274 research outputs found

    Hot gas and dust in a protostellar cluster near W3(OH

    Get PDF
    We used the IRAM Interferometer to obtain sub-arcsecond resolution observations of the high-mass star-forming region W3(OH) and its surroundings at a frequency of 220 GHz. With the improved angular resolution, we distinguish 3 peaks in the thermal dust continuum emission originating from the hot core region about 6 arcsec (0.06 pc) east of W3(OH). The dust emission peaks are coincident with known radio continuum sources, one of which is of non-thermal nature. The latter source is also at the center of expansion of a powerful bipolar outflow observed in water maser emission. We determine the hot core mass to be 15 solar masses based on the integrated dust continuum emission. Simultaneously many molecular lines are detected allowing the analysis of the temperature structure and the distribution of complex organic molecules in the hot core. From HNCO lines, spanning a wide range of excitation, two 200 K temperature peaks are found coincident with dust continuum emission peaks suggesting embedded heating sources within them.Comment: 12 pages, 3 figure

    Spatially Resolved Chemistry in Nearby Galaxies I. The Center of IC 342

    Full text link
    We have imaged emission from the millimeter lines of eight molecules--C2H, C34S, N2H+, CH3OH, HNCO, HNC, HC3N, and SO--in the central half kpc of the nearby spiral galaxy IC 342. The 5" (~50 pc) resolution images were made with OVRO. Using these maps we obtain a picture of the chemistry within the nuclear region on the sizescales of individual GMCs. Bright emission is detected from all but SO. There are marked differences in morphology for the different molecules. A principal component analysis is performed to quantify similarities and differences among the images. This analysis reveals that while all molecules are to zeroth order correlated, that is, they are all found in dense molecular clouds, there are three distinct groups of molecules distinguished by the location of their emission within the nuclear region. N2H+, C18O, HNC and HCN are widespread and bright, good overall tracers of dense molecular gas. C2H and C34S, tracers of PDR chemistry, originate exclusively from the central 50-100 pc region, where radiation fields are high. The third group of molecules, CH3OH and HNCO, correlates well with the expected locations of bar-induced orbital shocks. The good correlation of HNCO with the established shock tracer molecule CH3OH is evidence that this molecule, whose chemistry has been uncertain, is indeed produced by processing of grains. HC3N is observed to correlate tightly with 3mm continuum emission, demonstrating that the young starbursts are the sites of the warmest and densest molecular gas. We compare our HNC images with the HCN images of Downes et al. (1992) to produce the first high resolution, extragalactic HCN/HNC map: the HNC/HCN ratio is near unity across the nucleus and the correlation of both of these gas tracers with the star formation is excellent. (Abridged).Comment: 54 pages including 10 figures and 8 tables. Accepted for publication in Ap

    Dense Gas in Nearby Galaxies: XVII. The Distribution of Ammonia in NGC253, Maffei2 and IC342

    Full text link
    The central few 100 pc of galaxies often contain large amounts of molecular gas. The chemical and physical properties of these extragalactic star formation regions differ from those in galactic disks, but are poorly constrained. This study aims to develop a better knowledge of the spatial distribution and kinetic temperature of the dense neutral gas associated with the nuclear regions of three prototypical spiral galaxies, NGC253, IC342, and Maffei2. VLA CnD and D configuration measurements have been made of three ammonia (NH3) inversion transitions. The (J,K)=(1,1) and (2,2) transitions of NH3 were imaged toward IC342 and Maffei2. The (3,3) transition was imaged toward NGC253. The entire flux obtained from single-antenna measurements is recovered for all three galaxies observed. Derived lower limits to the kinetic temperatures determined for the giant molecular clouds in the centers of these galaxies are between 25 and 50K. There is good agreement between the distributions of NH3 and other H2 tracers, such as rare CO isotopologues or HCN, suggesting that NH3 is representative of the distribution of dense gas. The "Western Peak" in IC342 is seen in the (6,6) line but not in lower transitions, suggesting maser emission in the (6,6) transition.Comment: 13 pages, 8 figures, latex format, accepted by A&

    The X-ray reflector in NGC 4945: a time and space resolved portrait

    Get PDF
    We present a time, spectral and imaging analysis of the X-ray reflector in NGC 4945, which reveals its geometrical and physical structure with unprecedented detail. NGC 4945 hosts one of the brightest AGN in the sky above 10 keV, but it is only visible through its reflected/scattered emission below 10 keV, due to absorption by a column density of ~4\times10^24 cm-2. A new Suzaku campaign of 5 observations spanning ~6 months, together with past XMM-Newton and Chandra observations, show a remarkable constancy (within <10%) of the reflected component. Instead, Swift-BAT reveals strong intrinsic variability on time scales longer than one year. Modeling the circumnuclear gas as a thin cylinder with the axis on the plane of the sky, we show that the reflector is at a distance >30-50 pc, well within the imaging capabilities of Chandra at the distance of NGC 4945 (1"~18 pc). Accordingly, the Chandra imaging reveals a resolved, flattened, ~150 pc-long clumpy structure, whose spectrum is fully due to cold reflection of the primary AGN emission. The clumpiness may explain the small covering factor derived from the spectral and variability properties.Comment: 6 pages, 4 figures, 1 table. Accepted for publication in MNRA

