88 research outputs found

    Oxidation of SO2 by stabilized Criegee intermediate (sCI) radicals as a crucial source for atmospheric sulfuric acid concentrations

    Get PDF
    The effect of increased reaction rates of stabilized Criegee intermediates (sCIs) with SO2 to produce sulfuric acid is investigated using data from two different locations, SMEAR II, Hyytiälä, Finland, and Hohenpeissenberg, Germany. Results from MALTE, a zero-dimensional model, show that using previous values for the rate coefficients of sCI + SO2, the model underestimates gas phase H2SO4 by up to a factor of two when compared to measurements. Using the rate coefficients recently calculated by Mauldin et al. (2012) increases sulfuric acid by 30–40%. Increasing the rate coefficient for formaldehyde oxide (CH2OO) with SO2 according to the values recommended by Welz et al. (2012) increases the H2SO4 yield by 3–6%. Taken together, these increases lead to the conclusion that, depending on their concentrations, the reaction of stabilized Criegee intermediates with SO2 could contribute as much as 33–46% to atmospheric sulfuric acid gas phase concentrations at ground level. Using the SMEAR II data, results from SOSA, a one-dimensional model, show that the contribution from sCI reactions to sulfuric acid production is most important in the canopy, where the concentrations of organic compounds are the highest, but can have significant effects on sulfuric acid concentrations up to 100 m. The recent findings that the reaction of sCI + SO2 is much faster than previously thought together with these results show that the inclusion of this new oxidation mechanism could be crucial in regional as well as global models.Peer reviewe

    Total sulfate vs. sulfuric acid monomer concenterations in nucleation studies

    Get PDF
    Sulfuric acid is known to be a key component for atmospheric nucleation. Precise determination of sulfuric-acid concentration is a crucial factor for prediction of nucleation rates and subsequent growth. In our study, we have noticed a substantial discrepancy between sulfuric-acid monomer concentrations and total-sulfate concentrations measured from the same source of sulfuric-acid vapor. The discrepancy of about 1-2 orders of magnitude was found with similar particle-formation rates. To investigate this discrepancy, and its effect on nucleation, a method of thermally controlled saturator filled with pure sulfuric acid (97% wt.) for production of sulfuric-acid vapor is applied and rigorously tested. The saturator provided an independent vapor-production method, compared to our previous method of the furnace (Brus et al., 2010, 2011), to find out if the discrepancy is caused by the production method itself. The saturator was used in a H2SO4-H2O nucleation experiment, using a laminar flow tube to check reproducibility of the nucleation results with the saturator method, compared to the furnace. Two independent methods of mass spectrometry and online ion chromatography were used for detecting sulfuric-acid or sulfate concentrations. Measured sulfuric-acid or total-sulfate concentrations are compared to theoretical predictions calculated using vapor pressure and a mixing law. The calculated prediction of sulfuric-acid concentrations agrees very well with the measured values when total sulfate is considered. Sulfuric-acid monomer concentration was found to be about 2 orders of magnitude lower than theoretical predictions, but with a temperature dependency similar to the predictions and the results obtained with the ion-chromatograph method. Formation rates are reproducible when compared to our previous results with both sulfuric-acid or total-sulfate detection and sulfuric-acid production methods separately, removing any doubts that the vapor-production method would cause the discrepancy. Possible reasons for the discrepancy are discussed and some suggestions include that the missing sulfuric acid is in clusters, formed with contaminants found in most laboratory experiments. One-to-two-order-of-magnitude higher sulfuric-acid concentrations (measured as total sulfate in this study) would contribute to a higher fraction of particle growth rate than assumed from the measurements by mass spectrometers (i.e. sulfuric-acid monomer). However, the observed growth rates by sulfate-containing vapor in this study does not directly imply a similar situation in the field, where sources of sulfate are much more diverse.Peer reviewe

    Ambient observations of dimers from terpene oxidation in the gas phase : Implications for new particle formation and growth

    Get PDF
    We present ambient observations of dimeric monoterpene oxidation products (C16-20HyO6-9) in gas and particle phases in the boreal forest in Finland in spring 2013 and 2014, detected with a chemical ionization mass spectrometer with a filter inlet for gases and aerosols employing acetate and iodide as reagent ions. These are among the first online dual-phase observations of such dimers in the atmosphere. Estimated saturation concentrations of 10(-15) to 10(-6)mu gm(-3) (based on observed thermal desorptions and group-contribution methods) and measured gas-phase concentrations of 10(-3) to 10(-2)mu gm(-3) (similar to 10(6)-10(7)moleculescm(-3)) corroborate a gas-phase formation mechanism. Regular new particle formation (NPF) events allowed insights into the potential role dimers may play for atmospheric NPF and growth. The observationally constrained Model for Acid-Base chemistry in NAnoparticle Growth indicates a contribution of similar to 5% to early stage particle growth from the similar to 60 gaseous dimer compounds. Plain Language Summary Atmospheric aerosol particles influence climate and air quality. We present new insights into how emissions of volatile organic compounds from trees are transformed in the atmosphere to contribute to the formation and growth of aerosol particles. We detected for the first time over a forest, a group of organic molecules, known to grow particles, in the gas phase at levels far higher than expected. Previous measurements had only measured them in the particles. This finding provides guidance on how models of aerosol formation and growth should describe their appearance and fate in the atmosphere.Peer reviewe

