43 research outputs found

    Multi-dimensional Core-Collapse Supernova Simulations with Neutrino Transport

    Get PDF
    We present multi-dimensional core-collapse supernova simulations using the Isotropic Diffusion Source Approximation (IDSA) for the neutrino transport and a modified potential for general relativity in two different supernova codes: FLASH and ELEPHANT. Due to the complexity of the core-collapse supernova explosion mechanism, simulations require not only high-performance computers and the exploitation of GPUs, but also sophisticated approximations to capture the essential microphysics. We demonstrate that the IDSA is an elegant and efficient neutrino radiation transfer scheme, which is portable to multiple hydrodynamics codes and fast enough to investigate long-term evolutions in two and three dimensions. Simulations with a 40 solar mass progenitor are presented in both FLASH (1D and 2D) and ELEPHANT (3D) as an extreme test condition. It is found that the black hole formation time is delayed in multiple dimensions and we argue that the strong standing accretion shock instability before black hole formation will lead to strong gravitational waves.Comment: 3 pages, proceedings for Nuclei in the Cosmos XIV, Niigata, Japan (2016

    Two-Dimensional Core-Collapse Supernova Simulations with the Isotropic Diffusion Source Approximation for Neutrino Transport

    Get PDF
    The neutrino mechanism of core-collapse supernova is investigated via non-relativistic, two-dimensional (2D), neutrino radiation-hydrodynamic simulations. For the transport of electron flavor neutrinos, we use the interaction rates defined by Bruenn (1985) and the isotropic diffusion source approximation (IDSA) scheme, which decomposes the transported particles into trapped particle and streaming particle components. Heavy neutrinos are described by a leakage scheme. Unlike the "ray-by-ray" approach in some other multi-dimensional supernova models, we use cylindrical coordinates and solve the trapped particle component in multiple dimensions, improving the proto-neutron star resolution and the neutrino transport in angular and temporal directions. We provide an IDSA verification by performing 1D and 2D simulations with 15 and 20 MM_\odot progenitors from Woosley et al.~(2007) and discuss the difference of our IDSA results with those existing in the literature. Additionally, we perform Newtonian 1D and 2D simulations from prebounce core collapse to several hundred milliseconds postbounce with 11, 15, 21, and 27 MM_\odot progenitors from Woosley et al.~(2002) with the HS(DD2) equation of state. General relativistic effects are neglected. We obtain robust explosions with diagnostic energies Edig0.10.5E_{\rm dig} \gtrsim 0.1- 0.5~B for all considered 2D models within approximately 100300100-300 milliseconds after bounce and find that explosions are mostly dominated by the neutrino-driven convection, although standing accretion shock instabilities are observed as well. We also find that the level of electron deleptonization during collapse dramatically affect the postbounce evolution, e.g.~the ignorance of neutrino-electron scattering during collapse will lead to a stronger explosion.Comment: 23 pages. Accepted for publication in Ap

    Massive Stars and their Supernovae

    Full text link
    Massive stars and their supernovae are prominent sources of radioactive isotopes, the observations of which thus can help to improve our astrophysical models of those. Our understanding of stellar evolution and the final explosive endpoints such as supernovae or hypernovae or gamma-ray bursts relies on the combination of magneto-hydrodynamics, energy generation due to nuclear reactions accompanying composition changes, radiation transport, and thermodynamic properties (such as the equation of state of stellar matter). Nuclear energy production includes all nuclear reactions triggered during stellar evolution and explosive end stages, also among unstable isotopes produced on the way. Radiation transport covers atomic physics (e.g. opacities) for photon transport, but also nuclear physics and neutrino nucleon/nucleus interactions in late phases and core collapse. Here we want to focus on the astrophysical aspects, i.e. a description of the evolution of massive stars and their endpoints, with a special emphasis on the composition of their ejecta (in form of stellar winds during the evolution or of explosive ejecta). Low and intermediate mass stars end their evolution as a white dwarf with an unburned C and O composition. Massive stars evolve beyond this point and experience all stellar burning stages from H over He, C, Ne, O and Si-burning up to core collapse and explosive endstages. In this chapter we discuss the nucleosynthesis processes involved and the production of radioactive nuclei in more detail.Comment: 79 pages; Chapter of "Astronomy with Radioactivities", a book in Springer's 'lecture notes in physics series, Vol. 812, Eds. Roland Diehl, Dieter H. Hartmann, and Nikos Prantzos, to appear in summer 201

