9,212 research outputs found

    Many-body dispersion effects in the binding of adsorbates on metal surfaces

    Get PDF
    A correct description of electronic exchange and correlation effects for molecules in contact with extended (metal) surfaces is a challenging task for first-principles modeling. In this work we demonstrate the importance of collective van der Waals dispersion effects beyond the pairwise approximation for organic--inorganic systems on the example of atoms, molecules, and nanostructures adsorbed on metals. We use the recently developed many-body dispersion (MBD) approach in the context of density-functional theory [Phys. Rev. Lett. 108, 236402 (2012); J. Chem. Phys. 140, 18A508 (2014)] and assess its ability to correctly describe the binding of adsorbates on metal surfaces. We briefly review the MBD method and highlight its similarities to quantum-chemical approaches to electron correlation in a quasiparticle picture. In particular, we study the binding properties of xenon, 3,4,9,10-perylene-tetracarboxylic acid (PTCDA), and a graphene sheet adsorbed on the Ag(111) surface. Accounting for MBD effects we are able to describe changes in the anisotropic polarizability tensor, improve the description of adsorbate vibrations, and correctly capture the adsorbate--surface interaction screening. Comparison to other methods and experiment reveals that inclusion of MBD effects improves adsorption energies and geometries, by reducing the overbinding typically found in pairwise additive dispersion-correction approaches

    Scattering properties of Venus' surface

    Get PDF
    Radar backscatter functions Sigma-(carat)(sub 0)(phi) for incidence angles between 0 less than or equal to phi less than or equal to 4-10 deg were derived from Magellan altimetry radar echoes. The procedure includes constrained solution of a system of simultaneous equations for which the echo-spectrum and echo time profile are inputs. A practical and workable set of constraints was applied; optimization and improved results are expected as the analysis matures. The scattering functions yield information on small-scale surface structures (tens of centimeters to tens of meters) but averaged over hundreds of sq km. RMS surface slopes derived from fits of analytic functions to the Sigma-(carat)(sub 0)(phi) results were converted to map form and show patterns similar to those reported using other techniques. While all three forms are found on Venus, fit residuals imply that an exponential scattering function matches data better than either the Hagfors or Gaussian form in most areas, although the Hagfors function may be a better descriptor at some sites. Limited study of image data indicates that average backscatter cross section, and possibly its slope, can be derived at oblique angles (17 deg less than or equal to phi less than or equal to 45 deg). Offsets of the echo peak in altimetry spectra are surprisingly common and are loosely correlated with Venus topography, but no cause for this phenomenon was identified

    Can routine offering of influenza vaccination in office-based settings reduce racial and ethnic disparities in adult influenza vaccination?

    Get PDF
    BACKGROUND: Influenza vaccination remains below the federally targeted levels outlined in Healthy People 2020. Compared to non-Hispanic whites, racial and ethnic minorities are less likely to be vaccinated for influenza, despite being at increased risk for influenza-related complications and death. Also, vaccinated minorities are more likely to receive influenza vaccinations in office-based settings and less likely to use non-medical vaccination locations compared to non-Hispanic white vaccine users. OBJECTIVE: To assess the number of "missed opportunities" for influenza vaccination in office-based settings by race and ethnicity and the magnitude of potential vaccine uptake and reductions in racial and ethnic disparities in influenza vaccination if these "missed opportunities" were eliminated. DESIGN: National cross-sectional Internet survey administered between March 4 and March 14, 2010 in the United States. PARTICIPANTS: Non-Hispanic black, Hispanic and non-Hispanic white adults living in the United States (N = 3,418). MAIN MEASURES: We collected data on influenza vaccination, frequency and timing of healthcare visits, and self-reported compliance with a potential provider recommendation for vaccination during the 2009-2010 influenza season. "Missed opportunities" for seasonal influenza vaccination in office-based settings were defined as the number of unvaccinated respondents who reported at least one healthcare visit in the Fall and Winter of 2009-2010 and indicated their willingness to get vaccinated if a healthcare provider strongly recommended it. "Potential vaccine uptake" was defined as the sum of actual vaccine uptake and "missed opportunities." KEY RESULTS: The frequency of "missed opportunities" for influenza vaccination in office-based settings was significantly higher among racial and ethnic minorities than non-Hispanic whites. Eliminating these "missed opportunities" could have cut racial and ethnic disparities in influenza vaccination by roughly one half. CONCLUSIONS: Improved office-based practices regarding influenza vaccination could significantly impact Healthy People 2020 goals by increasing influenza vaccine uptake and reducing corresponding racial and ethnic disparities

