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ABSTRACT
We conduct a survey of numerical simulations to probe the structure and appearance of
non-radiative black hole accretion flows like the supermassive black hole at the Galactic
Centre. We find a generic set of solutions, and make specific predictions for currently feasible
rotation measure (RM) observations, which are accessible to current instruments including
the Expanded Very Large Array (EVLA), Giant Metrewave Radio Telescope (GMRT) and
Atacama Large Millimeter Array (ALMA). The slow time variability of the RM is a key
quantitative signature of this accretion flow. The time variability of RM can be used to
quantitatively measure the nature of the accretion flow, and to differentiate models. Sensitive
measurements of RM can be achieved using RM synthesis or using pulsars.

Our energy conserving ideal magnetohydrodynamical simulations, which achieve high dy-
namical range by means of a deformed-mesh algorithm, stretch from several Bondi radii to
about one-thousandth of that radius, and continue for tens of Bondi times. Magnetized flows
which lack outward convection possess density slopes around −1, almost independent of
physical parameters, and are more consistent with observational constraints than are strongly
convective flows. We observe no tendency for the flows to become rotationally supported in
their centres, or to develop steady outflow.

We support these conclusions with formulae which encapsulate our findings in terms of
physical and numerical parameters. We discuss the relation of these solutions to other ap-
proaches. The main potential uncertainties are the validity of ideal magnetohydrodynamic and
the absence of a fully relativistic inner boundary condition. The RM variability predictions are
testable with current and future telescopes.
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1 INTRODUCTION

The radio source Sgr A* at the Galactic Centre (GC) is now ac-
cepted to be a supermassive black hole (MBH � 4.3 × 106 M�;
Gillessen et al. 2009), accreting hot gas from its environment (ne �
130 cm−3, kBT � 2 keV at 1 arcsec; Baganoff et al. 2003). Inter-
est in the Sgr A* accretion flow is stimulated by its remarkably
low luminosity, by its similarity to other low-luminosity AGN, by
circumstantial evidence for past episodes of bright X-ray emission

�E-mail: bpang@physics.utoronto.ca (BP); pen@cita.utoronto.ca (U-LP);
matzner@cita.utoronto.ca (CDM); srgreen@uchicago.edu (SRG); matthias.
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(Revnivtsev et al. 2004, but see Yusef-Zadeh et al. 2007) and nearby
star formation (Levin & Beloborodov 2003), and, foremost, by its
status as an outstanding physical puzzle.

Supermassive black holes are enigmatic in many respects; for
the GC black hole (GCBH) the enigma is sharpened by a wealth
of observational constraints, which permit detailed, sensitive and
spatially resolved studies of its accretion dynamics. Within a naı̈ve
model such as Bondi flow, matter would flow inwards at the dy-
namical rate from its gravitational sphere of influence, which at
∼1 arcsec is resolved by Chandra. Converted to radiation with
an efficiency ηc2, the resulting luminosity would exceed what is
actually observed by a factor ∼105(η/0.1). This wide discrepancy
between expectation and observation has stimulated numerous theo-
retical explanations, including convection (Narayan, Igumenshchev
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& Abramowicz 2000; Quataert & Gruzinov 2000b), outflow
(Blandford & Begelman 1999), domination by individual stars’
winds (Loeb 2004) and conduction (Tanaka & Menou 2006;
Johnson & Quataert 2007; Sharma, Quataert & Stone 2008;
Shcherbakov & Baganoff 2010).

1.1 Constraining the accretion flow

Because many of its parameters are uncertain, the central density
and accretion rate of the GCBH flow are not strongly constrained
by the its emission spectrum (Quataert & Narayan 1999); the most
stringent constraints come from observations of the rotation mea-
sure (RM; Quataert & Gruzinov 2000a), now known to be roughly
−5.4 × 105 rad m−1 (Marrone et al. 2007). Interpreting this as aris-
ing within a quasi-spherical flow with magnetic fields in rough
equipartition with gas pressure, and adopting the typical assumption
that magnetic fields do not reverse rapidly, we derive a gas density
nH ∼ 105.5 cm−3(RS/Rrel)1/2 at the radius Rrel which dominates the
RM integral, namely where electrons become relativistic; see Ap-
pendix A for more detail. If this radius is about 102 Schwarzschild
radii (102RS), as in the spectral models of Quataert & Narayan
(1999), then a comparison between this density and conditions at
the Bondi radius RB � 0.053 pc indicates a density power law ρ ∝
r−k with k = 1.1–1.3; the derived value is rather insensitive to the
black hole mass, the degree of equipartition and the precise radius
at which electrons become relativistic. (If rapid conduction causes
electrons to be non-relativistic at all radii, the implied slope falls to
0.8.)

An independent but weak constraint on k comes from recent
multiwavelength observations of flares in the emission from Sgr
A*. Yusef-Zadeh et al. (2009a) favour an interpretation in which
these flares originate within regions in which electrons have been
transiently heated and accelerated; using equipartition arguments
they estimate a magnetic field strength B ∼ 13–15 G at 4–10
Schwarzschild radii, implying a total pressure P > 20 dyn cm−2

at those radii. Because P ∝ r−(k+1), a comparison to the conditions
at RB requires k > 0.6–0.8. This constraint could be violated if the
emitting regions were sufficiently overpressured relative to the sur-
rounding gas; however the subsonic rate of expansion inferred by
Yusef-Zadeh et al. (2009b) suggests this is not the case.

