15 research outputs found

    Etude first-in-man d'un nouveau radiopharmaceutique TEP pour visualiser les récepteurs cérébraux 5-HT1A fonctionnels

    No full text
    National audienceLes rĂ©cepteurs sĂ©rotoninergiques 5‐HT1A sont connus pour ĂȘtre impliquĂ©s dans les pathologies neurodĂ©gĂ©nĂ©ratives et psychiatriques. Le dĂ©veloppement de radiopharmaceutiques des rĂ©cepteurs sĂ©rotoninergiques 5-HT1A pour la TEP (Tomographie par Emission de Positons) constitue un axe de recherche majeur pour comprendre leurs mĂ©canismes physiopathologiques et dĂ©velopper d'Ă©ventuels biomarqueurs de ces pathologies.À l'heure actuelle, il existe plusieurs radiopharmaceutiques pour l'imagerie TEP des rĂ©cepteurs 5‐HT1A, dont le [18F]‐MPPF (Zimmer and Luxen, NeuroImage 2012). Cependant, les radiotraceurs utilisĂ©s en clinique sont tous des antagonistes. En termes de pharmacologie, ils se fixent donc sur l'ensemble des rĂ©cepteurs 5-HT1A, c'est‐à‐dire ceux Ă  haute affinitĂ© (couplĂ©s aux protĂ©ines G et transmettant un signal) et sur les rĂ©cepteurs Ă  basse affinitĂ© (non‐couplĂ©s aux protĂ©ines G et non fonctionnels).L'objectif de notre laboratoire est de dĂ©velopper le premier radiopharmaceutique agoniste des rĂ©cepteurs sĂ©rotoninergiques permettant visualiser et quantifier spĂ©cifiquement les rĂ©cepteurs fonctionnels couplĂ©s aux protĂ©ines G (Aznavour and Zimmer, Neuropharmacology 2007). L'imagerie in vivo d'un radiopharmaceutique agoniste comparĂ©e Ă  celle d'un radiopharmaceutique antagoniste permettrait de quantifier localement le statut fonctionnel des rĂ©cepteurs chez des patients, leur dĂ©couplage au cours de l'Ă©volution de leur pathologie, voire au cours de leur traitement. Une collaboration scientifique avec les laboratoires Pierre Fabre (2008) puis Neurolixis Inc (2013) nous a permis d'identifier plusieurs molĂ©cules agonistes 5‐HT1A, initialement utilisĂ©es comme mĂ©dicaments-candidats, que nous transformons en radiotraceurs potentiels. Parmis ces molĂ©cules, l'Ă©valuation prĂ©clinique du [18F]-F13640 a montrĂ© des rĂ©sultats prometteurs pour envisager un passage Ă  l'homme.L'accĂšs aux donnĂ©es cliniques du F13640, explorĂ© initialement comme mĂ©dicament en phase 2, et les donnĂ©es prĂ©cliniques concluantes du [18F]-F13640 nous ont permis de constituer un dossier ANSM pour mettre en place un essai clinique d'imagerie TEP chez le volontaire sain. L'objectif est d'apporter la preuve de concept que le [18F]-F13640 se lie aux rĂ©cepteurs 5-HT1A fonctionnels

    Développement préclinique et clinique du [18F]F13640 pour l'imagerie des récepteurs 5-HT1A cérébraux

