurements of the cosmic radiation (nuclear, electronic, and
gamma-ray) are shedding new light on cosmic-ray physics. A comprehensive
picture of these data relies on an accurate determination of the transport and
source parameters of propagation models. A Markov Chain Monte Carlo is used to
obtain these parameters in a diffusion model. From the measurement of the B/C
ratio and radioactive cosmic-ray clocks, we calculate their probability density
functions, with a special emphasis on the halo size L of the Galaxy and the
local underdense bubble of size r_h. The analysis relies on the USINE code for
propagation and on a Markov Chain Monte Carlo technique (Putze et al. 2009,
paper I of this series) for the parameter determination. As found in previous
studies, the B/C best-fit model favours diffusion/convection/reacceleration
(Model III) over diffusion/reacceleration (Model II). A combined fit on B/C and
the isotopic ratios (10Be/9Be, 26Al/27Al, 36Cl/Cl) leads to L ~ 8 kpc and r_h ~
120 pc for the best-fit Model III. This value for r_h is consistent with direct
measurements of the local interstallar medium. For Model II, L ~ 4 kpc and r_h
is consistent with zero. We showed the potential and usefulness of the Markov
Chain Monte Carlo technique in the analysis of cosmic-ray measurements in
diffusion models. The size of the diffusive halo depends crucially on the value
of the diffusion slope delta, and also on the presence/absence of the local
underdensity damping effect on radioactive nuclei. More precise data from
on-going experiments are expected to clarify this issue.Comment: 20 pages, 14 figures, minor language corrections to match the A&A
accepted versio
Nuclear Cosmic Rays propagation in the Atmosphere
The transport of the nuclear cosmic ray flux in the atmosphere is studied and
the atmospheric corrections to be applied to the measurements are calculated.
The contribution of the calculated corrections to the accuracy of the
experimental results are discussed and evaluated over the kinetic energy range
10-10 GeV/n. The Boron (B) and Carbon (C) elements system is used as a
test case. It is shown that the required corrections become largely dominant at
the highest energies investigated. The results are discussed.Comment: Proc. of 30th International Cosmic Ray Conference, Merida, Mexico; 4
page
Neutron monitors and muon detectors for solar modulation studies: Interstellar flux, yield function, and assessment of critical parameters in count rate calculations
Particles count rates at given Earth location and altitude result from the
convolution of (i) the interstellar (IS) cosmic-ray fluxes outside the solar
cavity, (ii) the time-dependent modulation of IS into Top-of-Atmosphere (TOA)
fluxes, (iii) the rigidity cut-off (or geomagnetic transmission function) and
grammage at the counter location, (iv) the atmosphere response to incoming TOA
cosmic rays (shower development), and (v) the counter response to the various
particles/energies in the shower. Count rates from neutron monitors or muon
counters are therefore a proxy to solar activity. In this paper, we review all
ingredients, discuss how their uncertainties impact count rate calculations,
and how they translate into variation/uncertainties on the level of solar
modulation (in the simple Force-Field approximation). The main
uncertainty for neutron monitors is related to the yield function. However,
many other effects have a significant impact, at the 5-10\% level on
values. We find no clear ranking of the dominant effects, as some depend on the
station position and/or the weather and/or the season. An abacus to translate
any variation of count rates (for neutron and detectors) to a variation
of the solar modulation is provided.Comment: 28 pages, 16 figures, 9 tables, match accepted version in AdSR (minor
corrections, Dorman (1974,2004,2009) reference textbooks added
Neutron monitors and muon detectors for solar modulation studies: 2. time series
The level of solar modulation at different times (related to the solar
activity) is a central question of solar and galactic cosmic-ray physics. In
the first paper of this series, we have established a correspondence between
the uncertainties on ground-based detectors count rates and the parameter
(modulation level in the force-field approximation) reconstructed from
these count rates. In this second paper, we detail a procedure to obtain a
reference time series from neutron monitor data. We show that we can
have an unbiased and accurate reconstruction (). We also discuss the potential of Bonner spheres spectrometers and muon
detectors to provide time series. Two by-products of this calculation
are updated values for the cosmic-ray database and a web interface to
retrieve and plot from the 50's to today
(\url{http://lpsc.in2p3.fr/crdb}).Comment: 15 pages, 5 figures, 2 tables. AdSR, in press. Web interface to get
modulation parameter phi(t): new tab in http://lpsc.in2p3.fr/crd
Galactic positrons and electrons from astrophysical sources and dark matter
A very interesting puzzle about the origin of electron and positron cosmic