    PUSHing Core-Collapse Supernovae to Explosions in Spherical Symmetry: Nucleosynthesis Yields

    Get PDF
    Core-collapse supernovae (CCSNe) are the extremely energetic deaths of massive stars. They play a vital role in the synthesis and dissemination of many heavy elements in the universe. In the past, CCSN nucleosynthesis calculations have relied on artificial explosion methods that do not adequately capture the physics of the innermost layers of the star. The PUSH method, calibrated against SN1987A, utilizes the energy of heavy-flavor neutrinos emitted by the proto-neutron star (PNS) to trigger parametrized explosions. This makes it possible to follow the consistent evolution of the PNS and to ensure a more accurate treatment of the electron fraction of the ejecta. Here, we present the Iron group nucleosynthesis results for core-collapse supernovae, exploded with PUSH, for two different progenitor series. Comparisons of the calculated yields to observational metal-poor star data are also presented. Nucleosynthesis yields will be calculated for all elements and over a wide range of progenitor masses. These yields can be immensely useful for models of galactic chemical evolution.Comment: 3 pages, 3 figures, poster presentation to appear in the proceedings of the 14th International Symposium on Nuclei in the Cosmos (NIC-XIV), Ed. S. Kubono, JPS (Japan Physical Society

    Astrophysical Implications of the QCD phase transition

    Get PDF
    The possible role of a first order QCD phase transition at nonvanishing quark chemical potential and temperature for cold neutron stars and for supernovae is delineated. For cold neutron stars, we use the NJL model with nonvanishing color superconducting pairing gaps, which describes the phase transition to the 2SC and the CFL quark matter phases at high baryon densities. We demonstrate that these two phase transitions can both be present in the core of neutron stars and that they lead to the appearance of a third family of solution for compact stars. In particular, a core of CFL quark matter can be present in stable compact star configurations when slightly adjusting the vacuum pressure to the onset of the chiral phase transition from the hadronic model to the NJL model. We show that a strong first order phase transition can have strong impact on the dynamics of core collapse supernovae. If the QCD phase transition sets in shortly after the first bounce, a second outgoing shock wave can be generated which leads to an explosion. The presence of the QCD phase transition can be read off from the neutrino and antineutrino signal of the supernova

    Explosion Dynamics of Parametrized Spherically Symmetric Core-Collapse Supernova Simulations

    Get PDF
    We report on a method, PUSH, for triggering core-collapse supernova (CCSN) explosions of massive stars in spherical symmetry. This method provides a framework to study many important aspects of core collapse supernovae: the effects of the shock passage through the star, explosive supernova nucleosynthesis and the progenitor-remnant connection. Here we give an overview of the method, compare the results to multi-dimensional simulations and investigate the effects of the progenitor and the equation of state on black hole formation.Comment: Proceedings for Nuclei in the Cosmos XIV, Niigata, Japan (2016

    New aspects of the QCD phase transition in proto-neutron stars and core-collapse supernovae

    Get PDF
    The QCD phase transition from hadronic to deconfined quark matter is found to be a so-called "entropic" phase transition, characterized, e.g., by a negative slope of the phase transition line in the pressure-temperature phase diagram. In a first part of the present proceedings it is discussed that entropic phase transitions lead to unusual thermal properties of the equation of state (EoS). For example one finds a loss of pressure (a "softening") of the proto-neutron star EoS with increasing entropy. This can lead to a novel, hot third family of compact stars, which exists only in the early proto-neutron star phase. Such a hot third family can trigger explosions of core-collapse supernovae. However, so far this special explosion mechanism was found to be working only for EoSs which are not compatible with the 2 M⊙ constraint for the neutron star maximum mass. In a second part of the proceeding it is discussed which quark matter parameters could be favorable for this explosion mechanism, and have sufficiently high maximum masses at the same time

    Stellar Mass Black Hole Formation and Multi-messenger Signals from Three Dimensional Rotating Core-Collapse Supernova Simulations