    No full text
    PET radiotracers are useful tools in neuropharmacology to explore receptors coupled to G proteins. One of the their highly coveted properties is measuring the synaptic levels of endogenous neurotransmitter. To date, no radiotracer has been validated for this application. If the development of the first dopaminergic radiotracers could show their sensitivity to the release of dopamine during pharmacological challenge with amphetamines, the receptor ligand model showed its limits. In other words, certain phenomena hitherto unexplained by the model have been observed in vivo. Hypotheses have been formulated using in vitro data to rethink this model. They indicate in particular the existence of 2 types of binding sites on the receptors coupled to the G proteins. An agonist binds to the high affinity sites located on the functional receptors coupled to the G proteins. An antagonist binds to the low affinity sites located on both receptors coupled and not coupled to G proteins. It would suggest that the agonist property is more favorable for ensuring sensitivity to the endogenous neurotransmitter due to its competition on the same sites as the latter. To date, the majority of PET radiotracers are antagonist. This could explain the large number of failures to show their sensitivity to endogenous neurotransmitters. In this work, we show how the status of PET agonist radiotracer rethinks neuropharmacology through a review of the literature. In addition, preclinical experiments carried out with the new 5-HT1A agonist radiotracer, [18F]F13640, have shown unprecedented sensitivity to the release of serotonin, while its antagonist counterparts indicated contrasted results. These elements underline the importance of comparing the imagery of agonist and antagonist radiotracers. It also promotes the development of [18F]F13640 and agonist radiotracers to add a functional approach to pharmacology in PET imagingLes radiotraceurs en TEP sont des outils de neuropharmacologie pour l’exploration des rĂ©cepteurs couplĂ©s aux protĂ©ines G. L’une de leurs applications souhaitĂ©e est la mesure des taux de neurotransmetteurs endogĂšnes dans la synapse. Aucun radiotraceur n’est validĂ© pour mesurer indirectement les taux basal de neurotransmetteur. Si le dĂ©veloppement des premiers radiotraceurs dopaminergiques a pu montrer leur sensibilitĂ© Ă  la libĂ©ration de dopamine lors de dĂ©fi pharmacologique aux amphĂ©tamines, le modĂšle ligand rĂ©cepteur a montrĂ© ses limites. Autrement dit, certains phĂ©nomĂšnes jusque-lĂ  inexpliquĂ©s par le modĂšle sont Ă©tĂ© observĂ©s in vivo. Des hypothĂšses ont Ă©tĂ© formulĂ©es Ă  l’aide des donnĂ©es obtenues in vitro pour repenser ce modĂšle. Elle indiquent notamment l’existence de 2 types de sites de liaison sur les rĂ©cepteurs couplĂ©s au protĂ©ines G. Un agoniste se lie aux sites de haute affinitĂ© situĂ©s sur les rĂ©cepteurs fonctionnels couplĂ©s aux protĂ©ines G. Un antagoniste se fixe sur les sites de basse affinitĂ© prĂ©sents Ă  la fois sur les rĂ©cepteurs couplĂ©s et non couplĂ©s aux protĂ©ines G. Il semblerait que la propriĂ©tĂ© agoniste du radiotraceur soit plus favorable pour assurer une sensibilitĂ© au neurotransmetteur endogĂšne de par sa compĂ©tition sur les mĂȘme sites que ce dernier. A ce jour, la majoritĂ© des radiotraceurs TEP sont antagonistes. Cela pourrait expliquer le nombre important d’échec pour montrer leur sensibilitĂ© aux neurotransmetteur endogĂšne. Dans ce travail de thĂšse, nous montrons en quoi le statut de radiotraceur agoniste TEP repense la neuropharmacologie au moyen d’une revue de la littĂ©rature. Par ailleurs, les expĂ©riences prĂ©cliniques avec le nouveau radiotraceur agoniste 5-HT1A, le [18F]F13640, montrent de façon inĂ©dite sa sensibilitĂ© Ă  la libĂ©ration de sĂ©rotonine alors que ses homologues antagonistes indiquent des rĂ©sultats plus contrastĂ©s. Ces Ă©lĂ©ments montrent l’importance de comparer l’imagerie des radiotraceurs agonistes et antagonistes. Ils promeuvent le dĂ©veloppement du [18F]F13640 et des radiotraceurs agonistes pour alimenter l’approche fonctionnelle de la pharmacologie en TE

    Preclinical and clinical development of [18F]F13640 for brain 5-HT1A receptor imaging

