925 research outputs found

    A revised core-seismic integration in the Molloy Basin (ODP Site 909): Implications for the history of ice rafting and ocean circulation in the Atlantic-Arctic gateway

    Get PDF
    Today's cryosphere reflects an extreme climate state that developed through stepwise global Cenozoic cooling. In this context the opening of the Fram Strait, the Atlantic-Arctic Gateway (AAG), enabled deep-water exchange between the northern North Atlantic and the Arctic Ocean and thereby influenced global ocean circulation and climate. Here we present a new age model for Ocean Drilling Program Site 909 located in the Molloy Basin, a key site to investigate the late opening phase of the central Fram Strait and the early history of oceanic circulation in the AAG. Our results are based on a revised magnetostratigraphy calibrated by new palynomorph bioevents, which shifts previously used stratigraphies for Site 909 to significantly younger ages in the time interval from c. 15 Ma to 3 Ma. The revised late Miocene to present chronology combined with an improved core-log-seismic integration leads to a new high-resolution seismic stratigraphy for the central Fram Strait that allows a more comprehensive correlation with seismic markers from the western Barents Sea margin and also the adjacent Yermak Plateau. The new stratigraphy implies that prominent maxima in coarse sand particles and kaolinite, often interpreted as evidence for ice rafting in the Fram Strait occur at c. 10.8 Ma, c. 3 Myr later as previously inferred and thus well after the Middle Miocene Climate Transition (c. 15–13 Ma). In the late Tortonian (<7.5 Ma), sediment transport became current controlled, mainly through a western, recirculating branch of the West Spitsbergen Current. This transport was strongly enhanced between c. 6.4 and 4.6 Ma and likely linked to the subsiding Hovgaard (Hovgård) Ridge and the widening of the AAG. Late Pliocene to Pleistocene seismic reflectors correlate with episodes of elevated ice-rafted detritus input related to major steps in Northern Hemisphere ice sheet growth such as the prominent glacial inception MIS M2 that predates the mid-Piacenzian Warm Period and the intensification of Northern Hemisphere glaciation starting at c. 2.7 Ma. At the beginning of the Mid Pleistocene Transition (c. 1.2–0.8 Ma), sediment accumulation in the Fram Strait significantly decreased

    The electrical resistance of vanadium-gold alloys

    Full text link

    Convective Fingering of an Autocatalytic Reaction Front

    Full text link
    We report experimental observations of the convection-driven fingering instability of an iodate-arsenous acid chemical reaction front. The front propagated upward in a vertical slab; the thickness of the slab was varied to control the degree of instability. We observed the onset and subsequent nonlinear evolution of the fingers, which were made visible by a {\it p}H indicator. We measured the spacing of the fingers during their initial stages and compared this to the wavelength of the fastest growing linear mode predicted by the stability analysis of Huang {\it et. al.} [{\it Phys. Rev. E}, {\bf 48}, 4378 (1993), and unpublished]. We find agreement with the thickness dependence predicted by the theory.Comment: 11 pages, RevTex with 3 eps figures. To be published in Phys Rev E, [email protected], [email protected], [email protected]

    Benthic phosphorus cycling within the Eurasian marginal sea ice zone

    Get PDF
    The Arctic Ocean region is currently undergoing dramatic changes, which will likely alter the nutrient cycles that underpin Arctic marine ecosystems. Phosphate is a key limiting nutrient for marine life but gaps in our understanding of the Arctic phosphorus (P) cycle persist. In this study, we investigate the benthic burial and recycling of phosphorus using sediments and pore waters from the Eurasian Arctic margin, including the Barents Sea slope and the Yermak Plateau. Our results highlight that P is generally lost from sediments with depth during organic matter respiration. On the Yermak Plateau, remobilization of P results in a diffusive flux of P to the seafloor of between 96 and 261 µmol m−2 yr−1. On the Barents Sea slope, diffusive fluxes of P are much larger (1736–2449 µmol m−2 yr−1), but these fluxes are into near-surface sediments rather than to the bottom waters. The difference in cycling on the Barents Sea slope is controlled by higher fluxes of fresh organic matter and active iron cycling. As changes in primary productivity, ocean circulation and glacial melt continue, benthic P cycling is likely to be altered with implications for P imported into the Arctic Ocean Basin

    National differences in implementation of minimally invasive surgery for colorectal cancer and the influence on short-term outcomes