The density power law k is an important diagnostic, both because
it allows one to estimate the mass accretion rate on to the black
hole, and because k takes definite values within proposed classes of
accretion flows. Bondi (1952) accretion and advection-dominated
accretion flows (ADAFs; Narayan & Yi 1994), in which gas under-
goes a modified free fall, imply k = 3/2 and have long been ruled out
(Agol 2000) by limits on the RM (Bower et al. 1999). Convection-
dominated accretion flows (CDAFs; Narayan et al. 2000; Quataert
& Gruzinov 2000b) and related flows like convection-dominated
Bondi flows (CDBFs; Igumenshchev & Narayan 2002), in which
convection carries a finite outward luminosity, all have k = 1/2 out-
side some small radius: otherwise, convection becomes supersonic
(Gruzinov 2001).

Three classes of flows are known to have intermediate values,
1/2 < k < 3/2, as suggested by the observations. One of these is the
advection-dominated inflow–outflow solutions (ADIOS; Blandford
& Begelman 1999), in which mass is lost via a wind from all radii
within a rotating ADAF; however these flows appear to require that
low-angular-momentum material has been removed from the axis.
Another is a class of conductive flows, in which heat is carried
outward by electrons and stifles accretion at large radii (Johnson &
Quataert 2007). The third consists of flows which lack any signifi-

cant outward convective or conductive luminosity (Gruzinov 2001),
but are nevertheless hydrostatic rather than infalling; this be-
haviour is seen within some numerical simulations in which mag-
netized gas is accreted, such as those of Igumenshchev, Narayan &
Abramowicz (2003) and Pen, Matzner & Wong (2003b), who
termed the flow ‘magnetically frustrated convection’.

We are concerned with the last flow class, as it is physically
simple, realizable within simulations, and consistent with observa-
tional constraints. Whether it is physically relevant depends on the
strength of conduction in the accretion flow, a question we return
to in Section 5. Although it is of interest, previous simulations do
not suffice to make any quantitative comparisons between it and the
Sgr A* accretion flow. Igumenshchev et al. (2003) have already dis-
cussed several shortcomings which afflicted prior numerical work,
such as (1) a lack of energy conservation during magnetic recon-
nection and (2) simulation durations too short to capture steady
states or secular trends. There are a number of other roadblocks: (3)
dynamical range: RB is 105 Schwarzschild radii, but the largest sim-
ulations yet done have only a factor of ∼102 separating their inner
and outer boundaries; (4) resolution: numerical solutions are rarely
close enough to the continuum limit to allow turbulent phenomena
to be predicted with confidence; (5) outer boundary conditions:
although matter is presumably fed into the accretion flow by stel-
lar winds from the nuclear star cluster (Genzel et al. 2003), the
flow structure and magnetization of this gas is not well constrained;
(6) inner boundary conditions: the hole interacts with the flow in
a manner which is not fully characterized, and which is likely to
dominate the energetics; (7) mass injection: stars within RB pro-
duce fresh wind material, which have the potential to affect the final
solution (Loeb 2004) and (8) plasma physics: close to the black
hole, the flow is only weakly collisional, leading to effects such
as anisotropic pressure and conduction, which may alter the nature
of fluid instabilities and the character of heat transport (Sharma
et al. 2008). Potential deviations from ideal magnetohydrodynamic
(MHD) become stronger as one approaches the event horizon, and
are discussed further in Section 5.

In this paper we describe a numerical parameter survey designed
to partially overcome difficulties (1)–(5) in the above list, while
making an educated guess regarding (7) and leaving (6) and (8) to
future work. Specifically, we conduct 3D, explicitly energy con-
serving simulations to the point of saturation – often tens of dy-
namical times at RB. We vary the dynamical range and resolution
in order to gather information about the astrophysical limits of
these parameters, although they lie beyond our numerical reach.
We push numerical outer boundaries far enough from RB to mini-
mize their effect on the flow, and we vary the conditions exterior
to RB in order to gauge the importance of magnetization and ro-
tation in the exterior fluid. Our simulations obey ideal MHD, but
are viscous and resistive on the grid scale for numerical reasons;
we make no attempt to capture non-ideal plasma effects. We do
not account for stellar mass injection within the simulation volume.
Our gravity is purely Newtonian, and at its base we have a region
of accretion and reconnection rather than a black hole (although
we are currently pursuing relativistic simulations to overcome this
limitation). Our numerical approach is described more thoroughly
below.

By varying the conditions of gas outside RB and by varying the
allocation of grid zones within RB we are able to disentangle, to
some degree, physical and numerical factors within our results. We
also compute integrated quantities related to the value and time
evolution of RM, and draw conclusions regarding the importance
of RM(t) as a powerful discriminant between physical models.
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We reiterate that our simulations have two simplifications which
could substantially change the behaviour. (1) Our black hole bound-
ary condition is Newtonian. Since the deepest potential dominates
the dynamics and energy of the flow, a change in this assumption
might alter the solution. (2) We assume ideal MHD to hold. As one
approaches the black hole, the Coulomb collision rate is insufficient
to guarantee local thermodynamic equilibrium. Plasmas can ther-
malize through other plasma processes, but if these fail, strong non-
ideal effects could dominate and lead to rapid conduction. These
effects are both strongest at small radii, potentially modifying the
extrapolation to the actual physical parameters. We address these
issues in more detail in Section 5.

