60 research outputs found

    On the Interactions between Virulent Bacteriophages and Bacteria in the gut

    Get PDF
    We recently described the targeting of O104:H4 Escherichia coli in mouse gut by several virulent bacteriophages, highlighting several issues relating to virus-host interactions, which we discuss further in this addendum to the original publication

    A Method for High Throughput Determination of Viable Bacteria Cell Counts in 96-Well Plates

    Get PDF
    Background: There are several methods for quantitating bacterial cells, each with advantages and disadvantages. The most common method is bacterial plating, which has the advantage of allowing live cell assessment through colony forming unit (CFU) counts but is not well suited for high throughput screening (HTS). On the other hand, spectrophotometry is adaptable to HTS applications but does not differentiate between dead and living bacteria and has low sensitivity. Results: Here, we report a bacterial cell counting method termed Start Growth Time (SGT) that allows rapid and serial quantification of the absolute or relative number of live cells in a bacterial culture in a high throughput manner. We combined the methodology of quantitative polymerase chain reaction (qPCR) calculations with a previously described qualitative method of bacterial growth determination to develop an improved quantitative method. We show that SGT detects only live bacteria and is sensitive enough to differentiate between 40 and 400 cells/mL. SGT is based on the re-growth time required by a growing cell culture to reach a threshold, and the notion that this time is proportional to the number of cells in the initial inoculum. We show several applications of SGT, including assessment of antibiotic effects on cell viability and determination of an antibiotic tolerant subpopulation fraction within a cell population. SGT results do not differ significantly from results obtained by CFU counts. Conclusion: SGT is a relatively quick, highly sensitive, reproducible and non-laborious method that can be used in HTS settings to longitudinally assess live cells in bacterial cell cultures

    In-depth Profiling of MvfR-Regulated Small Molecules in Pseudomonas aeruginosa after Quorum Sensing Inhibitor Treatment

    Get PDF
    Pseudomonas aeruginosa is a Gram-negative bacterium, which causes opportunistic infections in immuno-compromised individuals. Due to its multiple resistances toward antibiotics, the development of new drugs is required. Interfering with Quorum Sensing (QS), a cell-to-cell communication system, has shown to be highly efficient in reducing P. aeruginosa pathogenicity. One of its QS systems employs Pseudomonas Quinolone Signal (PQS) and 4-hydroxy-2-heptylquinoline (HHQ) as signal molecules. Both activate the transcriptional regulator MvfR (Multiple Virulence Factor Regulator), also called PqsR, driving the production of QS molecules as well as toxins and biofilm formation. The aim of this work was to elucidate the effects of QS inhibitors (QSIs), such as MvfR antagonists and PqsBC inhibitors, on the biosynthesis of the MvfR-regulated small molecules 2′-aminoacetophenone (2-AA), dihydroxyquinoline (DHQ), HHQ, PQS, and 4-hydroxy-2-heptylquinoline-N-oxide (HQNO). The employed synthetic MvfR antagonist fully inhibited pqs small molecule formation showing expected sigmoidal dose-response curves for 2-AA, HQNO, HHQ and PQS. Surprisingly, DHQ levels were enhanced at lower antagonist concentrations followed by a full suppression at higher QSI amounts. This particular bi-phasic profile hinted at the accumulation of a biosynthetic intermediate resulting in the observed overproduction of the shunt product DHQ. Additionally, investigations on PqsBC inhibitors showed a reduction of MvfR natural ligands, while increased 2-AA, DHQ and HQNO levels compared to the untreated cells were detected. Moreover, PqsBC inhibitors did not show any significant effect in PA14 pqsC mutant demonstrating their target selectivity. As 2-AA is important for antibacterial tolerance, the QSIs were evaluated in their capability to attenuate persistence. Indeed, persister cells were reduced along with 2-AA inhibition resulting from MvfR antagonism, but not from PqsBC inhibition. In conclusion, antagonizing MvfR using a dosage capable of fully suppressing this QS system will lead to a favorable therapeutic outcome as DHQ overproduction is avoided and bacterial persistence is reduced