    Get PDF
    Background: The timing and degree of implementation of minimally invasive surgery (MIS) for colorectal cancer vary among countries. Insights in national differences regarding implementation of new surgical techniques and the effect on postoperative outcomes are important for quality assurance, can show potential areas for country-specific improvement, and might be illustrative and supportive for similar implementation programs in other countries. Therefore, this study aimed to evaluate differences in patient selection, applied techniques, and results of minimal invasive surgery for colorectal cancer between the Netherlands and Sweden. Methods: Patients who underwent elective minimally invasive surgery for T1-3 colon or rectal cancer (2012–2018) registered in the Dutch ColoRectal Audit or Swedish ColoRectal Cancer Registry were included. Time trends in the application of MIS were determined. Outcomes were compared for time periods with a similar level of MIS implementation (Netherlands 2012–2013 versus Sweden 2017–2018). Multilevel analyses were performed to identify factors associated with adverse short-term outcomes. Results: A total of 46,095 Dutch and 8,819 Swedish patients undergoing MIS for colorectal cancer were included. In Sweden, MIS implementation was approximately 5 years later than in the Netherlands, with more robotic surgery and lower volumes per hospital. Although conversion rates were higher in Sweden, oncological and surgical outcomes were comparable. MIS in the Netherlands for the years 2012–2013 resulted in a higher reoperation rate for colon cancer and a higher readmission rate but lower non-surgical complication rates for rectal cancer if compared with MIS in Sweden during 2017–2018. Conclusion: This study showed that the implementation of MIS for colorectal cancer occurred later in Sweden than the Netherlands, with comparable outcomes despite lower volumes. Our study demonstrates that new surgical techniques can be implemented at a national level in a controlled and safe way, with thorough quality assurance.</p

    National differences in implementation of minimally invasive surgery for colorectal cancer and the influence on short-term outcomes

    Get PDF
    Background: The timing and degree of implementation of minimally invasive surgery (MIS) for colorectal cancer vary among countries. Insights in national differences regarding implementation of new surgical techniques and the effect on postoperative outcomes are important for quality assurance, can show potential areas for country-specific improvement, and might be illustrative and supportive for similar implementation programs in other countries. Therefore, this study aimed to evaluate differences in patient selection, applied techniques, and results of minimal invasive surgery for colorectal cancer between the Netherlands and Sweden. Methods: Patients who underwent elective minimally invasive surgery for T1-3 colon or rectal cancer (2012–2018) registered in the Dutch ColoRectal Audit or Swedish ColoRectal Cancer Registry were included. Time trends in the application of MIS were determined. Outcomes were compared for time periods with a similar level of MIS implementation (Netherlands 2012–2013 versus Sweden 2017–2018). Multilevel analyses were performed to identify factors associated with adverse short-term outcomes. Results: A total of 46,095 Dutch and 8,819 Swedish patients undergoing MIS for colorectal cancer were included. In Sweden, MIS implementation was approximately 5 years later than in the Netherlands, with more robotic surgery and lower volumes per hospital. Although conversion rates were higher in Sweden, oncological and surgical outcomes were comparable. MIS in the Netherlands for the years 2012–2013 resulted in a higher reoperation rate for colon cancer and a higher readmission rate but lower non-surgical complication rates for rectal cancer if compared with MIS in Sweden during 2017–2018. Conclusion: This study showed that the implementation of MIS for colorectal cancer occurred later in Sweden than the Netherlands, with comparable outcomes despite lower volumes. Our study demonstrates that new surgical techniques can be implemented at a national level in a controlled and safe way, with thorough quality assurance.</p

    Mussel beds are biological power stations on intertidal flats

    Get PDF
    Intertidal flats are highly productive areas that support large numbers of invertebrates, fish, and birds. Benthic diatoms are essential for the function of tidal flats. They fuel the benthic food web by forming a thin photosynthesizing compartment in the top-layer of the sediment that stretches over the vast sediment flats during low tide. However, the abundance and function of the diatom film is not homogenously distributed. Recently, we have realized the importance of bivalve reefs for structuring intertidal ecosystems; by creating structures on the intertidal flats they provide habitat, reduce hydrodynamic stress and modify the surrounding sediment conditions, which promote the abundance of associated organisms. Accordingly, field studies show that high chlorophyll a concentration in the sediment co-vary with the presence of mussel beds. Here we present conclusive evidence by a manipulative experiment that mussels increase the local biomass of benthic microalgae; and relate this to increasing biomass of microalgae as well as productivity of the biofilm across a nearby mussel bed. Our results show that the ecosystem engineering properties of mussel beds transform them into hot spots for primary production on tidal flats, highlighting the importance of biological control of sedimentary systems. (C) 2017 Elsevier Ltd. All rights reserved.</p