2 SIMULATION

2.1 Physical setup and dimensionless physical parameters

We wish our simulations to be reasonably realistic with regard
to the material which accretes on to the black hole, but also easily
described by a few physical and numerical parameters. We therefore
do not treat the propagation and shocking of individual stellar winds
or turbulent motions, but take the external medium to be initially
of constant density ρ0 and adiabatic sound speed cs0, and imbued
with a characteristic magnetic field B0 and characteristic rotational
angular momentum j0 (but no other initial velocity). A Keplerian
gravity field −GM/r2 accelerates material towards a central ‘black
hole’ of mass M surrounded by a central accretion zone. The Bondi
accretion radius is therefore

RB = GM

c2
s0

. (1)

We adopt the Bondi time tB = RB/cs0 as our basic time unit; this
is 100 yr for the adopted conditions at Sgr A*. All of the initial
flow quantities will evolve as a result of this during the course of
the simulation, and we run for many Bondi times in order to allow
the accretion flow to settle into a final state quite different from our
initial conditions. From the above dimensional quantities we define
several dimensionless physical parameters.

The adiabatic index is γ = 5/3; the initial plasma-β parameter,
or ratio of gas to magnetic pressure, is

β0 = 8πγρ0c
2
s0

B2
0

; (2)

we consider models with β0 = (1, 10, 100, 1000, ∞) to capture a
wide range of plausible magnetizations. In our main sequence of
simulations, we adopt a uniform magnetic field B0 with the angle
θBj between B0 and j taking values 45◦, 63◦ or 90◦.1

The initial velocity field is v0 = ( j 0 × r̂)/r , where r is the sepa-
ration from the black hole. The specific vector angular momentum
is thus j 0 at the rotational equator, with solid-body rotation on
spherical shells away from the equator. A dimensionless rotation
parameter is therefore

RK

RB
=

(
j0cs

GM

)2

; (3)

1 We also investigated scenarios with Gaussian random field components,
in which the dominant wavelengths were some multiple of RB; however we
abandoned these, as such fields decay on a Alfvén crossing time, confound-
ing our attempts to quantify the accretion flow, and we did not wish to add
a turbulent driver to maintain steady state.

here RK = j 2
0 /(GM) is the Keplerian circularization radius of

the equatorial inflow. (Our flows never do circularize at RK, both
because angular momentum transport alters the distribution of j,
and because gas pressure can never be neglected.)

We impose mass accretion and magnetic field reconnection
within a zone of characteristic radius Rin, described below, which
introduces the dynamic range parameter RB/Rin. Because it sets the
separation between small and large scales and the maximum depth
of the potential well, this ratio has a strong influence on flow prop-
erties. One of our goals is to test how well the flow quantities at high
dynamic range can be predicted from simulations done at lower dy-
namic range, as the dynamic range appropriate to Sgr A* is beyond
what we can simulate.

2.2 Grid setup and numerical parameters

We employ a fixed, variable-spacing Cartesian mesh in which the
grid spacing increases with distance away from the black hole. To
simplify our boundary conditions, we hold the spacing fixed within
the inner accretion zone and near the outer boundary. The total box
size is 40003 in units of the minimum grid spacing; however this
is achieved within a numerical grid of only 3003–6003 zones. Our
grid geometry allows for a large number of long-duration runs to
be performed at respectable values of the dynamic range, while
avoiding coordinate singularities and resolution boundaries. These
advantages come at the cost of introducing an anisotropy into the
grid resolution; however we have tested the code for conservation
of angular momentum and preservation of magnetosonic waves,
and found it to be comparable in accuracy to fixed-grid codes with
the same resolution. Our grid expansion factor s = δ dxi/dxi takes
one value for xi < RB and another, larger value for xi > RB; this
allows us to devote most of our computational effort to the accretion
region of interest, while also pushing the (periodic) outer boundary
conditions far away from this region. The inner expansion factor sin

is therefore an important numerical parameter, related to both the
grid’s resolution and its anisotropy where we care most about the
flow.

Within our inner accretion region, magnetic fields are recon-
nected (relaxed to the vacuum solution consistent with the external
field; see Appendix B) and mass and heat are adjusted (invariably,
removed) so that the sound speed and Alfvén velocity both match
the Keplerian velocity at RB. The accretion zone is a cube, whose
width we hold fixed at 15 in units of the local (uniform) grid sep-
aration, so we define Rin = 7.5 dxmin (but note the volume of this
region is equivalent to a sphere of radius 9.3 dxmin.) We consider it
too costly to vary the numerical parameter Rin/dxmin.

Our grid geometry imposes a local dimensionless resolution pa-
rameter:

	 ≡ r

maxi(dxi)
(4)

(the maximum being over coordinate directions), which depends
both on radius and on angle within the simulation volume. At the
inner boundary 	 � 7.5–9.3, 	 increases to nearly s−1

in � 102 at
RB, then decreases towards s−1

out in the exterior region. In Section 3
we report the effective resolution at the Bondi radius, 	B = 	(RB),
along with our results.