rays is deduced from the latests experimental results. We model the propagation
of such cosmic rays in terms of a successfully tested two--zone propagation
model. Several theoretical uncertainties -- like ones related to propagation --
are considered to study different types of electron and positron sources: dark
matter annihilation, secondary production, and supernova remnants.Comment: 3 pages, 1 figure. Proceedings for conference "Topics in
Astroparticle and Underground Physics" (TAUP2009). Rome, July 1-5, 200
Improved sensitivity of H.E.S.S.-II through the fifth telescope focus system
The Imaging Atmospheric Cherenkov Telescope (IACT) works by imaging the very
short flash of Cherenkov radiation generated by the cascade of relativistic
charged particles produced when a TeV gamma ray strikes the atmosphere. This
energetic air shower is initiated at an altitude of 10-30 km depending on the
energy and the arrival direction of the primary gamma ray. Whether the best
image of the shower is obtained by focusing the telescope at infinity and
measuring the Cherenkov photon angles or focusing on the central region of the
shower is a not obvious question. This is particularly true for large size IACT
for which the depth of the field is much smaller. We address this issue in
particular with the fifth telescope (CT5) of the High Energy Stereoscopic
System (H.E.S.S.); a 28 m dish large size telescope recently entered in
operation and sensitive to an energy threshold of tens of GeVs. CT5 is equipped
with a focus system, its working principle and the expected effect of focusing
depth on the telescope sensitivity at low energies (50-200 GeV) is discussed.Comment: In Proceedings of the 33rd International Cosmic Ray Conference
(ICRC2013), Rio de Janeiro (Brazil
Translation Representations and Scattering By Two Intervals
Studying unitary one-parameter groups in Hilbert space (U(t),H), we show that
a model for obstacle scattering can be built, up to unitary equivalence, with
the use of translation representations for L2-functions in the complement of
two finite and disjoint intervals.
The model encompasses a family of systems (U (t), H). For each, we obtain a
detailed spectral representation, and we compute the scattering operator, and
scattering matrix. We illustrate our results in the Lax-Phillips model where (U
(t), H) represents an acoustic wave equation in an exterior domain; and in
quantum tunneling for dynamics of quantum states
Systematic uncertainties on the cosmic-ray transport parameters: Is it possible to reconcile B/C data with delta = 1/3 or delta = 1/2?
The B/C ratio is used in cosmic-ray physics to constrain the transport
parameters. However, from the same set of data, the various published values
show a puzzling large scatter of these parameters. We investigate the impact of
using different inputs (gas density and hydrogen fraction in the Galactic disc,
source spectral shape, low-energy dependence of the diffusion coefficient, and
nuclear fragmentation cross-sections) on the best-fit values of the transport
parameters. We quantify the systematics produced when varying these inputs, and
compare them to statistical uncertainties. We discuss the consequences for the
slope of the diffusion coefficient delta. The analysis relies on the
propagation code USINE interfaced with the Minuit minimisation routines. We
find the typical systematic uncertainties to be larger than the statistical
ones. The several published values of delta (from 0.3 to 0.8) can be recovered
when varying the low-energy shape of the diffusion coefficient and the
convective wind strength. Models including a convective wind are characterised
by delta > 0.6, which cannot be reconcile with the expected theoretical values
(1/3 and 1/2). However, from a statistical point of view (chi^2 analysis),
models with both reacceleration and convection-hence large delta-are favoured.
The next favoured models in line yield delta that can be accommodated with 1/3
and 1/2, but require a strong upturn of the diffusion coefficient at low energy
(and no convection). To date, using the best statistical tools, the transport
parameter determination is still plagued by many unknowns at low energy (~
GeV/n). To disentangle between all these configurations, measurements of the
B/C ratio at TeV/n energies and/or combination with other secondary-to-primary
ratios is necessary.Comment: 12 pages, 7 figures, minor language corrections to match the A&A
accepted versio
Bounds on the heat kernel of the Schroedinger operator in a random electromagnetic field
We obtain lower and upper bounds on the heat kernel and Green functions of
the Schroedinger operator in a random Gaussian magnetic field and a fixed
scalar potential. We apply stochastic Feynman-Kac representation, diamagnetic
upper bounds and the Jensen inequality for the lower bound. We show that if the
covariance of the electromagnetic (vector) potential is increasing at large
distances then the lower bound is decreasing exponentially fast for large
distances and a large time.Comment: some technical improvements, new references, to appear in
Journ.Phys.
- …