    A 2 mm spectral line survey of the starburst galaxy NGC 253

    Full text link
    We present the first unbiased molecular line survey towards an extragalactic source, namely the nuclear region of the starburst galaxy NGC 253. The scan covers the frequency band from 129.1 to 175.2 GHz, i.e. most of the 2mm atmospheric window. We identify 111 spectral features as transitions from 25 different molecular species. Eight of which (three tentatively) are detected for the first time in the extragalactic interstellar medium. Among these newly detected species, we detected the rare isotopomers 34SO and HC18O+. Tentative detections of two deuterated species, DNC and N2D+, are reported for the first time from a target beyond the Magellanic Clouds. Additionally, three hydrogen recombination lines are identified, while no organic molecules larger than methanol are detected. Column densities and rotation temperatures are calculated for all the species, including an upper limit to the ethanol abundance. A comparison of the chemical composition of the nuclear environment of NGC 253 with those of selected nearby galaxies demonstrates the chemical resemblance of IC 342 and NGC 4945 to that of NGC 253. On the other hand, the chemistries characterizing NGC 253 and M 82 are clearly different. We also present a comparison of the chemical composition of NGC 253 with those observed in Galactic prototypical sources. The chemistry of NGC 253 shows a striking similarity with the chemistry observed toward the Galactic center molecular clouds, which are thought to be dominated by low-velocity shocks. This resemblance strongly suggests that the heating in the nuclear environment of NGC 253 is dominated by the same mechanism as that in the central region of the Milky Way.Comment: Accepted for publication in ApJ

    Low, Milky-Way like, Molecular Gas Excitation of Massive Disk Galaxies at z~1.5

    Full text link
    We present evidence for Milky-Way-like, low-excitation molecular gas reservoirs in near-IR selected massive galaxies at z~1.5, based on IRAM Plateau de Bure Interferometer CO[3-2] and NRAO Very Large Array CO[1-0] line observations for two galaxies that had been previously detected in CO[2-1] emission. The CO[3-2] flux of BzK-21000 at z=1.522 is comparable within the errors to its CO[2-1] flux, implying that the CO[3-2] transition is significantly sub-thermally excited. The combined CO[1-0] observations of the two sources result in a detection at the 3 sigma level that is consistent with a higher CO[1-0] luminosity than that of CO[2-1]. Contrary to what is observed in submillimeter galaxies and QSOs, in which the CO transitions are thermally excited up to J>=3, these galaxies have low-excitation molecular gas, similar to that in the Milky Way and local spirals. This is the first time that such conditions have been observed at high redshift. A Large Velocity Gradient analysis suggests that molecular clouds with density and kinetic temperature comparable to local spirals can reproduce our observations. The similarity in the CO excitation properties suggests that a high, Milky-Way-like, CO to H_2 conversion factor could be appropriate for these systems. If such low-excitation properties are representative of ordinary galaxies at high redshift, centimeter telescopes such as the Expanded Very Large Array and the longest wavelength Atacama Large Millimeter Array bands will be the best tools for studying the molecular gas content in these systems through the observations of CO emission lines.Comment: 5 pages, 4 figures. ApJ Letters in pres

    Mid-J CO Emission From NGC 891: Microturbulent Molecular Shocks in Normal Star Forming Galaxies

    Full text link
    We have detected the CO(6-5), CO(7-6), and [CI] 370 micron lines from the nuclear region of NGC 891 with our submillimeter grating spectrometer ZEUS on the CSO. These lines provide constraints on photodissociation region (PDR) and shock models that have been invoked to explain the H_2 S(0), S(1), and S(2) lines observed with Spitzer. We analyze our data together with the H_2 lines, CO(3-2), and IR continuum from the literature using a combined PDR/shock model. We find that the mid-J CO originates almost entirely from shock-excited warm molecular gas; contributions from PDRs are negligible. Also, almost all the H_2 S(2) and half of the S(1) line is predicted to emerge from shocks. Shocks with a pre-shock density of 2x10^4 cm^-3 and velocities of 10 km/s and 20 km/s for C-shocks and J-shocks, respectively, provide the best fit. In contrast, the [CI] line emission arises exclusively from the PDR component, which is best parameterized by a density of 3.2x10^3 cm^-3 and a FUV field of G_o = 100 for both PDR/shock-type combinations. Our mid-J CO observations show that turbulence is a very important heating source in molecular clouds, even in normal quiescent galaxies. The most likely energy sources for the shocks are supernovae or outflows from YSOs. The energetics of these shock sources favor C-shock excitation of the lines.Comment: 18 pages, 2 figures, 6 tables, accepted by Ap
    corecore