1,228 research outputs found

    High temperature glass coatings for superalloys and refractory metals

    Get PDF
    New glasses are used as protective coatings on metals and alloys susceptible to oxidation at high temperatures in oxidizing atmospheres. Glasses are stable and solid at temperatures up to 1000 deg C, adhere well to metal surfaces, and are usable for metals with broad range of expansion coefficients

    A preliminary analysis of the data from experiment 77-13 and final report on glass fining experiments in zero gravity

    Get PDF
    Thermal fining, thermal migration of bubbles under reduced gravity conditions, and data to verify current theoretical models of bubble location and temperatures as a function of time are discussed. A sample, sodium borate glass, was tested during 5 to 6 minutes of zero gravity during rocket flight. The test cell contained a heater strip; thermocouples were in the sample. At present quantitative data are insufficient to confirm results of theoretical calculations

    Development and evaluation of controlled viscosity coatings for superalloys

    Get PDF
    Controlled viscosity glass based protective coatings for superalloys for turbine blade application

    On the Properties of Plastic Ablators in Laser-Driven Material Dynamics Experiments

    Get PDF
    Radiation hydrodynamics simulations were used to study the effect of plastic ablators in laser-driven shock experiments. The sensitivity to composition and equation of state was found to be 5-10% in ablation pressure. As was found for metals, a laser pulse of constant irradiance gave a pressure history which decreased by several percent per nanosecond. The pressure history could be made more constant by adjusting the irradiance history. The impedance mismatch with the sample gave an increase o(100%) in the pressure transmitted into the sample, for a reduction of several tens of percent in the duration of the peak load applied to the sample, and structured the release history by adding a release step to a pressure close to the ablation pressure. Algebraic relations were found between the laser pulse duration, the ablator thickness, and the duration of the peak pressure applied to the sample, involving quantities calculated from the equations of state of the ablator and sample using shock dynamics.Comment: Typos fixe

    A luminosity constraint on the origin of unidentified high energy sources

    Full text link
    The identification of point sources poses a great challenge for the high energy community. We present a new approach to evaluate the likelihood of a set of sources being a Galactic population based on the simple assumption that galaxies similar to the Milky Way host comparable populations of gamma-ray emitters. We propose a luminosity constraint on Galactic source populations which complements existing approaches by constraining the abundance and spatial distribution of any objects of Galactic origin, rather than focusing on the properties of a specific candidate emitter. We use M31 as a proxy for the Milky Way, and demonstrate this technique by applying it to the unidentified EGRET sources. We find that it is highly improbable that the majority of the unidentified EGRET sources are members of a Galactic halo population (e.g., dark matter subhalos), but that current observations do not provide any constraints on all of these sources being Galactic objects if they reside entirely in the disk and bulge. Applying this method to upcoming observations by the Fermi Gamma-ray Space Telescope has the potential to exclude association of an even larger number of unidentified sources with any Galactic source class.Comment: 18 pages, 4 figures, to appear in JPhys

    A Search for Radio-Quiet Gamma-Ray Pulsars

    Get PDF
    Most Galactic point sources of gamma rays remain unidentified. The few (extrasolar) sources that have been identified are all young, rotation-powered pulsars, all but one of which were identified using radio ephemerides. The radio-quiet Geminga pulsar was identified only after pulsations were discovered in a coincident X-ray source. Observational evidence indicates that many of the unidentified Galactic sources are likely to be pulsars, and some theoretical models predict a potentially large population of radio-quiet gamma-ray pulsars. We present a new method for performing sensitive gamma-ray pulsar searches. We used this method to search several of the strongest EGRET sources for pulsations. This was a blind search for new pulsars, covering a frequency and a frequency-derivative phase space large enough to detect Crab-like pulsars as well as lower frequency, high magnetic field "magnetars." No new pulsars were discovered, and we report upper limits constraining the characteristics of any signals contained in the data sets searched

    Parsec Scale Properties of Markarian 501

    Full text link
    We present the results of a high angular resolution study of the BL Lac object Markarian 501 in the radio band. We consider data taken at 14 different epochs, ranging between 1.6 GHz and 22 GHz in frequency, and including new Space VLBI observations obtained on 2001 March 5 and 6 at 1.6 and 5 GHz. We study the kinematics of the parsec-scale jet and estimate its bulk velocity and orientation with respect to the line of sight. Limb brightened structure in the jet is clearly visible in our data and we discuss its possible origin in terms of velocity gradients in the jet. Quasi-simultaneous multi-wavelength observations allow us to map the spectral index distribution and to compare it to the jet morphology. Finally, we estimate the physical parameters of the parsec-scale jet.Comment: accepted for publication in ApJ; 24 pages with 17 figures (fig. 1 and fig. 2 available only as .jpg files

    Multiwavelength Observations of the Gamma-Ray Blazar PKS 0528+134 in Quiescence

    Get PDF
    We present multiwavelength observations of the ultraluminous blazar-type radio loud quasar PKS 0528+134 in quiescence during the period July to December 2009. Significant flux variability on a time scale of several hours was found in the optical regime, accompanied by a weak trend of spectral softening with increasing flux. We suggest that this might be the signature of a contribution from the accretion disk at the blue end of the optical spectrum. The optical flux is weakly polarized with rapid variations of the degree and direction of polarization, while the polarization of the 43 GHz radio core remains steady. Optical spectropolarimetry suggests a trend of increasing degree of polarization with increasing wavelength, providing additional evidence for an accretion disc contribution towards the blue end of the optical spectrum. We constructed four SEDs indicating that even in the quiescent state, the bolometric luminosity of PKS 0528+134 is dominated by its gamma-ray emission. A leptonic single-zone jet model produced acceptable fits to the SEDs with contributions to the high-energy emission from synchrotron self-Compton radiation and Comptonization of direct accretion disk emission. Fit parameters close to equipartition were obtained. The moderate variability on long time scales implies the existence of on-going particle acceleration, while the observed optical polarization variability seems to point towards a turbulent acceleration process. Turbulent particle acceleration at stationary features along the jet therefore appears to be a viable possibility for the quiescent state of PKS 0528+134.Comment: Accepted for Publication in The Astrophysical Journal. - Acknowledgement adde
    corecore