812 research outputs found

    La metodología de aprendizaje por proyectos ligada a aprendizaje servicio en educación postobligatoria

    Get PDF
    Este artículo presenta una aplicación de la metodología de aprendizaje por proyectos (PBL en sus siglas en inglés) combinada con aprendizaje servicio para alumnos de bachillerato. A diferencia de lo que ocurre en su aplicación más convencional en el sistema educativo preuniversitario, el énfasis no recae exclusivamente en aspectos procedimentales sino que ha primado la transmisión y adquisición de contenidos. El producto generado de las prácticas PBL ha tenido a menudo una dimensión social que lo aproxima al aprendizaje servicio. El hecho de que los proyectos se realizasen con una periodicidad trimestral y en colaboración entre tres asignaturas ha permitido introducir un deseable enfoque interdisciplinar. La valoración en términos de percepción por parte del alumnado y del claustro ha sido evaluada con un cuestionario y arroja valores muy positivos. Una segunda fase de evaluación del aprendizaje se realizará en el futuro

    The effect of morphology upon electrophysiological responses of retinal ganglion cells: simulation results

    Get PDF
    Retinal ganglion cells (RGCs) display differences in their morphology and intrinsic electrophysiology. The goal of this study is to characterize the ionic currents that explain the behavior of ON and OFF RGCs and to explore if all morphological types of RGCs exhibit the phenomena described in electrophysiological data. We extend our previous single compartment cell models of ON and OFF RGCs to more biophysically realistic multicompartment cell models and investigate the effect of cell morphology on intrinsic electrophysiological properties. The membrane dynamics are described using the Hodgkin - Huxley type formalism. A subset of published patch-clamp data from isolated intact mouse retina is used to constrain the model and another subset is used to validate the model. Two hundred morphologically distinct ON and OFF RGCs are simulated with various densities of ionic currents in different morphological neuron compartments. Our model predicts that the differences between ON and OFF cells are explained by the presence of the low voltage activated calcium current in OFF cells and absence of such in ON cells. Our study shows through simulation that particular morphological types of RGCs are capable of exhibiting the full range of phenomena described in recent experiments. Comparisons of outputs from different cells indicate that the RGC morphologies that best describe recent experimental results are ones that have a larger ratio of soma to total surface area

    Un estudio sobre el álgebra de conjuntos basado en registros semióticos

    Get PDF
    Basados en la teoría de Registros Semióticos de Duval (Duval R.,2006) investigamos desde una postura cognitiva una problemática de enseñanza aprendizaje referida a la Teoría de Conjuntos, es un área que al igual que la lógica bivalente es fundamental para la construcción del conocimiento matemático. Realizamos un estudio de casos múltiples en dos universidades de la zona, donde la información que hemos recabado hasta ahora, dio cuenta fundamentalmente de las dificultades en las conversiones de registros naturales a gráficos, en conjunto con los tratamientos dentro de un mismo registro algebraico

    Genome-wide scan for five brain oscillatory phenotypes identifies a new qtl associated with theta eeg band