2.3 Computational implementation

Our simulations were performed on the Canadian Institute for The-
oretical Astrophysics Sunnyvale cluster: 200 Dell PE1950 compute
nodes; each node contains two quad core Intel(R) Xeon(R) E5310
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Table 1. Simulations described in this paper. Columns: run number; maximum resolution relative to the Bondi radius;
radial dynamic range within RB; grid expansion factor within RB; effective resolution at RB; magnetization parameter;
rotation parameter; range of simulation times over which flow properties were measured; angle between magnetic field
and rotation axis; mean mass accretion rate and typical density power-law slope (ρ ∝ r−k).

Run RB
dxmin

RB
Rin

1+sin 	B β0
RK
RB

tsim
tB

θBj
Ṁ

ṀBondi
keff

a

1 500 67 1.023 40.15 ∞ 0 8 N/A 1.02 1.5047
2 250 33 1.013 59.29 ∞ 0 3 N/A 1.10 1.5273
3 125 17 1.013 48.11 100 0 6–20 45◦ 0.49 1.2482
4 250 33 1.013 59.29 100 0 6–20 45◦ 0.31 1.1650
5 500 67 1.023 40.15 100 0 6–20 45◦ 0.22 1.1399
6 1000 133 1.0315 30.82 100 0 6–10 45◦ 0.16 1.1253
7 250 33 1.013 59.29 1 0 6–20 45◦ 0.15 0.9574
8 250 33 1.013 59.29 10 0 6–20 45◦ 0.26 1.1147
9 250 33 1.013 59.29 1000 0 6–20 45◦ 0.40 1.2379
10 250 33 1.013 59.29 100 0.1 6–20 45◦ 0.289 1.1450
11 250 33 1.013 59.29 100 0.5 6–20 45◦ 0.286 1.1420
12 250 33 1.013 59.29 100 1.0 6–20 45◦ 0.31 1.1650
13b 62.5 33 1.06 14.24 100 0 6–20 45◦ 0.30 1.1557
14c 125 33 1.037 28.94 100 0 6–20 45◦ 0.33 1.1829
15 250 33 1.013 59.29 ∞ 0.1 6–20 45◦ 0.615 1.3610
16 250 33 1.013 59.29 ∞ 0.5 6–20 45◦ 0.621 1.3637
17 250 33 1.013 59.29 ∞ 1.0 6–20 45◦ 0.759 1.4211
18 250 33 1.013 59.29 1000 0.1 6-20 45◦ 0.400 1.2379
19 250 33 1.013 59.29 1000 0.1 6–20 90◦ 0.469 1.2835
20 250 33 1.013 59.29 100 0.1 6–20 90◦ 0.300 1.1557
21 250 33 1.013 59.29 10 0.1 6–20 90◦ 0.233 1.0834
22 250 33 1.013 59.29 1 0.1 6–20 90◦ 0.188 1.0220
23 250 33 1.013 59.29 100 0 6–20 90◦ 0.340 1.1915
24 500 67 1.0315 31.65 100 0.1 6–20 63◦ 0.18 1.2434
25d 1000 58.9 1.015 64 100 0.1 6–20 63◦ 0.19 1.0925
26e 8000 117 1.00185 515 100 0.1 21.1465 63◦ 0.11 1.0365

aValues are taken from equation (5); bcase of 753 grid resolution; ccase of 1503 grid resolution; dcase of 6003 grid
resolution; ecase of 46803 grid resolution.

@ 1.60-GHz processors, 4GB of RAM and 2 gigE network inter-
faces. The code (Pen, Arras & Wong 2003a) is a second-order accu-
rate (in space and time) high-resolution total variation diminishing
MHD parallelized code. Kinetic, thermal and magnetic energy are
conserved and divergent of magnetic field was kept to zero by flux-
constrained transport. There is no explicit magnetic and viscous
dissipation in the code except on the grid scale. We used an MPI
version (Kaeppeli et al. 2009), and 216 CPU cores were used to
compute a 3003 box, using Open Multi-Processing (OpenMP) with
8 cores per node. The 6003 simulation was performed on the SciNet
cluster using 1000 cores over 125 nodes.2

In 2010 December we were able to perform the largest black hole
accretion simulation using 17 576 CPU cores on the SciNet cluster.
We started with the 20 tB data from 1000 CPU cores simulation
at 6003 resolution. In order to fit the node decomposition, this was
truncated to 5853 grid cells. 30 700 time-steps for 0.06 tB were spent
for 5853 box on 1000 CPU cores, with the smallest grid spacing
dx = 1; 7600 time-steps for 0.08 tB were spent for 11703 box on
1000 CPU cores, with the smallest grid dx = 0.5; 3600 time-steps
for 0.006 tB were spent for 23403 box on 5832 CPU cores, with the
smallest grid dx = 0.25; 3000 time-steps for 0.0006 tB were spent
for 46803 box on 17 576 CPU cores, with the smallest grid dx =
0.125.

While this last high-resolution simulation did not run for long
enough to demonstrate a stationary behaviour, it is nevertheless
consistent with no substantial change as one increases resolution.