    Pulmonary Bacteriophage Therapy on Pseudomonas aeruginosa Cystic Fibrosis Strains: First Steps Towards Treatment and Prevention

    Get PDF
    Multidrug-resistant bacteria are the cause of an increasing number of deadly pulmonary infections. Because there is currently a paucity of novel antibiotics, phage therapy—the use of specific viruses that infect bacteria—is now more frequently being considered as a potential treatment for bacterial infections. Using a mouse lung-infection model caused by a multidrug resistant Pseudomonas aeruginosa mucoid strain isolated from a cystic fibrosis patient, we evaluated bacteriophage treatments. New bacteriophages were isolated from environmental samples and characterized. Bacteria and bacteriophages were applied intranasally to the immunocompetent mice. Survival was monitored and bronchoalveolar fluids were analysed. Quantification of bacteria, bacteriophages, pro-inflammatory and cytotoxicity markers, as well as histology and immunohistochemistry analyses were performed. A curative treatment (one single dose) administrated 2 h after the onset of the infection allowed over 95% survival. A four-day preventive treatment (one single dose) resulted in a 100% survival. All of the parameters measured correlated with the efficacy of both curative and preventive bacteriophage treatments. We also showed that in vitro optimization of a bacteriophage towards a clinical strain improved both its efficacy on in vivo treatments and its host range on a panel of 20 P. aeruginosa cystic fibrosis strains. This work provides an incentive to develop clinical studies on pulmonary bacteriophage therapy to combat multidrug-resistant lung infections

    Identification of Anti-virulence Compounds That Disrupt Quorum-Sensing Regulated Acute and Persistent Pathogenicity

    Get PDF
    Etiological agents of acute, persistent, or relapsing clinical infections are often refractory to antibiotics due to multidrug resistance and/or antibiotic tolerance. Pseudomonas aeruginosa is an opportunistic Gram-negative bacterial pathogen that causes recalcitrant and severe acute chronic and persistent human infections. Here, we target the MvfR-regulated P. aeruginosa quorum sensing (QS) virulence pathway to isolate robust molecules that specifically inhibit infection without affecting bacterial growth or viability to mitigate selective resistance. Using a whole-cell high-throughput screen (HTS) and structure-activity relationship (SAR) analysis, we identify compounds that block the synthesis of both pro-persistence and pro-acute MvfR-dependent signaling molecules. These compounds, which share a benzamide-benzimidazole backbone and are unrelated to previous MvfR-regulon inhibitors, bind the global virulence QS transcriptional regulator, MvfR (PqsR); inhibit the MvfR regulon in multi-drug resistant isolates; are active against P. aeruginosa acute and persistent murine infections; and do not perturb bacterial growth. In addition, they are the first compounds identified to reduce the formation of antibiotic-tolerant persister cells. As such, these molecules provide for the development of next-generation clinical therapeutics to more effectively treat refractory and deleterious bacterial-human infections

    In-flight calibration and verification of the Planck-LFI instrument

    Full text link
    In this paper we discuss the Planck-LFI in-flight calibration campaign. After a brief overview of the ground test campaigns, we describe in detail the calibration and performance verification (CPV) phase, carried out in space during and just after the cool-down of LFI. We discuss in detail the functionality verification, the tuning of the front-end and warm electronics, the preliminary performance assessment and the thermal susceptibility tests. The logic, sequence, goals and results of the in-flight tests are discussed. All the calibration activities were successfully carried out and the instrument response was comparable to the one observed on ground. For some channels the in-flight tuning activity allowed us to improve significantly the noise performance.Comment: Long technical paper on Planck LFI in flight calibration campaign: 109 pages in this (not final) version, 100 page in the final JINST versio