    Get PDF
    Brain waves, measured by electroencephalography (EEG), are a powerful tool in the investigation of neurophysiological traits and a noninvasive and cost-effective alternative in the diagnostic of some neurological diseases. In order to identify novel Quantitative Trait Loci (QTLs) for brain wave relative power (RP), we collected resting state EEG data in five frequency bands (d, ¿, a, ß1, and ß2) and genome-wide data in a cohort of 105 patients with late onset Alzheimer’s disease (LOAD), 41 individuals with mild cognitive impairment and 45 controls from Iberia, correcting for disease status. One novel association was found with an interesting candidate for a role in brain wave biology, CLEC16A (C-type lectin domain family 16), with a variant at this locus passing the adjusted genome-wide significance threshold after Bonferroni correction. This finding reinforces the importance of immune regulation in brain function. Additionally, at a significance cutoff value of 5 × 10-6, 18 independent association signals were detected. These signals comprise brain expression Quantitative Loci (eQTLs) in caudate basal ganglia, spinal cord, anterior cingulate cortex and hypothalamus, as well as chromatin interactions in adult and fetal cortex, neural progenitor cells and hippocampus. Moreover, in the set of genes showing signals of association with brain wave RP in our dataset, there is an overrepresentation of loci previously associated with neurological traits and pathologies, evidencing the pleiotropy of the genetic variation modulating brain function.This project is supported by “European Commission” and “European Regional Development Fund” under the project “Análisis y correlación entre el genoma completo y la actividad cerebral para la ayuda en el diagnóstico de la enfermedad de Alzheimer” (Project 1317_AD-EEGWA), (Cooperation Programme INTERREG V-A Spain-Portugal POCTEP 2014–2020) and the COMPETE 2020-Operacional Programme for Competitiveness and Internationalisation (POCI), Portugal 2020. Portuguese funds are supporting this work through FCT-Fundação para a Ciência e a Tecnologia/Ministério da Ciência, Tecnologia e Inovação in the framework of the project “Institute for Research and Innovation in Health Sciences” (POCI-01-0145-FEDER-007274). SM, AML, NP and IG are funded by FCT: CEECIND/00684/2017, IF/01262/2014, SFRH/BPD/97414/2013 and CEECIND/02609/2017, respectively. MA is funded by the Grant RYC-2015-18241 from the Spanish Government. Spanish funds are supporting this work through “Ministerio de Ciencia e Innovación–Agencia Estatal de Investigación” and “European Regional Development Fund” under project PGC2018-098214-A-I00 and by “CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN)” through “Instituto de Salud Carlos III” co-funded with “European Regional Development Fund” funds

    A Minimal Model of Metabolism Based Chemotaxis

    Get PDF
    Since the pioneering work by Julius Adler in the 1960's, bacterial chemotaxis has been predominantly studied as metabolism-independent. All available simulation models of bacterial chemotaxis endorse this assumption. Recent studies have shown, however, that many metabolism-dependent chemotactic patterns occur in bacteria. We hereby present the simplest artificial protocell model capable of performing metabolism-based chemotaxis. The model serves as a proof of concept to show how even the simplest metabolism can sustain chemotactic patterns of varying sophistication. It also reproduces a set of phenomena that have recently attracted attention on bacterial chemotaxis and provides insights about alternative mechanisms that could instantiate them. We conclude that relaxing the metabolism-independent assumption provides important theoretical advances, forces us to rethink some established pre-conceptions and may help us better understand unexplored and poorly understood aspects of bacterial chemotaxis

    Relational Quantum Mechanics

    Full text link
    I suggest that the common unease with taking quantum mechanics as a fundamental description of nature (the "measurement problem") could derive from the use of an incorrect notion, as the unease with the Lorentz transformations before Einstein derived from the notion of observer-independent time. I suggest that this incorrect notion is the notion of observer-independent state of a system (or observer-independent values of physical quantities). I reformulate the problem of the "interpretation of quantum mechanics" as the problem of deriving the formalism from a few simple physical postulates. I consider a reformulation of quantum mechanics in terms of information theory. All systems are assumed to be equivalent, there is no observer-observed distinction, and the theory describes only the information that systems have about each other; nevertheless, the theory is complete.Comment: Substantially revised version. LaTeX fil

    Unravelling the Gut Microbiota of Cow’s Milk–Allergic Infants, Their Mothers, and Their Grandmothers

