2,701 research outputs found

    First Proteomic Approach to Identify Cell Death Biomarkers in Wine Yeasts during Sparkling Wine Production

    Get PDF
    Apoptosis and later autolysis are biological processes which take place in Saccharomyces cerevisiae during industrial fermentation processes, which involve costly and time-consuming aging periods. Therefore, the identification of potential cell death biomarkers can contribute to the creation of a long-term strategy in order to improve and accelerate the winemaking process. Here, we performed a proteomic analysis based on the detection of possible apoptosis and autolysis protein biomarkers in two industrial yeast strains commonly used in post-fermentative processes (sparkling wine secondary fermentation and biological aging) under typical sparkling wine elaboration conditions. Pressure had a negatively effect on viability for flor yeast, whereas the sparkling wine strain seems to be more adapted to these conditions. Flor yeast strain experienced an increase in content of apoptosis-related proteins, glucanases and vacuolar proteases at the first month of aging. Significant correlations between viability and apoptosis proteins were established in both yeast strains. Multivariate analysis based on the proteome of each process allowed to distinguish among samples and strains. The proteomic profile obtained in this study could provide useful information on the selection of wine strains and yeast behavior during sparkling wine elaboration. Additionally, the use of flor yeasts for sparkling wine improvement and elaboration is proposed

    A Differential Proteomic Approach to Characterize the Cell Wall Adaptive Response to CO2 Overpressure during Sparkling Wine-Making Process

    Get PDF
    In this study, a first proteomic approach was carried out to characterize the adaptive response of cell wall-related proteins to endogenous CO2 overpressure, which is typical of second fermentation conditions, in two wine Saccharomyces cerevisiae strains (P29, a conventional second fermentation strain, and G1, a flor yeast strain implicated in sherry wine making). The results showed a high number of cell wall proteins in flor yeast G1 under pressure, highlighting content at the first month of aging. The cell wall proteomic response to pressure in flor yeast G1 was characterized by an increase in both the number and content of cell wall proteins involved in glucan remodeling and mannoproteins. On the other hand, cell wall proteins responsible for glucan assembly, cell adhesion, and lipid metabolism stood out in P29. Over-represented proteins under pressure were involved in cell wall integrity (Ecm33p and Pst1p), protein folding (Ssa1p and Ssa2p), and glucan remodeling (Exg2p and Scw4p). Flocculation-related proteins were not identified under pressure conditions. The use of flor yeasts for sparkling wine elaboration and improvement is proposed. Further research based on the genetic engineering of wine yeast using those genes from protein biomarkers under pressure alongside the second fermentation in bottle is required to achieve improvements

    Viral Genome Segmentation Can Result from a Trade-Off between Genetic Content and Particle Stability

    Get PDF
    The evolutionary benefit of viral genome segmentation is a classical, yet unsolved question in evolutionary biology and RNA genetics. Theoretical studies anticipated that replication of shorter RNA segments could provide a replicative advantage over standard size genomes. However, this question has remained elusive to experimentalists because of the lack of a proper viral model system. Here we present a study with a stable segmented bipartite RNA virus and its ancestor non-segmented counterpart, in an identical genomic nucleotide sequence context. Results of RNA replication, protein expression, competition experiments, and inactivation of infectious particles point to a non-replicative trait, the particle stability, as the main driver of fitness gain of segmented genomes. Accordingly, measurements of the volume occupation of the genome inside viral capsids indicate that packaging shorter genomes involves a relaxation of the packaging density that is energetically favourable. The empirical observations are used to design a computational model that predicts the existence of a critical multiplicity of infection for domination of segmented over standard types. Our experiments suggest that viral segmented genomes may have arisen as a molecular solution for the trade-off between genome length and particle stability. Genome segmentation allows maximizing the genetic content without the detrimental effect in stability derived from incresing genome length

    Metabolic Changes by Wine Flor-Yeasts with Gluconic Acid as the Sole Carbon Source

    Get PDF
    Gluconic acid consumption under controlled conditions by a Saccharomyces cerevisiae flor yeast was studied in artificial media. Gluconic acid was the sole carbon source and the compounds derived from this metabolism were tracked by endo-metabolomic analysis using a Gas Chromatography-Mass Spectrometry (GC-MSD) coupled methodology. After 6 days, about 30% of gluconic acid (1.5 g/L) had been consumed and 34 endo-metabolites were identified. Metabolomic pathway analysis showed the TCA cycle, glyoxylate-dicarboxylate, glycine-serine-threonine, and glycerolipid metabolic pathway were significantly affected. These results contribute to the knowledge of intracellular metabolomic fluctuations in flor yeasts during gluconic acid uptake, opening possibilities for future experiments to improve their applications to control gluconic acid contents during the production of fermented beverages

    Autophagic Proteome in Two Saccharomyces cerevisiae Strains During Second Fermentation for Sparkling Wine Elaboration

