218 research outputs found

    Long‐term trends in migrating Brassicogethes aeneus in the UK

    Get PDF
    BACKGROUND The pollen beetle (Brassicogethes aeneus) causes significant yield loss in oilseed rape (Brassica napus). Predicting population changes remains a scientific challenge, especially since its phenology and abundance varies dramatically over space and time. We used generalized additive models to investigate the long-term trends in pollen beetle annual, seasonal and monthly counts from Rothamsted 12.2 m suction-traps. We hypothesised that the beetle's abundance is positively related to the area of oilseed rape at a national and regional level. We used random forest models to investigate the inter-generational relationship within years. RESULTS Although B. aeneus annual counts and area of oilseed rape grown in the UK both increased by 162% and 113%, respectively, over the time period, they were not significantly related. The size of the immigrating pollen beetle population (up to June 1st) can be explained both by the size of the population in the previous summer and prevailing winter temperatures, indicating a positive feedback mechanism. CONCLUSION Currently, pollen beetle numbers continue to increase in the UK, meaning that control issues may persist, however the relationship between counts in spring, during the susceptible phase of the crop, and counts in the previous summer indicates that it may be possible to forecast the counts of the spring migration of B. aeneus a few months in advance using suction-trap samples, which could aid decisions on control options

    Integrated pest management strategies for cabbage stem flea beetle (Psylliodes chrysocephala) in oilseed rape

    Get PDF
    Oilseed rape (OSR) is the second largest source of vegetable oil globally and the most important biofuel feedstock in the European Union (EU) but production of this important crop is threatened by a small insect; Psylliodes chrysocepaha – the cabbage stem flea beetle (CSFB). The EU ban on use of neonicotinoid seed treatments and resistance of CSFB to pyrethroid insecticides have left farmers with limited control options resulting in drastic reductions in production. Integrated pest management (IPM) may offer a solution. We review the lifecycle of CSFB and the current options available, or in the research pipeline, for the eight IPM principles of the EU Sustainable Use of Pesticides Directive (Directive-2009/128/EC). A full IPM strategy for CSFB barely exists. Although there are a range of preventative measures these require scientific validation; critically, resistant/tolerant OSR cultivars are not yet available. Existing monitoring methods are time consuming and there are no commercial models to enable decision support based on predictions migration timing or population size. Available thresholds are not based on physiological tolerances of the plant making it hard to adapt them to changing market prices for the crop and costs of control. Non-synthetic alternatives tested and registered for use against CSFB are lacking, making resistance management impossible. CSFB control is therefore dependent upon conservation biocontrol. Natural enemies of CSFB are present, but quantification of their effects is needed and habitat management strategies to exploit their potential. Although some EU countries have local initiatives to reduce insecticide use and encourage use of ‘greener’ alternatives, there is no formal process for ranking these and little information available to help farmers make choices. We summarise the main knowledge gaps and future research needed to improve measures for CSFB control and to facilitate development of a full IPM strategy for this pest -and sustainable oilseeds production

    The evolution of ecological specialization across the range of a broadly distributed marine species

    Get PDF
    Ecological specialization is an important engine of evolutionary change and adaptive radiation, but empirical evidence of local adaptation in marine environments is rare, a pattern that has been attributed to the high dispersal ability of marine taxa and limited geographic barriers to gene flow. The broad-nosed pipefish, Syngnathus typhle, is one of the most broadly distributed syngnathid species and shows pronounced variation in cranial morphology across its range, a factor that may contribute to its success in colonizing new environments. We quantified variation in cranial morphology across the species range using geometric morphometrics, and tested for evidence of trophic specialization by comparing individual-level dietary composition with the community of prey available at each site. Although the diets of juvenile pipefish from each site were qualitatively similar, ontogenetic shifts in dietary composition resulted in adult populations with distinctive diets consistent with their divergent cranial morphology. Morphological differences found in nature are maintained under common garden conditions, indicating that trophic specialization in S. typhle is a heritable trait subject to selection. Our data highlight the potential for ecological specialization in response to spatially variable selection pressures in broadly distributed marine species.Swiss Academy of SciencesSwiss National Science FoundationSwiss National Science Foundation (SNSF)European CommissionUniversity of ZurichBrooklyn CollegeCity University of New Yorkinfo:eu-repo/semantics/acceptedVersio

    Identification of novel aphid-killing bacteria to protect plants.