    Get PDF
    The gut microbiome constitutes a highly complex ecosystem in which bacteria are the most prominent components. Around 70% of primary colonization of the gut microbiota is maternal in origin [1], and the first 1000 days of life are crucial for the development of the intestinal microbiota [2]. Despite its early formation, the gut microbiota is highly dynamic and dependent on host-associated confounding factors such as age, diet, antibiotics, lifestyle, and environmental conditions [3,4]. Alterations in gut microbiota have been described in people with different types of allergy, including cow’s milk allergy (CMA)This work was supported by Instituto de Salud Carlos III (PI17/01087) and Fundación Sociedad Española de Alergia e Inmunología Clínica (FSEAIC_2016). It was cofunded by the European Regional Development Fund “Investing in your future” for the Thematic Network and Co-operative Research Centers ARADyAL RD16/0006/0015 and RD16/0006/0026. It was additionally supported by the Ministry of Science, Innovation in Spain (PCI2018-092930), cofunded by the European program ERA HDHL - Nutrition & the Epigenome, project Dietary Intervention in Food Allergy: Microbiome, Epigenetic and Metabolomic interactions (DIFAMEM). DR and EZ-V acknowledge funding from the Spanish Ministry of Science, Innovation and Universities (RTI2018-095166-B-I00). CU acknowledges funding from the Spanish Ministry of Economy (SAF2017-90083-R). TCB-T thanks CEUInternational Doctoral School (CEINDO) for his fellowship

    “Structuration” by intellectual organization: the configuration of knowledge in relations among structural components in networks of science

    Get PDF
    Using aggregated journal–journal citation networks, the measurement of the knowledge base in empirical systems is factor-analyzed in two cases of interdisciplinary developments during the period 1995–2005: (i) the development of nanotechnology in the natural sciences and (ii) the development of communication studies as an interdiscipline between social psychology and political science. The results are compared with a case of stable development: the citation networks of core journals in chemistry. These citation networks are intellectually organized by networks of expectations in the knowledge base at the specialty (that is, above-journal) level. The “structuration” of structural components (over time) can be measured as configurational information. The latter is compared with the Shannon-type information generated in the interactions among structural components: the difference between these two measures provides us with a measure for the redundancy generated by the specification of a model in the knowledge base of the system. This knowledge base incurs (against the entropy law) to variable extents on the knowledge infrastructures provided by the observable networks of relations

    Life and consciousness – The Vedāntic view

    Get PDF
    In the past, philosophers, scientists, and even the general opinion, had no problem in accepting the existence of consciousness in the same way as the existence of the physical world. After the advent of Newtonian mechanics, science embraced a complete materialistic conception about reality. Scientists started proposing hypotheses like abiogenesis (origin of first life from accumulation of atoms and molecules) and the Big Bang theory (the explosion theory for explaining the origin of universe). How the universe came to be what it is now is a key philosophical question. The hypothesis that it came from Nothing (as proposed by Stephen Hawking, among others), proves to be dissembling, since the quantum vacuum can hardly be considered a void. In modern science, it is generally assumed that matter existed before the universe came to be. Modern science hypothesizes that the manifestation of life on Earth is nothing but a mere increment in the complexity of matter — and hence is an outcome of evolution of matter (chemical evolution) following the Big Bang. After the manifestation of life, modern science believed that chemical evolution transformed itself into biological evolution, which then had caused the entire biodiversity on our planet. The ontological view of the organism as a complex machine presumes life as just a chance occurrence, without any inner purpose. This approach in science leaves no room for the subjective aspect of consciousness in its attempt to know the world as the relationships among forces, atoms, and molecules. On the other hand, the Vedāntic view states that the origin of everything material and nonmaterial is sentient and absolute (unconditioned). Thus, sentient life is primitive and reproductive of itself – omne vivum ex vivo – life comes from life. This is the scientifically verified law of experience. Life is essentially cognitive and conscious. And, consciousness, which is fundamental, manifests itself in the gradational forms of all sentient and insentient nature. In contrast to the idea of objective evolution of bodies, as envisioned by Darwin and followers, Vedānta advocates the idea of subjective evolution of consciousness as the developing principle of the world. In this paper, an attempt has been made to highlight a few relevant developments supporting a sentient view of life in scientific research, which has caused a paradigm shift in our understanding of life and its origin
    corecore