155 research outputs found

    Temporal non-independence of foraging dive and surface duration sequences in the European shag Gulosus aristotelis

    Get PDF
    Studies of foraging behaviour and respiratory physiology in breath-holding divers often assume that each dive cycle (dive plus surface duration) is physiologically and ecologically independent within a series (or “bout”) of sequential dives. We tested this assumption using time depth recorders and GPS data for more than 42,000 dives in 1289 bouts by 39 pairs of male and female European shags (Gulosus aristotelis) provisioning nestlings. We found distinct patterns of temporal autocorrelation over several dives within bouts, but this was driven mainly by consecutive dives of the same type, that is, runs of V-shaped (presumably prey searching) versus U-shaped (presumably active hunting) dives. We found no evidence of cumulative physiological effects (i.e. fatigue and/or lowered body temperature) across dives within a bout. However, within-individual variation in dive behaviour revealed complex interactions. Longer bouts were associated with more V-shaped dives, including more and longer runs of V-shaped dives. Meanwhile, more U-shaped dives and longer runs of U-shaped dives acted as limiting factors to bout lengths, with longer bouts being associated with more U-shaped dives only later in the bout. Interactions between bout length and body mass, and between dive order within the bout and body mass, also suggested various size-specific patterns in the temporal distribution of U-shaped dives. Long bouts and bouts ending in longer runs of V-shaped dives were more likely to indicate the termination of foraging activity. However, neither dive type nor bout length predicted whether individuals subsequently (i) stayed to forage in the same location or (ii) moved to a new location to continue foraging within the same trip from the nest. European shags therefore showed temporal non-independence across successive dive cycles and successive bouts of dives, likely as a result of temporal and spatial variation in prey availabilities rather than cumulative physiological effects that might contravene the assumptions in models of optimal dive behaviour. dive behaviour, dive cycles, foraging behaviour, marginal value theorem, physiological constraints, TDR, telemetry, temporal autocorrelationpublishedVersio

    Hur stora revir har vargarna i Skandinavien och vad pÄverkar detta?

    Get PDF
    Vargrevirens storlek pĂ„ Ă„rsbasis varierade mellan 259 och 1676 km2 och var i medeltal 916 km2 baserat pĂ„ data frĂ„n 28 olika flockar under perioden 1999–2011. Trots att vargpopulationen ökade ca 4 gĂ„nger i storlek under studieperioden sĂ„ fann vi inget samband mellan revirens storlek och tĂ€theten av varg i populationen. Det Ă€r möjligt att tĂ€theten i populationen Ă€nnu inte har nĂ„tt en nivĂ„ dĂ€r konkurrensen mellan flockar Ă€r sĂ„ hög att den begrĂ€nsar revirens utbredning. Vi fann inte heller nĂ„got samband mellan revirens storlek och tĂ€theten av Ă€lg, som var det primĂ€ra bytesdjuret i de flesta av reviren. Revirens storlek uppvisade dĂ€remot ett starkt samband med bland annat tĂ€theten av rĂ„djur, andelen jordbruksmark och latitud. Mer sydligt belĂ€gna omrĂ„den med höga tĂ€theter av rĂ„djur och hög andel jordbruksmark var kopplade till relativt sett smĂ„ revir. Den geografiska variationen i revirstorlek speglar troligen en varierande produktionsförmĂ„ga i landskapet. Sett i ett internationellt perspektiv har vargarna i Skandinavien stora revir i förhĂ„llande till tĂ€theten av bytesdjur. Denna studie visar att tĂ€theten av varg och vargrevir kan variera mycket mellan olika omrĂ„den och att vi kan förvĂ€nta oss betydligt högre tĂ€theter vid kolonisation av sydligare belĂ€gna omrĂ„den i Sverige, dĂ€r tĂ€theten av alternativa bytesdjur sĂ„som rĂ„djur Ă€r högre

    Spatiotemporal patterns of red fox scavenging in forest and tundra: the influence of prey fluctuations and winter conditions