2 http://www.scinet.utoronto.ca/

A parallel effort to implement the code on economic graphics
processing units is in progress, which will allow larger and longer
simulations in the future (Pang, Pen & Perrone 2010).

3 SIMULATIONS AND RESULTS

Our suite of simulations is described in Table 1, along with some se-
lected results. We independently varied the magnetization, rotation
and dynamic range of the flow, as well as the effective resolution at
RB. In order to suppress the lingering effects of our initial conditions,
we ran each simulation for long enough that a total mass equivalent
to all the matter initially within RB was eventually accreted, before
assessing the flow structure. Because most of our runs exhibited
a significant suppression of the mass accretion rate Ṁ relative to
the Bondi value, this constraint required us to simulate for many tB

(typically 20tB). This requirement put strenuous constraints on our
simulations (each of which required ∼3 weeks to complete), and
will be a serious limitation on any future simulations performed at
higher dynamic range.

3.1 Character of saturated accretion flows

Fig. 1 shows the 2D slices for the simulation of 6003 box at 15 Bondi
times (case 25).3 The remaining figures are all based on case 10,
which is most representative of the whole set of simulations. Figs 2

3 Movies are also available in various formats at http://www.cita.utoronto.ca/
pen/MFAF/blackhole_movie/index.html
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Figure 1. 2D slice of the simulation for 6003 box at 15 Bondi times. Colour represents the entropy, and arrows represent the magnetic field vector. The
right-hand panel is the equatorial plane (yz), while the left-hand panel a perpendicular slice (xy). White circles represent the Bondi radius (rB = 1000). The
fluid is slowly moving, in a state of magnetically frustrated convection. A movie of this flow is available as Supporting Information with electronic version of
this article (see Appendix C for a description).

Figure 2. Density versus radius. The dotted line represents the density
profile for the Bondi solution, which is the steepest plausible slope at k =
1.5. The dashed line represents the density scaling for CDAF solution, which
is the shallowest proposed slope with k = 0.5. The solid line is the density
profile from one of our simulations, which is intermediate to the two.

and 3 display the spherically averaged properties, Fig. 2 shows the
spherically averaged density of the run; Fig. 3 shows the spherically
averaged radial velocity, β and entropy (normalized to the initial
entropy). The entropy inversion is clearly visible, which leads to
the slow, magnetically frustrated convection.

We draw several general conclusions from the runs listed in
Table 1.

(i) In the presence of magnetic fields, the flow develops a supera-
diabatic temperature gradient and flattens to k ∼ 1. Gas pressure

Figure 3. log (β), entropy and radial velocity versus radius. The dashed
line vr/cs represents the radial velocity in units of Mach number. The dots
vr/cms represent the radial velocity in units of magnetosonic Mach number.
The solid line is the entropy, and we see the entropy inversion which leads
to the slow, magnetically frustrated convection. Inside the inner boundary,
the sound speed is lowered, leading to the lower entropy. The ‘+’ symbols
are the magnetic field strength β.

remains the dominant source of support at all radii, although mag-
netic forces are always significant at the inner radius.

(ii) Mass accretion diminishes with increasing dynamic range,
taking values Ṁ � (2–4)ṀB(Rin/RB)3/2−k .

(iii) Even significant rotation at the Bondi radius has only a minor
impact on the mass accretion rate, as the flows do not develop
rotationally supported inner regions.

(iv) Our results depend only weakly on the effective resolution
	B.
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(v) In the absence of magnetic fields and rotation, a Bondi flow
develops. (Pen et al. 2003b further demonstrated a reversion to
Bondi inflow if magnetic fields are suddenly eliminated; we have
not repeated this experiment.)

3.1.1 Lack of rotational support

The non-rotating character of the flow casts some doubt on models
which depend on equatorial inflow and axial outflow. Our non-
relativistic simulations cannot rule out an axial outflow from a
spinning black hole, but they certainly show no tendency to de-
velop rotational support in their inner regions, even after many
tens of dynamical times. In a rotating run, angular momentum is
important at first, in preventing the accretion of matter from the
equator. Axial, low-j material does accrete, but some of it shocks
and drives an outflow along the equator (as reported by Pen et al.
2003b and Proga & Begelman 2003). After a few tB this quadrupo-
lar flow disappears, leaving behind the nearly hydrostatic, slowly
rotating envelope which persists for our entire simulation time, i.e.
tens of tB. We attribute the persistence of this rotational profile to
magnetic braking, as the Alfvén crossing time of the envelope is
always shorter than its accretion time. Magnetic fields thus play a
role here which is rather different than in simulations which start
from a rotating torus, where the magnetorotational instability is the
controlling phenomenon; the critical distinction is the presence of
low-angular-momentum gas.

Unlike compact object discs, which accrete high-angular-
momentum material and are guaranteed to cool in a fraction of
their viscous time, the GCBH feeds upon low-angular-momentum
matter, and its accretion envelope cannot cool. For both of these
reasons, it is not surprising to discover a thick, slowly rotating ac-
cretion envelope rather than a thin accretion disc. We stress that
global simulations, which resolve the Bondi radius and beyond and
continue for many dynamical times, are required to capture the
physical processes which determine the nature of the flow.