    Get PDF
    A correlation between autophagy and autolysis has been proposed in order to accelerate the acquisition of wine organoleptic properties during sparkling wine elaboration. In this context, a proteomic analysis was carried out in two industrial Saccharomyces cerevisiae strains (P29, conventional sparkling wine strain and G1, implicated in sherry wine elaboration) with the aim of studying the autophagy-related proteome and comparing the effect of CO2 overpressure during sparkling wine elaboration. In general, a detrimental effect of pressure and second fermentation development on autophagy-related proteome was observed in both strains, although it was more pronounced in flor yeast strain G1. Proteins mainly involved in autophagy regulation and autophagosome formation in flor yeast G1, and those required for vesicle nucleation and expansion in P29 strain, highlighted in sealed bottle. Proteins Sec2 and Sec18 were detected 3-fold under pressure conditions in P29 and G1 strains, respectively. Moreover, ‘fingerprinting’ obtained from multivariate data analysis established differences in autophagy-related proteome between strains and conditions. Further research is needed to achieve more solid conclusions and design strategies to promote autophagy for an accelerated autolysis, thus reducing cost and time production, as well as acquisition of good organoleptic properties

    Latest trends in industrial vinegar production and the role of acetic acid bacteria: classification, metabolism, and applications—a comprehensive review

    Get PDF
    Vinegar is one of the most appreciated fermented foods in European and Asian countries. In industry, its elaboration depends on numerous factors, including the nature of starter culture and raw material, as well as the production system and operational conditions. Furthermore, vinegar is obtained by the action of acetic acid bacteria (AAB) on an alcoholic medium in which ethanol is transformed into acetic acid. Besides the highlighted oxidative metabolism of AAB, their versatility and metabolic adaptability make them a taxonomic group with several biotechnological uses. Due to new and rapid advances in this field, this review attempts to approach the current state of knowledge by firstly discussing fundamental aspects related to industrial vinegar production and then exploring aspects related to AAB: classification, metabolism, and applications. Emphasis has been placed on an exhaustive taxonomic review considering the progressive increase in the number of new AAB species and genera, especially those with recognized biotechnological potential

    Study of the enzymatic activity inhibition on the saccharification of acid pretreated corn stover

    Get PDF
    The inhibition of the enzymatic saccharification of acid pretreated corn stover (PCS) biomass due to several compounds either present in PCS or produced during saccharification has been studied. The prospective inhibitors tested were glucose ( 110 g L1 ), celobiose ( 24 g L1 ), xylose ( 50 g L1 ), arabinose ( 1.5 g L1 ), furfural ( 2gL1 ), hydroxymethylfurfural ( 1gL1 ), acetic acid ( 4gL1 ), and lignin ( 50 g L1 ). Each of these compounds was added at three different concentrations, being the concentration intervals different according to standard maximum concentrations of such compounds in the reaction medium, previously measured and described in literature. In addition, these experiments were employed to evaluate the standard error present during the evaluation of the results obtained in the inhibition reactions. Those results show that significant inhibition was only detected for lignin (more than 25 g L1 ) and it was also appreciable for glucose at high concentrations (above 75 g L1 ), although it was not remarkable at medium concentrations (40 g L1 ). On the other hand, neither of the remaining compounds tested presented any significant inhibitory effect at the usual process concentration range

    Importance of Grazing Management in Improving Water Use Efficiency of Tropical Forage Grasses

    Get PDF
    The growing number of extreme weather events has created the need to identify tropical forage grasses with greater water use efficiency (WUE) to cope with water-limited conditions. WUE can be defined as the ratio of forage biomass produced per unit of water used. However, WUE is a dynamic ratio that changes according to environmental gradients (e.g., water or nutrient availability) or ontogenetic drift (e.g., changes in root to shoot biomass allocation across phenological stages). Furthermore, genetic improvement leading to greater WUE is likely to result in smaller plants that produce less than the required forage biomass to sustain good animal performance. Bearing that in mind, other alternatives for improving WUE must be taken into consideration. Grazing management is one among such alternatives. Results from a greenhouse experiment conducted with a number of forage grasses (Cenchrus ciliaris, Chloris gayana, Megathyrsus maximus, Urochloa spp.) at the Alliance of Bioversity-CIAT showed that different grazing intensities lead to various WUEs. Improved WUE values in grasses can be achieved through grazing management if it moderates the process of evapotranspiration by 1) reducing leaf area per plant; and 2) maintaining soil cover from pasture growth and productivity. Our results suggest that WUE in pastures planted with tropical forage grasses can be enhanced through moderate rotational grazing

    3D printing part orientation optimization: discrete approximation of support volume

    Get PDF
    In three-dimensional (3D) printing, due to the geometry of most parts, it is necessary to use extra material to support the manufacturing process. This material must be discarded after printing, so its reduction is essential to minimize manufacturing time and cost. An important parameter that must be defined before starting the printing process is the part orientation, which has repercussions on the quality, deposition path, and post-processing among others. Usually, the user sets up this parameter arbitrarily, so this paper takes advantage of it on optimization techniques and proposes an approximation of the volume be covered by the support material, which depends directly on the angle of the part to be printed and its geometry. Among mono-objectives optimization strategies, this work focuses on five of them. Their performance is compared by two metrics: support volume and execution time. Then, the best result is compared with commercial software
    • …
    corecore