    Constraints from observations and modeling on atmosphere-surface exchange of mercury in eastern North America

    Get PDF
    Atmosphere-surface exchange of mercury, although a critical component of its global cycle, is currently poorly constrained. Here we use the GEOS-Chem chemical transport model to interpret atmospheric Hg-0 (gaseous elemental mercury) data collected during the 2013 summer Nitrogen, Oxidants, Mercury and Aerosol Distributions, Sources and Sinks (NOMADSS) aircraft campaign as well as ground-and ship-based observations in terms of their constraints on the atmosphere-surface exchange of Hg-0 over eastern North America. Model-observation comparison suggests that the Northwest Atlantic may be a net source of Hg-0, with high evasion fluxes in summer (our best sensitivity simulation shows an average oceanic Hg-0 flux of 3.3 ng m(-2) h(-1) over the Northwest Atlantic), while the terrestrial ecosystem in the summer of the eastern United States is likely a net sink of Hg-0 (our best sensitivity simulation shows an average terrestrial Hg-0 flux of -0.6 ng m(-2) h(-1) over the eastern United States). The inferred high Hg-0 fluxes from the Northwest Atlantic may result from high wet deposition fluxes of oxidized Hg, which are in turn related to high precipitation rates in this region. We also find that increasing simulated terrestrial fluxes of Hg-0 in spring compared to other seasons can better reproduce observed seasonal variability of Hg-0 concentration at ground-based sites in eastern North America.Peer reviewe

    The Hausdorff and dynamical dimensions of self-affine sponges : a dimension gap result

    Get PDF
    We construct a self-affine sponge in R 3 whose dynamical dimension, i.e. the supremum of the Hausdorff dimensions of its invariant measures, is strictly less than its Hausdorff dimension. This resolves a long-standing open problem in the dimension theory of dynamical systems, namely whether every expanding repeller has an ergodic invariant measure of full Hausdorff dimension. More generally we compute the Hausdorff and dynamical dimensions of a large class of self-affine sponges, a problem that previous techniques could only solve in two dimensions. The Hausdorff and dynamical dimensions depend continuously on the iterated function system defining the sponge, implying that sponges with a dimension gap represent a nonempty open subset of the parameter space

    Ambient Measurements of Highly Oxidized Gas-Phase Molecules during the Southern Oxidant and Aerosol Study (SOAS) 2013

    Get PDF
    We present measurements of highly oxidized multifunctional molecules (HOMs) detected in the gas phase using a high-resolution time-of flight chemical ionization mass spectrometer with nitrate reagent ion (NO3- CIMS). The measurements took place during the 2013 Southern Oxidant and Aerosol Study (SOAS 2013) at a forest site in Alabama, where emissions were dominated by biogenic volatile organic compounds (BVOCs). Primary BVOC emissions were represented by isoprene mixed with various terpenes, making it a unique sampling location compared to previous NO3- CIMS deployments in monoterpene-dominated environments. During SOAS 2013, the NO3- CIMS detected HOMs with oxygen-to-carbon (O:C) ratios between 0.5 and 1.4 originating from both isoprene (C-5) and monoterpenes (C-10) as well as hundreds of additional HOMs with carbon numbers between C-3 and C-20. We used positive matrix factorization (PMF) to deconvolve the complex data set and extract information about classes of HOMs with similar temporal trends. This analysis revealed three isoprene-dominated and three monoterpene-dominated PMF factors. We observed significant amounts of isoprene- and monoterpene-derived organic nitrates (ONs) in most factors. The abundant presence of ONs was consistent with previous studies that have highlighted the importance of NOx-driven chemistry at the site. One of the isoprene-dominated factors had a strong correlation with SO2 plumes likely advected from nearby coal-fired power plants and was dominated by an isoprene derived ON (C5H10N2O8). These results indicate that anthropogenic emissions played a significant role in the formation of low volatility compounds from BVOC emissions in the region.Peer reviewe
    • …
    corecore