3.1.2 Dependence on parameters; Richardson extrapolation

We now investigate whether our results for the accretion rate can be
distilled into a single, approximate expression. It is clear from the
results in Table 1 that rotation affects the accretion rate in a non-
monotonic fashion. However, as we have just noted that rotation
plays a minor role in our final results, we are justified in fitting only
the non-rotating runs. Rather than Ṁ/ṀBondi we fit an effective
density slope keff defined by

Ṁ

ṀBondi
=

(
Rin

RB

)3/2−keff

. (5)

There are four major variables: the magnitude of the ambient mag-
netic field (β0); the radial dynamical range (RB/Rin) and the resolu-
tion of the Bondi scale (	B). Our fit is

keff = 1.50 − 0.56β−0.098
0 + 6.51

(
RB

Rin

)−1.4

− 0.11	−0.48
B ; (6)

all seven numerical coefficients and exponents were optimized
against the 25 runs in Table 1. The form of equation (6) is sig-
nificantly better than others we tested, including those involving
log (RB/Rin) and log (	B). It predicts the entries in Table 1 to within
an rms error of only 0.017.

Somewhat unexpectedly, this non-linear fit to our simulation out-
put recovers the Bondi solution in the continuum, unmagnetized

limit (keff → 3/2 as β0 → ∞, RB/Rin → ∞ and 	B → ∞). More-
over the form of the expression allows us to extrapolate, in the
manner of Richardson extrapolation, to conditions we expect are
relevant to Sgr A*: 	B ∼ ∞; RB/Rin ∼ 105 and β0 ∼ 1−5, then
keff ∼ 0.94–1.0.

It is encouraging that this result lies in the vicinity of observa-
tional constraints, lending additional credence to the notion that
Sgr A* is surrounded by a ‘magnetically frustrated’ accretion flow.
We must recall, however, that this is only an extrapolation based on
simulations which lack potentially important physics such as a rel-
ativistic inner boundary and a non-ideal plasma. The absence of an
imposed outward convective luminosity is likely to be the essential
element which allows for a lower value of k.

4 ROTATION MEASURE

The magnitude of RM constrains the density of the inner accre-
tion flow, thereby also constraining the mass accretion rate and
power-law index k. Future observations should provide time series
of RM(t), a rich data set which encodes important additional infor-
mation about the nature of the flow. Our goal in this section will be to
characterize RM variability within our own simulations sufficiently
well to distinguish them from other proposed flow classes.

We pause first to consider why RM should vary at all. The ro-
tation of polarization is determined by an integral (equation A1,
Shcherbakov 2008) which is proportional to

∫
ne B dl integrated

over the zone of non-relativistic electrons. The integral is typically
dominated by conditions at Rrel, the radius where kTe = mec2. Even
if ne is reasonably constant, B likely will change in magnitude and
direction as the flow evolves. Given that the dynamical time at Rrel is
under a day, any strongly convective flow should exhibit significant
day-to-day fluctuations in RM; measurements by Marrone et al.
(2007) appear to rule this out. Rotational support also implies rapid
RM fluctuations unless B is axisymmetric. In the highly subsonic
flow of magnetically frustrated convection, however, RM may vary
on much longer time-scales.

Two proposals have been advanced in which RM(t) would be
roughly constant. Within their simulations of thick accretion discs,
Sharma, Quataert & Stone (2007) show that trapping of poloidal flux
lines leads to a rather steady value of RM for observers whose lines
of sight are out of the disc plane. Sharma et al. (2008) point to the
constancy of RM in the steady, radial magnetic configuration which
develops due to the saturation of the magnetothermal instability (in
the presence of anisotropic electron conduction). We suspect that
noise at the dynamical frequency is to be expected in both these
scenarios, which need not exist in a magnetically frustrated flow.
We also note that both scenarios lead to systematically low values
of RM for a given accretion rate, and therefore imply somewhat
higher densities than we inferred from a spherical model; this may
be observationally testable.

Our calculation of RM(t) is based on case 10 in Table 1. In Fig. 4
we plot RM(t) against an analytical estimate of its magnitude. For
this purpose, we estimate RM as

RM ≡ e3

2πm2
ec

4

∫ RB

Rrel

neB dr, (7)

integrated along radial rays (two per coordinate axis) through the
simulation volume. We neglect the difference between this expres-
sion and one which accounts for the relativistic nature of electrons
within Rrel. We therefore normalize RM to the estimate RMest as

RMest = e3

2c4m2
e

[
GMRrelμene(Rrel)3

11π

]1/2

, (8)
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Figure 4. RM versus time (in units of tB). We chose Rrel = 17, correspond-
ing to Rrel/RB = 0.068. Six lines represent three axes: upper set is X (centred
at +3), centre is Y (centred at 0) and lower is Z (centred at −3), with positive
and negative directions drawn as solid and dashed lines, respectively.

given by equation (A5) with F(k, kT) → 1, 〈cos (θ )〉 → 1/2, β → 10
and k → 1. Because we do not calculate electron temperature within
our simulations, we have the freedom to vary Rrel and to probe the
dependence of coherence time on this parameter. In practice, we
chose Rrel = (17, 26, 34, 43)δxmin in order to separate this radius
from the accretion zone (7.5δxmin) and Bondi radius (250δxmin, in
this case). Fig. 4 illustrates RM(t) along each coordinate axis for
the case with Rrel = 17δxmin). As this figure shows, RM changes
slowly and its amplitude agrees with our estimate RMest. In our
simulations, we can measure the full probability density function
(PDF), shown in Fig. 5.