    No full text
    Les radiotraceurs en TEP sont des outils de neuropharmacologie pour l’exploration des rĂ©cepteurs couplĂ©s aux protĂ©ines G. L’une de leurs applications souhaitĂ©e est la mesure des taux de neurotransmetteurs endogĂšnes dans la synapse. Aucun radiotraceur n’est validĂ© pour mesurer indirectement les taux basal de neurotransmetteur. Si le dĂ©veloppement des premiers radiotraceurs dopaminergiques a pu montrer leur sensibilitĂ© Ă  la libĂ©ration de dopamine lors de dĂ©fi pharmacologique aux amphĂ©tamines, le modĂšle ligand rĂ©cepteur a montrĂ© ses limites. Autrement dit, certains phĂ©nomĂšnes jusque-lĂ  inexpliquĂ©s par le modĂšle sont Ă©tĂ© observĂ©s in vivo. Des hypothĂšses ont Ă©tĂ© formulĂ©es Ă  l’aide des donnĂ©es obtenues in vitro pour repenser ce modĂšle. Elle indiquent notamment l’existence de 2 types de sites de liaison sur les rĂ©cepteurs couplĂ©s au protĂ©ines G. Un agoniste se lie aux sites de haute affinitĂ© situĂ©s sur les rĂ©cepteurs fonctionnels couplĂ©s aux protĂ©ines G. Un antagoniste se fixe sur les sites de basse affinitĂ© prĂ©sents Ă  la fois sur les rĂ©cepteurs couplĂ©s et non couplĂ©s aux protĂ©ines G. Il semblerait que la propriĂ©tĂ© agoniste du radiotraceur soit plus favorable pour assurer une sensibilitĂ© au neurotransmetteur endogĂšne de par sa compĂ©tition sur les mĂȘme sites que ce dernier. A ce jour, la majoritĂ© des radiotraceurs TEP sont antagonistes. Cela pourrait expliquer le nombre important d’échec pour montrer leur sensibilitĂ© aux neurotransmetteur endogĂšne. Dans ce travail de thĂšse, nous montrons en quoi le statut de radiotraceur agoniste TEP repense la neuropharmacologie au moyen d’une revue de la littĂ©rature. Par ailleurs, les expĂ©riences prĂ©cliniques avec le nouveau radiotraceur agoniste 5-HT1A, le [18F]F13640, montrent de façon inĂ©dite sa sensibilitĂ© Ă  la libĂ©ration de sĂ©rotonine alors que ses homologues antagonistes indiquent des rĂ©sultats plus contrastĂ©s. Ces Ă©lĂ©ments montrent l’importance de comparer l’imagerie des radiotraceurs agonistes et antagonistes. Ils promeuvent le dĂ©veloppement du [18F]F13640 et des radiotraceurs agonistes pour alimenter l’approche fonctionnelle de la pharmacologie en TEPPET radiotracers are useful tools in neuropharmacology to explore receptors coupled to G proteins. One of the their highly coveted properties is measuring the synaptic levels of endogenous neurotransmitter. To date, no radiotracer has been validated for this application. If the development of the first dopaminergic radiotracers could show their sensitivity to the release of dopamine during pharmacological challenge with amphetamines, the receptor ligand model showed its limits. In other words, certain phenomena hitherto unexplained by the model have been observed in vivo. Hypotheses have been formulated using in vitro data to rethink this model. They indicate in particular the existence of 2 types of binding sites on the receptors coupled to the G proteins. An agonist binds to the high affinity sites located on the functional receptors coupled to the G proteins. An antagonist binds to the low affinity sites located on both receptors coupled and not coupled to G proteins. It would suggest that the agonist property is more favorable for ensuring sensitivity to the endogenous neurotransmitter due to its competition on the same sites as the latter. To date, the majority of PET radiotracers are antagonist. This could explain the large number of failures to show their sensitivity to endogenous neurotransmitters. In this work, we show how the status of PET agonist radiotracer rethinks neuropharmacology through a review of the literature. In addition, preclinical experiments carried out with the new 5-HT1A agonist radiotracer, [18F]F13640, have shown unprecedented sensitivity to the release of serotonin, while its antagonist counterparts indicated contrasted results. These elements underline the importance of comparing the imagery of agonist and antagonist radiotracers. It also promotes the development of [18F]F13640 and agonist radiotracers to add a functional approach to pharmacology in PET imagin

    Is there a Role for Agonist Radiopharmaceuticals in PET Neuroimaging?

    No full text
    International audiencePositron emission tomography (PET) is a molecular imaging modality that enables in vivo exploration of metabolic processes and especially the pharmacology of neuroreceptors. G protein-coupled receptors (GPCR) play an important role in numerous pathophysiologic disorders of the central nervous system. Thus, they are targets of choice in PET imaging to bring proof concept of change in density in pathological conditions or in pharmacological challenge. At present, most radiotracers are antagonist ligands. In vitro data suggest that properties differ between GPCR agonists and antagonists: antagonists bind to receptors with a single affinity, whereas agonists are characterized by two different affinities: high affinity for receptors that undergo functional coupling to G-proteins, and low affinity for those that are not coupled. In this context, agonist radiotracers may be useful tools to give functional images of GPCRs in the brain, with high sensitivity to neurotransmitter release. Here we review all existing PET radiotracers and their role for understanding the ligand-receptor paradigm of GPCR in comparison with corresponding antagonist radiotracers

