A Markov Chain Monte Carlo technique to sample transport and source
parameters of Galactic cosmic rays: II. Results for the diffusion model
combining B/C and radioactive nuclei
On-going measurements of the cosmic radiation (nuclear, electronic, and
gamma-ray) are shedding new light on cosmic-ray physics. A comprehensive
picture of these data relies on an accurate determination of the transport and
source parameters of propagation models. A Markov Chain Monte Carlo is used to
obtain these parameters in a diffusion model. From the measurement of the B/C
ratio and radioactive cosmic-ray clocks, we calculate their probability density
functions, with a special emphasis on the halo size L of the Galaxy and the
local underdense bubble of size r_h. The analysis relies on the USINE code for
propagation and on a Markov Chain Monte Carlo technique (Putze et al. 2009,
paper I of this series) for the parameter determination. As found in previous
studies, the B/C best-fit model favours diffusion/convection/reacceleration
(Model III) over diffusion/reacceleration (Model II). A combined fit on B/C and
the isotopic ratios (10Be/9Be, 26Al/27Al, 36Cl/Cl) leads to L ~ 8 kpc and r_h ~
120 pc for the best-fit Model III. This value for r_h is consistent with direct
measurements of the local interstallar medium. For Model II, L ~ 4 kpc and r_h
is consistent with zero. We showed the potential and usefulness of the Markov
Chain Monte Carlo technique in the analysis of cosmic-ray measurements in
diffusion models. The size of the diffusive halo depends crucially on the value
of the diffusion slope delta, and also on the presence/absence of the local
underdensity damping effect on radioactive nuclei. More precise data from
on-going experiments are expected to clarify this issue.Comment: 20 pages, 14 figures, minor language corrections to match the A&A
accepted versio