    Get PDF
    Aphids, including the peach-potato aphid, Myzus persicae, are major insect pests of agriculture and horticulture, and aphid control measures are limited. There is therefore an urgent need to develop alternative and more sustainable means of control. Recent studies have shown that environmental microbes have varying abilities to kill insects. We screened a range of environmental bacteria isolates for their abilities to kill target aphid species. Tests demonstrated the killing aptitude of these bacteria against six aphid genera (including Myzus persicae). No single bacterial strain was identified that was consistently toxic to insecticide-resistant aphid clones than susceptible clones, suggesting resistance to chemicals is not strongly correlated with bacterial challenge. Pseudomonas fluorescens PpR24 proved the most toxic to almost all aphid clones whilst exhibiting the ability to survive for over three weeks on three plant species at populations of 5–6 log CFU cm−2 leaf. Application of PpR24 to plants immediately prior to introducing aphids onto the plants led to a 68%, 57% and 69% reduction in aphid populations, after 21 days, on Capsicum annuum, Arabidopsis thaliana and Beta vulgaris respectively. Together, these findings provide new insights into aphid susceptibility to bacterial infection with the aim of utilizing bacteria as effective biocontrol agents

    Distribution, Population Biology, and Trophic Ecology of the Deepwater Demersal Fish Halosauropsis macrochir (Pisces: Halosauridae) on the Mid-Atlantic Ridge

    Get PDF
    Halosauropsis macrochir ranked amongst the most abundant and widespread demersal fishes on the mid-Atlantic Ridge of the North Atlantic (Iceland-Azores) with greatest abundance at 1700–3500 m. All sizes, ranging from 10–76 cm total length, occurred in the area without any apparent spatial pattern or depth trend. Using otolith sections displaying growth increments assumed to represent annuli, the age range recorded was 2–36 years, but most individuals were <20 years. Length and weight at age data were used to fit growth models. No differences between sexes in length and weight at age were observed. The majority of samples had a surplus of males. Diet analysis showed that H. macrochir feeds on Crustacea, Teleostei, Polychaeta, and Cephalopoda, but few prey could be identified to lower taxonomical levels. The mid-Atlantic Ridge constitutes a major portion of the North Atlantic living space of the abyssal halosaur where it completes its full life cycle, primarily as an actively foraging euryophagous micronekton/epibenthos and infauna feeder, becoming a partial piscivore with increasing size

    The position of graptolites within Lower Palaeozoic planktic ecosystems.

    Get PDF
    An integrated approach has been used to assess the palaeoecology of graptolites both as a discrete group and also as a part of the biota present within Ordovician and Silurian planktic realms. Study of the functional morphology of graptolites and comparisons with recent ecological analogues demonstrates that graptolites most probably filled a variety of niches as primary consumers, with modes of life related to the colony morphotype. Graptolite coloniality was extremely ordered, lacking any close morphological analogues in Recent faunas. To obtain maximum functional efficiency, graptolites would have needed varying degrees of coordinated automobility. A change in lifestyle related to ontogenetic changes was prevalent within many graptolite groups. Differing lifestyle was reflected by differing reproductive strategies, with synrhabdosomes most likely being a method for rapid asexual reproduction. Direct evidence in the form of graptolithophage 'coprolitic' bodies, as well as indirect evidence in the form of probable defensive adaptations, indicate that graptolites comprised a food item for a variety of predators. Graptolites were also hosts to a variety of parasitic organisms and provided an important nutrient source for scavenging organisms
    • 

    corecore