We can ask how well a single measurement of RM constrains the
characteristic RM, say the ensemble-averaged rms value RMrms.
This is a question of how well a standard deviation is measured
from a single observation. From Fig. 5 we see that the distribution in
our simulations is roughly Gaussian with standard deviation σ RM =
0.63RMest. One needs to apply Bayes’ Theorem to infer the variance

Figure 5. PDF of RM in Fig. 4. The dashed line represents a Gaussian dis-
tribution. The horizontal axis has been normalized by the standard deviation
in Fig. 4, σRM = 0.63.

of a Gaussian from N independent measurements:


RMrms =
(

2

N

)1/2

σRM. (9)

To date, no sign change in RM has been observed, suggesting that
we only have one independent measurement. Estimating RMrms

from a single data point requires a Bayesian inversion. Estimating
from our simulation with a flat prior, the 95 per cent confidence
interval for the ensemble characteristic RM given the one data point
spans 2 orders of magnitude!

In other words, if in fact RMrms = 5.4 × 106, it is not very
surprising that we have observed RM �−5.4 × 105. The maximum-
likelihood estimate is RMrms = RM. The 95 per cent upper bound is
RMrms = 33RM, and the lower bound is RMrms = 0.33 RM. More
data are essential to constrain this very large uncertainty.

A visual description of the RM integrand through the flow is
shown in Fig. 6. The time variability time-scale is shorter at small
radii, and shorter at the beginning of the simulation. Simulations
of many Bondi times with boundaries many Bondi radii away are
necessary to see the characteristic flow patterns.

To be more quantitative, we plot in Fig. 7 the autocorrelation of
RM(t) for different Rrel. We define the coherence time τ to be the
lag at which the autocorrelation of RM falls to 0.5.

The actual RM radius Rrel is not resolved in our simulations. In
order to extrapolate to physically interesting regimes, we fit a trend
to our limited dynamic range. The characteristic variability time-
scale is given by the flow speed, so τ ∝ R3

relρ(Rrel)/Ṁ . For our
characteristic values k ∼ 1, we have τ ∝ R2

rel, which we fit to our
coherence time, shown in Fig. 8.

For density profiles shallower than Bondi, the characteristic RM
time-scale τ is significantly longer than the dynamical time [τ ∼
(Rrel/RB)3/2tB]. In our fit, it is given by the accretion time:

τ ∼ 20

(
Rrel

RB

)2 (
Rin

RB

)−1/2

tB, (10)

with a relatively large dimensionless prefactor. This indicates a
coherence time of order 1 yr for the conditions at Sgr A*. The
actual value of Rrel is uncertain by a factor of 6, so the expected
range could be from 2 months to 6 yr.

This is sufficiently distinct from one day that the distinction
between frustrated and dynamical flows should be readily apparent,
once observations span year-long baselines. We will discuss this
point more in Section 5.1 below.

5 DISCUSSION

In this section we wish to revisit several of the physical processes
which are missing from the current numerical simulations: stellar
winds from within RB, the transport of energy and momentum by
nearly collisionless electrons, and the inner boundary conditions
imposed by a central black hole.

Stellar wind input. Our simulations account for the accretion of
matter from outside the Bondi radius inferred from X-ray obser-
vations, but not for the direct input of matter from individual stars
in the vicinity of the black hole. Loeb (2004) raises the possibility
that individual stars may in fact dominate the accretion flow. The
wind from a single star at radius r dominates the flow when its
momentum output Ṁwvw satisfies

Ṁwvw > 4πr2p(r) → 3.3(10−5 M� yr−1)(1000 km s−1), (11)

where the evaluation is for a model consistent with RM constraints,
in which density follows nH � 107.3(r/RS)−1 cm−3 and pressure
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Figure 6. The RM integrant ρBr versus radius and time. The central dark bar represents the inner boundary, the vertical axis is the Z-axis. The horizontal axis
is time, in units of tB; Grey-scale represents sign(Br) 4

√
ρ|Br|, which was scaled to be more visually accessible. The coherence time is longer at large radii and

at late times. Several Bondi times are needed to achieve the steady state regime.

Figure 7. Autocorrelation for Fig. 4. X-axis represents time lags; Y-axis
represents autocorrelation for different Rin. The dotted, dashed, dot–dashed
and solid lines correspond to Rin = 43, 34, 26, 17, respectively.

follows p � 104(r/RS)−2 dyn cm−2 – note that the criterion is in-
dependent of radius for k = 1. The required momentum output,
equivalent to 106.2 L�/c, is well above the wind force of any of the
OB stars observed within RB. While stars within RB add fresh matter
faster than it is accreted by the hole, we can be confident that no
single star dominates the flow. If the density slope is substantially
more shallow, for example in a CDAF with k = 1/2, the stellar winds
would be a more important factor.