    Diversity and community biomass depend on dispersal and disturbance in microalgal communities

    Get PDF
    The evidence for species diversity effects on ecosystem functions is mainly based on studies not explicitly addressing local or regional processes regulating coexistence or the importance of community structure in terms of species evenness. In experimental communities of marine benthic microalgae, we altered the successional stages and thus the strength of local species interactions by manipulating rates of dispersal and disturbance. The treatments altered realized species richness, evenness and community biomass. For species richness, dispersal mattered only at high disturbance rates; when opening new space, dispersal led to maximized richness at intermediate dispersal rates. Evenness, in contrast, decreased with dispersal at low or no disturbance, i.e. at late successional stages. Community biomass showed a nonlinear hump-shaped response to increasing dispersal at all disturbance levels.We found a positive correlation between richness and biomass at early succession, and a strong negative correlation between evenness and biomass at late succession. In early succession both community biomass and richness depend directly on dispersal from the regional pool, whereas the late successional pattern shows that if interactions allow the most productive species to become dominant, diverting resources from this species (i.e. higher evenness) reduces production. Our study emphasizes the difference in biodiversity–function relationships over time, as different mechanisms contribute to the regulation of richness and evenness in early and late successional stages

    Evaluation of dietary intake in Danish adults by means of an index based on food-based dietary guidelines

    Get PDF
    Background: Data on dietary intake and physical activity has been collected from a representative sample of the Danish population from 2003&#x2013;2008. Objectives: The aim of the present study was to describe the habitual diet in Denmark and to evaluate the overall diet quality using a diet quality index based on the National Food-Based Dietary Guidelines (FBDG), which consists of seven guidelines regarding diet and one regarding physical activity. Design: Data from the Danish National Survey of Diet and Physical Activity 2003&#x2013;2008 (n=3354) were included. The diet quality index was constructed based on five of the seven dietary guidelines. Individuals were categorised according to quartiles of the diet quality index, and food and nutrient intakes were estimated in each of the groups. Results: Macronutrient distribution did not meet recommendations in any of the groups, as energy from total fat and especially saturated fat was too high. A high intake of high-fat milk products, fat on bread and processed meat contributed to a high intake of total fat and saturated fat, and sugar-sweetened soft drinks contributed to a high intake of added sugars in the group below the lowest quartile of the diet quality index. Individuals above in the highest quartile had higher intakes of &#x2018;healthy foods&#x2019; such as fish, fruit and vegetables, rye bread, and also a higher consumption of water and wine. Overall, intakes of micronutrients were sufficient in all groups. Conclusions: The diet quality index is a useful tool in assessing food and nutrient intake in individuals with high vs. low degree of compliance towards the dietary guidelines, and provides a valuable tool in future studies investigating variations in dietary intakes with respect to lifestyle, demographic and regional differences in Denmark

    Effects of experimental warming on biodiversity depend on ecosystem type and local species composition

    Get PDF
    Climatic warming is a primary driver of change in ecosystems worldwide. Here, we synthesize responses of species richness and evenness from 187 experimental warming studies in a quantitative meta-analysis. We asked 1) whether effects of warming on diversity were detectable and consistent across terrestrial, freshwater and marine ecosystems, 2) if effects on diversity correlated with intensity, duration, and experimental unit size of temperature change manipulations, and 3) whether these experimental effects on diversity interacted with ecosystem types. Using multilevel mixed linear models and model averaging, we also tested the relative importance of variables that described uncontrolled environmental variation and attributes of experimental units. Overall, experimental warming reduced richness across ecosystems (mean log-response ratio = -0.091, 95% bootstrapped CI: -0.13, -0.05) representing an 8.9% decline relative to ambient temperature treatments. Richness did not change in response to warming in freshwater systems, but was more strongly negative in terrestrial (-11.8%) and marine (-10.5%) experiments. In contrast, warming impacts on evenness were neutral overall and in aquatic systems, but weakly negative on land (7.6%). Intensity and duration of experimental warming did not explain variation in diversity responses, but negative effects on richness were stronger in smaller experimental units, particularly in marine systems. Model-averaged parameter estimation confirmed these main effects while accounting for variation in latitude, ambient temperature at the sites of manipulations, venue (field versus lab), community trophic type, and whether experiments were open or closed to colonization. These analyses synthesize extensive experimental evidence showing declines in local richness with increased temperature, particularly in terrestrial and marine communities. However, the more variable effects of warming on evenness were better explained by the random effect of site identity, suggesting that effects on species' relative abundances were contingent on local species composition.</p
    corecore