    Get PDF
    Concern has been raised regarding red fox (Vulpes Vulpes) population increase and range expansion into alpine tundra, directly and indirectly enhanced by human activities, including carrion supply, and its negative impact on native fauna. In this study, we used cameras on bait stations and hunting remains to investigate how spatiotemporal patterns of red fox scavenging were influenced by abundance and accessibility of live prey, i.e., small rodent population cycles, snow depth, and primary productivity. We found contrasting patterns of scavenging between habitats during winter. In alpine areas, use of baits was highest post rodent peaks and when snow depth was low. This probably reflected relatively higher red fox abundance due to increased reproduction or migration of individuals from neighboring areas, possibly also enhanced by a diet shift. Contrastingly, red fox use of baits in the forest was highest during rodent low phase, and when snow was deep, indicating a higher dependency of carrion under these conditions. Scavenging patterns by red fox on the pulsed but predictable food resource from hunting remains in the autumn revealed no patterns throughout the rodent cycle. In this study, we showed that small rodent dynamics influenced red fox scavenging, at least in winter, but with contrasting patterns depending on environmental conditions. In marginal alpine areas, a numerical response to higher availability of rodents possible lead to the increase in bait visitation the proceeding winter, while in more productive forest areas, low availability of rodents induced a functional diet shift towards scavenging. Red fox . Scavenging . Small rodents . Habitat . Climate . Camera trapspublishedVersio

    Smartphone app reveals that lynx avoid human recreationists on local scale, but not home range scale

    Get PDF
    Outdoor recreation is increasing and affects habitat use and selection by wildlife. These effects are challenging to study, especially for elusive species with large spatial requirements, as it is hard to obtain reliable proxies of recreational intensity over extensive areas. Commonly used proxies, such as the density of, or distance to, hiking paths, ignore outdoor recreation occurring on other linear feature types. Here we utilized crowdsourced data from the Strava training app to obtain a large-scale proxy for pedestrian outdoor recreation intensity in southeast Norway. We used the proxy and GPS-tracking data from collared Eurasian lynx (Lynx lynx) to investigate how recreation affects habitat selection at the home range scale and local scale by lynx during summer. We fitted resource selection functions at the two scales using conditional logistic regression. Our analysis revealed that lynx avoided areas of recreational activity at the local scale, but not at home range scale. Nonetheless, lynx frequently used areas associated with recreation, and to a greater degree at night than during the day. Our results suggest that local-scale avoidance of recreation and temporal adjustments of habitat use by lynx mitigate the need for a home range-scale response towards recreation. Scale-dependent responses and temporal adjustments in habitat use may facilitate coexistence between humans and large carnivores

    Smartphone app reveals that lynx avoid human recreationists on local scale, but not home range scale

    Get PDF
    The global incrOutdoor recreation is increasing and afects habitat use and selection by wildlife. These efects are challenging to study, especially for elusive species with large spatial requirements, as it is hard to obtain reliable proxies of recreational intensity over extensive areas. Commonly used proxies, such as the density of, or distance to, hiking paths, ignore outdoor recreation occurring on other linear feature types. Here we utilized crowdsourced data from the Strava training app to obtain a large-scale proxy for pedestrian outdoor recreation intensity in southeast Norway. We used the proxy and GPS-tracking data from collared Eurasian lynx (Lynx lynx) to investigate how recreation afects habitat selection at the home range scale and local scale by lynx during summer. We ftted resource selection functions at the two scales using conditional logistic regression. Our analysis revealed that lynx avoided areas of recreational activity at the local scale, but not at home range scale. Nonetheless, lynx frequently used areas associated with recreation, and to a greater degree at night than during the day. Our results suggest that local-scale avoidance of recreation and temporal adjustments of habitat use by lynx mitigate the need for a home range-scale response towards recreation. Scale-dependent responses and temporal adjustments in habitat use may facilitate coexistence between humans and large carnivorespublishedVersio

    Scavenger community structure along an environmental gradient from boreal forest to alpine tundra in Scandinavia

    Get PDF
    Scavengers can have strong impacts on food webs, and awareness of their role in ecosystems has increased during the last decades. In our study, we used baited cam-era traps to quantify the structure of the winter scavenger community in central Scandinavia across a forest–alpine continuum and assess how climatic conditions affected spatial patterns of species occurrences at baits. Canonical correspondence analysis revealed that the main habitat type (forest or alpine tundra) and snow depth was main determinants of the community structure. According to a joint species dis-tribution model within the HMSC framework, species richness tended to be higher in forest than in alpine tundra habitat but was only weakly associated with temperature and snow depth. However, we observed stronger and more diverse impacts of these covariates on individual species. Occurrence at baits by habitat generalists (red fox, golden eagle, and common raven) typically increased at low temperatures and high snow depth, probably due to increased energetic demands and lower abundance of natural prey in harsh winter conditions. On the contrary, occurrence at baits by forest specialists (e.g., Eurasian jay) tended to decrease in deep snow, which is possibly a consequence of reduced bait detectability and accessibility. In general, the influence of environmental covariates on species richness and occurrence at baits was lower in alpine tundra than in forests, and habitat generalists dominated the scavenger communities in both forest and alpine tundra. Following forecasted climate change, altered environmental conditions are likely to cause range expansion of boreal species and range contraction of typical alpine species such as the arctic fox. Our results suggest that altered snow conditions will possibly be a main driver of changes in species community structure.publishedVersio