    Full text link
    We present self-consistent, 3D core-collapse supernova simulations of a 40 MM_\odot progenitor model using the isotropic diffusion source approximation for neutrino transport and an effective general relativistic potential up to 0.9\sim0.9~s~postbounce. We consider three different rotational speeds with initial angular velocities of Ω0=0\Omega_0=0,~0.5, and~1~rad~s1^{-1} and investigate the impact of rotation on shock dynamics, black hole formation, and gravitational wave signals. The rapidly-rotating model undergoes an early explosion at 250\sim 250~ms postbounce and shows signs of the low T/WT/|W| instability. We do not find black hole formation in this model within 460\sim 460~ms postbounce. In contrast, we find black hole formation at 776~ms~postbounce and 936~ms~postbounce for the non-rotating and slowly-rotating models, respectively. The slowly-rotating model explodes at 650\sim 650~ms postbounce and fallback accretion onto the proto-neutron star (PNS) results in BH formation. In addition, the standing~accretion~shock~instability could induce rotation on the proto-neutron star with a non-rotating progenitor and gives a black~hole spin parameter of a=J/M=0.046a=J/M=0.046, if the specific angular momentum is conserved during black hole formation. But for the non-rotating model, without an explosion, all the angular momentum should eventually be accreted by the BH, resulting in a non-spinning BH. The successful explosion of the slowly-rotating model drastically slows accretion onto the PNS allowing continued cooling and contraction that results in an extremely high gravitational-wave frequency (f3000f\sim3000~Hz) at black~hole formation, while the non-rotating model generates gravitational wave signals similar to its 2D counterpart.Comment: 14 pages, 11 figure

    On the Importance of the Equation of State for the Neutrino-Driven Supernova Explosion Mechanism

    Full text link
    By implementing widely-used equations of state (EOS) from Lattimer & Swesty (LS) and H. Shen et al. (SHEN) in core-collapse supernova simulations, we explore possible impacts of these EOS on the post-bounce dynamics prior to the onset of neutrino-driven explosions. Our spherically symmetric (1D) and axially symmetric (2D) models are based on neutrino radiation hydrodynamics including spectral transport, which is solved by the isotropic diffusion source approximation. We confirm that in 1D simulations neutrino-driven explosions cannot be obtained for any of the employed EOS. Impacts of the EOS on the post-bounce hydrodynamics are more clearly visible in 2D simulations. In 2D models of a 15 M_sun progenitor using the LS EOS, the stalled bounce shock expands to increasingly larger radii, which is not the case using the SHEN EOS. Keeping in mind that the omission of the energy drain by heavy-lepton neutrinos in the present scheme could facilitate explosions, we find that 2D models of an 11.2 M_sun progenitor produce neutrino-driven explosions for all the EOS under investigation. Models using the LS EOS are slightly more energetic compared to those with the SHEN EOS. The more efficient neutrino heating in the LS models coincides with a higher electron antineutrino luminosity and a larger mass that is enclosed within the gain region. The models based on the LS EOS also show a more vigorous and aspherical downflow of accreting matter to the surface of the protoneutron star (PNS). The accretion pattern is essential for the production and strength of outgoing pressure waves, that can push in turn the shock to larger radii and provide more favorable conditions for the explosion. [abbreviated]Comment: 21 pages, 22 figures, accepted for publication in Ap

    Numerical parameter survey of non-radiative black hole accretion: flow structure and variability of the rotation measure

    Get PDF
    We conduct a survey of numerical simulations to probe the structure and appearance of non-radiative black hole accretion flows like the supermassive black hole at the Galactic Centre. We find a generic set of solutions, and make specific predictions for currently feasible rotation measure (RM) observations, which are accessible to current instruments including the Expanded Very Large Array (EVLA), Giant Metrewave Radio Telescope (GMRT) and Atacama Large Millimeter Array (ALMA). The slow time variability of the RM is a key quantitative signature of this accretion flow. The time variability of RM can be used to quantitatively measure the nature of the accretion flow, and to differentiate models. Sensitive measurements of RM can be achieved using RM synthesis or using pulsars. Our energy conserving ideal magnetohydrodynamical simulations, which achieve high dynamical range by means of a deformed-mesh algorithm, stretch from several Bondi radii to about one-thousandth of that radius, and continue for tens of Bondi times. Magnetized flows which lack outward convection possess density slopes around −1, almost independent of physical parameters, and are more consistent with observational constraints than are strongly convective flows. We observe no tendency for the flows to become rotationally supported in their centres, or to develop steady outflow. We support these conclusions with formulae which encapsulate our findings in terms of physical and numerical parameters. We discuss the relation of these solutions to other approaches. The main potential uncertainties are the validity of ideal magnetohydrodynamic and the absence of a fully relativistic inner boundary condition. The RM variability predictions are testable with current and future telescope
    corecore