    18F-F13640 PET imaging of functional receptors in humans

    No full text
    International audienceThe vast majority of PET radiopharmaceuticals used for receptor neuroimaging are antagonists. This is particularly true for 5-HT1A receptor radiopharmaceuticals such as 18F-MPPF or 11C-WAY100635. These radiolabeled antagonists allow PET neuroimaging of the total pool of receptors, regardless of their functional state. In contrast, agonists bind preferentially to the functionally active state of receptors, a pharmacological property that has not yet been exploited for PET imaging of functional 5-HT1A receptors [1]. To this end, we have developed a highly selective 5-HT1A receptor agonist, 18FF13640, and validated it in animal models [2]. A postmortem study in Alzheimer subjects showed that the in vitro binding of 18F-F13640 differs from that of 18F-MPPF, the prototypical radiopharmaceutical [3]. Here we show the first human brain image obtained in vivo with 18F-F13640 (study registration, EudraCT2017-002722-21). A summed brain PET image was obtained in a 32-year-old healthy man after IV injection of the radiopharmaceutical (90-min scan). 18F-F13640 brain distribution, expressed by the standardized uptake value with the body weight (SUV bw), showed a binding pattern different from that seen with conventional antagonist 5-HT1A radiopharmaceuticals. Although the binding regions are well correlated to the density of 5-HT1A receptors, the ROIs are mainly cortical, indicating that these brain regions are enriched in functionally active receptors. 18F-F13640 is the first radiopharmaceutical that enables in vivo investigation of functional 5-HT1A receptors that are likely to be altered in pathological conditions such as neurodegenerative diseases or psychiatric disorders. The development of this agonist PET radiopharmaceutical opens new opportunities for nuclear medicine

    [18F]F13640, a 5-HT1A Receptor Radiopharmaceutical Sensitive to Brain Serotonin Fluctuations

    No full text
    International audienceColom et al. 5-HT 1A Brain Imaging and Fenfluramine data underline the need to perform longer PET scan to ensure accurate measure of displacement, they support clinical development of [ 18 F]F13640 as a tool to explore experimental paradigms involving physiological or pathological (neurological or neuropsychiatric pathologies) fluctuations of extracellular serotonin

    [18F]F13640: a selective agonist PET radiopharmaceutical for imaging functional 5-HT1A receptors in humans

    No full text
    International audienceAbstract Purpose F13640 (a.k.a. befiradol, NLX-112) is a highly selective 5-HT 1A receptor ligand that was selected as a PET radiopharmaceutical-candidate based on animal studies. Due to its high efficacy agonist properties, [ 18 F]F13640 binds preferentially to functional 5-HT 1A receptors, which are coupled to intracellular G-proteins. Here, we characterize brain labeling of 5-HT 1A receptors by [ 18 F]F13640 in humans and describe a simplified model for its quantification. Methods PET/CT and PET-MRI scans were conducted in a total of 13 healthy male volunteers (29 ± 9 years old), with arterial input functions (AIF) ( n = 9) and test–retest protocol ( n = 8). Several kinetic models were compared (one tissue compartment model, two-tissue compartment model, and Logan); two models with reference region were also evaluated: simplified reference tissue model (SRTM) and the logan reference model (LREF). Results [ 18 F]F13640 showed high uptake values in raphe nuclei and cortical regions. SRTM and LREF models showed a very high correlation with kinetic models using AIF. As concerns test–retest parameters and the prolonged binding kinetics of [ 18 F]F13640, better reproducibility, and reliability were found with the LREF method. Cerebellum white matter and frontal lobe white matter stand out as suitable reference regions. Conclusion The favorable brain labeling and kinetic profile of [ 18 F]F13640, its high receptor specificity and its high efficacy agonist properties open new perspectives for studying functionally active 5-HT 1A receptors, unlike previous radiopharmaceuticals that act as antagonists. [ 18 F]F13640’s kinetic properties allow injection outside of the PET scanner with delayed acquisitions, facilitating the design of innovative longitudinal protocols in neurology and psychiatry. Trial Registration. Trial Registration EudraCT 2017–002,722-21
    corecore