    Scavenger community structure along an environmental gradient from boreal forest to alpine tundra in Scandinavia

    Get PDF
    Scavengers can have strong impacts on food webs, and awareness of their role in ecosystems has increased during the last decades. In our study, we used baited cam-era traps to quantify the structure of the winter scavenger community in central Scandinavia across a forest–alpine continuum and assess how climatic conditions affected spatial patterns of species occurrences at baits. Canonical correspondence analysis revealed that the main habitat type (forest or alpine tundra) and snow depth was main determinants of the community structure. According to a joint species dis-tribution model within the HMSC framework, species richness tended to be higher in forest than in alpine tundra habitat but was only weakly associated with temperature and snow depth. However, we observed stronger and more diverse impacts of these covariates on individual species. Occurrence at baits by habitat generalists (red fox, golden eagle, and common raven) typically increased at low temperatures and high snow depth, probably due to increased energetic demands and lower abundance of natural prey in harsh winter conditions. On the contrary, occurrence at baits by forest specialists (e.g., Eurasian jay) tended to decrease in deep snow, which is possibly a consequence of reduced bait detectability and accessibility. In general, the influence of environmental covariates on species richness and occurrence at baits was lower in alpine tundra than in forests, and habitat generalists dominated the scavenger communities in both forest and alpine tundra. Following forecasted climate change, altered environmental conditions are likely to cause range expansion of boreal species and range contraction of typical alpine species such as the arctic fox. Our results suggest that altered snow conditions will possibly be a main driver of changes in species community structure.publishedVersio

    Electronic Properties of T

    Get PDF
    Nanoparticle-covered electrodes have altered properties as compared to conventional electrodes with same chemical composition. The changes originate from the large surface area and enhanced conduction. To test the mineralization capacity of such materials, TiO2 nanoparticles were deposited on titanium and gold substrates. The electrochemical properties were investigated using cyclic voltammetry and impedance spectroscopy while the mineralization was tested by immersion in simulated body fluid. Two types of nucleation and growth behaviours were observed. For smooth nanoparticle surfaces, the initial nucleation is fast with the formation of few small nuclei of hydroxyapatite. With time, an amorphous 2D film develops with a Ca/P ratio close to 1.5. For the rougher surfaces, the nucleation is delayed but once it starts, thick layers are formed. Also the electronic properties of the oxides were shown to be important. Both density of states (DOS) in the bandgap of TiO2 and the active area were determined. The maximum in DOS was found to correlate with the donor density (Nd) and the active surface area. The results clearly show that a rough surface with high conductivity is beneficial for formation of thick apatite layers, while the nanoparticle covered electrodes show early nucleation but limited apatite formation

    Scavenging patterns of an inbred wolf population in a landscape with a pulse of human-provided carrion

    Get PDF
    Scavenging is an important part of food acquisition for many carnivore species that switch between scavenging and predation. In landscapes with anthropogenic impact, humans provide food that scavenging species can utilize. We quantified the magnitude of killing versus scavenging by gray wolves (Canis lupus) in Scandinavia where humans impact the ecosystem through hunter harvest, land use practices, and infrastructure. We investigated the cause of death of different animals utilized by wolves, and examined how the proportion of their consumption time spent scavenging was influenced by season, wolf social affiliation, level of inbreeding, density of moose (Alces alces) as their main prey, density of brown bear (Ursus arctos) as an intraguild competitor, and human density. We used data from 39 GPS-collared wolves covering 3198 study days (2001-2019), including 14,205 feeding locations within space-time clusters, and 1362 carcasses utilized by wolves. Most carcasses were wolf-killed (80.5%) while a small part had died from other natural causes (1.9%). The remaining had either anthropogenic mortality causes (4.7%), or the cause of death was unknown (12.9%). Time spent scavenging was higher during winter than during summer and autumn. Solitary wolves spent more time scavenging than pack-living individuals, likely because individual hunting success is lower than pack success. Scavenging time increased with the mean inbreeding coefficient of the adult wolves, possibly indicating that more inbred individuals resort to scavenging, which requires less body strength. There was weak evidence for competition between wolves and brown bears as well as a positive relationship between human density and time spent scavenging. This study shows how both intrinsic and extrinsic factors drive wolf scavenging behavior, and that despite a high level of inbreeding and access to carrion of anthropogenic origin, wolves mainly utilized their own kills
    • 

    corecore