    Projected climate-induced faunal change in the western hemisphere

    Get PDF
    Climate change is predicted to be one of the greatest drivers of ecological change in the coming century. Increases in temperature over the last century have clearly been linked to shifts in species distributions. Given the magnitude of projected future climatic changes, we can expect even larger range shifts in the coming century. These changes will, in turn, alter ecological communities and the functioning of ecosystems. Despite the seriousness of predicted climate change, the uncertainty in climate-change projections makes it difficult for conservation managers and planners to proactively respond to climate stresses. To address one aspect of this uncertainty, we identified predictions of faunal change for which a high level of consensus was exhibited by different climate models. Specifically, we assessed the potential effects of 30 coupled atmosphere–ocean general circulation model (AOGCM) future-climate simulations on the geographic ranges of 2954 species of birds, mammals, and amphibians in the Western Hemisphere. Eighty percent of the climate projections based on a relatively low greenhouse-gas emissions scenario result in the local loss of at least 10% of the vertebrate fauna over much of North and South America. The largest changes in fauna are predicted for the tundra, Central America, and the Andes Mountains where, assuming no dispersal constraints, specific areas are likely to experience over 90% turnover, so that faunal distributions in the future will bear little resemblance to those of today

    Using Sideband Transitions for Two-Qubit Operations in Superconducting Circuits

    Full text link
    We demonstrate time resolved driving of two-photon blue sideband transitions between superconducting qubits and a transmission line resonator. Using the sidebands, we implement a pulse sequence that first entangles one qubit with the resonator, and subsequently distributes the entanglement between two qubits. We show generation of 75% fidelity Bell states by this method. The full density matrix of the two qubit system is extracted using joint measurement and quantum state tomography, and shows close agreement with numerical simulation. The scheme is potentially extendable to a scalable universal gate for quantum computation.Comment: 4 pages, 5 figures, version with high resolution figures available at http://qudev.ethz.ch/content/science/PubsPapers.htm

    Optical determination and identification of organic shells around nanoparticles: application to silver nanoparticles

    Full text link
    We present a simple method to prove the presence of an organic shell around silver nanoparticles. This method is based on the comparison between optical extinction measurements of isolated nanoparticles and Mie calculations predicting the expected wavelength of the Localized Surface Plasmon Resonance of the nanoparticles with and without the presence of an organic layer. This method was applied to silver nanoparticles which seemed to be well protected from oxidation. Further experimental characterization via Surface Enhanced Raman Spectroscopy (SERS) measurements allowed to identify this protective shell as ethylene glycol. Combining LSPR and SERS measurements could thus give proof of both presence and identification for other plasmonic nanoparticles surrounded by organic shells

    Mean square exceedance characteristics of a single tuned system to amplitude modulated random noise

    Get PDF
    Mean square exceedance characteristics of single tuned system to amplitude modulated random noise of limited duratio

    Distributed system response characteristics in random pressure fields

    Get PDF
    Response characteristics of distributed structural systems to random excitation by acoustic pressure field

    Vortex spectrum in superfluid turbulence: interpretation of a recent experiment

    Full text link
    We discuss a recent experiment in which the spectrum of the vortex line density fluctuations has been measured in superfluid turbulence. The observed frequency dependence of the spectrum, f5/3f^{-5/3}, disagrees with classical vorticity spectra if, following the literature, the vortex line density is interpreted as a measure of the vorticity or enstrophy. We argue that the disagrement is solved if the vortex line density field is decomposed into a polarised field (which carries most of the energy) and an isotropic field (which is responsible for the spectrum).Comment: Submitted for publication http://crtbt.grenoble.cnrs.fr/helio/GROUP/infa.html http://www.mas.ncl.ac.uk/~ncfb

    Observations of celestial X-ray sources above 20 keV with the high-energy scintillation spectrometer on board OSO 8

    Get PDF
    High-energy X-ray spectra of the Crab Nebula, Cyg- XR-1, and Cen A were determined from observations with the scintillation spectrometer on board the OSO-8 satellite, launched in June, 1975. Each of these sources was observed over two periods of 8 days or more, enabling a search for day-to-day and year to year variations in the spectral and temporal characteristics of the X-ray emission. No variation in the light curve of the Crab pulsar was found from observations which span a 15-day period in March 1976, with demonstrable phase stability. Transitions associated with the binary phase of Cyg XR-1 and a large change in the emission from Con A are reported
    corecore