    DMTs and Covid-19 severity in MS: a pooled analysis from Italy and France

    Get PDF
    We evaluated the effect of DMTs on Covid-19 severity in patients with MS, with a pooled-analysis of two large cohorts from Italy and France. The association of baseline characteristics and DMTs with Covid-19 severity was assessed by multivariate ordinal-logistic models and pooled by a fixed-effect meta-analysis. 1066 patients with MS from Italy and 721 from France were included. In the multivariate model, anti-CD20 therapies were significantly associated (OR = 2.05, 95%CI = 1.39–3.02, p < 0.001) with Covid-19 severity, whereas interferon indicated a decreased risk (OR = 0.42, 95%CI = 0.18–0.99, p = 0.047). This pooled-analysis confirms an increased risk of severe Covid-19 in patients on anti-CD20 therapies and supports the protective role of interferon

    Bacteriophages as twenty-first century antibacterial tools for food and medicine.

    No full text
    International audienceAntibiotic-resistant bacteria are an increasing source of concern in all environments in which these drugs have been used. More stringent regulations have led to a slow but sure decrease in antibiotic use in the food industry worldwide, but have also stimulated the search for alternative antibacterial agents. In medicine, the number of people infected with pan-resistant bacteria is driving research to develop new treatments. Within these contexts, studies on the use of bacteriophages in both medicine and the food industry have recently flourished. This renewed interest has coincided with the demonstration that these viruses are involved in geochemical cycles, revolutionizing our vision of their ecological role on our planet. Bacteriophages have co-evolved with bacteria for billions of years and retain the ability to infect bacteria efficiently. They are undoubtedly one of the best potential sources of new solutions for the management of undesirable bacteria

    La phagothérapie : cauchemar pour la bactérie et rêve pour le médecin ?

    No full text
    International audienceBacteriophages were discovered in the early 20th century and rapidly used to treat bacterial infections in humans. As the first specific antibacterial agents, they were used worldwide until antibiotics ramped up. Thereafter, rapidly forgotten, they be- came the favorite toolbox for researchers that used them to elucidate some of the most fundamental aspects of the cellular life at the molecular level. Today, facing the threat of antibiotic resistant bacteria, bacteriophages are being reconsidered for their use in medicine. During the past century, knowledge on bacteriophages has improved considerably, nevertheless phage therapy is still in its infancy. Taking two examples of recently published experimental phage therapy results, this article summarizes the hopes but also the challenges that surround the future development of human phage therapy.-Découverts au début du XX e siècle, les bactériophages ont rapidementété utilisés pour traiter des infections bactériennes, devenant ainsi les premiers antibactériens spécifiquesàêtre employés en médecine. Cependant, l'arrivée des antibiotiques a brutalement réduit leur utilisation, les confinant au rayon ((boîteà outils)) du chercheur. Celui-ci en fît bon usage permettant de dévoiler une très grande partie des secrets moléculaires de la cellule. Aujourd'hui, faceà la menace que représentent les pathogènes bactériens résistants aux antibiotiques, les bactériophages tentent de faire leur retour dans le domaine médical. Bien que la connaissance de ces virus bactériens ait considérablement progressé après presque un siècle d'études, leur utilisation thérapeutique est loin d'être maîtrisée. Cet article relate,à l'aide de deux exemples récents de l'utilisation expérimentale des bactériophages, les espoirs mais aussi les challenges qui entourent la mise en place de la phagothérapie appliquéeà l'Homme. Mots clés : Bactériophages thérapeutiques / infections bactériennes / résistance aux antibiotiques / pneumonie / diarrhée Abstract-Phagotherapy: a nightmare for bacteria, a dream for physicians? Bacteriophages were discovered in the early 20th century and rapidly used to treat bacterial infections in humans. As the first specific antibacterial agents, they were used worldwide until antibiotics ramped up. Thereafter, rapidly forgotten, they became the favorite toolbox for researchers that used them to elucidate some of the most fundamental aspects of the cellular life at the molecular level. Today, facing the threat of antibiotic resistant bacteria, bacteriophages are being reconsidered for their use in medicine. During the past century, knowledge on bacteriophages has improved considerably, nevertheless phage therapy is still in its infancy. Taking two examples of recently published experimental phage therapy results, this article summarizes the hopes but also the challenges that surround the future development of human phage therapy
    • …
    corecore