Collisionless transport. In the context of a dilute plasma where
Coulomb collisions are rare, electron thermal conduction has the
potential to profoundly alter the flow profile. The importance of this
effect depends on the electrons’ ability to freely stream down their
temperature gradient (Sharma et al. 2008), despite the wandering
and mirroring induced by an inhomogeneous magnetic field. The
field must be weak for the magnetothermal instability to develop,

Figure 8. RM coherence time τ as a function of the inner truncation radius
Rrel; points refer to Rrel = 17, 26, 34 and 43. The bootstrap error of 0.17 dex
is based on the six data, two for each coordinate direction, at each Rrel. The
normalization for Rrel = RB is log10(tlags/tB) = 2.15.

yet weak fields are less resistive to tangling. The thermal conduc-
tion is expected to be strongest in the deep interior of the flow. If
electrons actually free stream inside of 1000 Schwarzschild radii,
the electrons could be non-relativistic all the way to the emission
region, changing the interpretation of the RM. This would favour
even shallower density profiles, for example the CDAF models. In
such a model, the RM might be expected to vary on time-scales
of minutes, which appears inconsistent with current data. If, on the
other hand, the free streaming length is short on the inside, it more
likely places the fluid in an ideal regime for the range of radii in our
simulations. We therefore remain agnostic as to the role of thermal
conduction in hot accretion flows, although it remains a primary
caveat of the current study. Observations of time variability of RM
will substantially improve our understanding.
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Black hole inner boundary. Our current inner boundary condi-
tions do not resemble a black hole very closely, apart from the fact
that they also allow gas to accrete. As the inner region dominates the
energetics of the flow, we consider it critical to learn how the black
hole modifies our results. We are currently engaged in a follow-up
study with a relativistic inner boundary, to be described in a future
paper.

5.1 Observational probes

RM can be measured by several techniques. Currently, efforts have
concentrated at high frequencies, ν ∼ 200–300 GHz (Marrone et al.
2006), where the polarization angle varies slowly with frequency.
Accurate measurements over long time baselines allow discrimina-
tion between models. At high frequencies, the SMA and ALMA
would allow a steady synaptic monitoring program. The full time
series function extends the measurement space by one dimension.

At lower frequencies, high spectral resolution is needed to resolve
the winding rate of polarization angle versus wavelength, which is
now tractable with broad-band high-resolution instruments such
as the EVLA and ATCA/CABB. The higher winding rate would
allow a much more sensitive measurement of small changes in the
RM, which would also be a discriminant between models. The
challenge here is that the polarization fraction drops significantly
with frequency, requiring a more accurate instrumental polarization
model. On the other hand, the very characteristic λ2 dependence of
RM should allow a robust rejection against instrumental effects.

At lower frequency, the spatial extent of the emission region is
also expected to increase. When the emission region approaches the
RM screen, one expects depolarization. Direct polarized very long
baseline interferometry imaging could shed light on this matter. This
is complicated by interstellar scattering, which also increases the
apparent angular size. The changing emission location as a function
of frequency may complicate the RM inferences (Fish et al. 2009;
Broderick & McKinney 2010). This can lead one to overestimate
RM. The sign of RM would generically be a more robust quantity,
and looking for changes in the sign of RM could be a proxy for the
correlation function.

A separate approach is to use other polarized sources as probes
of the flow. One candidate population is pulsars. At the Galactic
Centre, interstellar scattering (Lazio & Cordes 2000) smears out the
pulses, making them difficult to detect directly. However, the pulse
averaged flux may itself be observable. Over the orbit around the
black hole, one can measure the time variation of the RM, leading
to a probe of the spatial RM variations in the accretion flow. Some
pulsars, such as the Crab, exhibit giant pulses, which could still be
visible despite a scattering delay smearing. These could be used to
measure the dispersion measure along the orbit. The GMRT at 610
MHz would have optimal sensitivity to detecting the non-pulsating
emission from pulsars, and be able to deconfuse them from the
dominant synchrotron emission using RM synthesis (Brentjens &
de Bruyn 2005).

6 CONCLUSION

A series of new, large dynamical range secular MHD simulation
are presented for the understanding of the low luminosity of the
supermassive black hole in the Galactic Centre. These are the first
global 3D MHD simulations which do not face boundary condi-
tions at outer radii, and impose ingoing boundaries at the interior,
running for many Bondi times. We confirm a class of magnetically
frustrated accretion flows, whose bulk properties are independent

of physical and numerical parameters, including resolution, rotation
and magnetic fields. Neither significant rotational support nor out-
ward flow is observed in our simulations. An extrapolation formula
is proposed and the accretion rate is consistent with observational
data.

A promising probe for the nature of the accretion flow is the
RM and its time variability. In this comparison, the dominant free
parameter is the electron temperature. We argued that over the
plausible range, from thermal to adiabatic, this radius varies from 40
to 250 Schwarzschild radii. The RM variations in the simulations
are intermittent, requiring many measurements to determine this
last free parameter.

We propose that temporal RM variations are a generic prediction
to distinguish between the wide variety of theoretical models cur-
rently under consideration, ranging from CDAF through ADIOS to
ADAF. RM is dominated by the radius at which electrons turn rela-
tivistic, when the flow is still very subrelativistic, and is thus much
further out than the Schwarzschild radius. Most models, other than
the ones found in our simulations, involve rapidly flowing plasmas,
with Mach numbers near unity. These generically result in rapid
RM variations on time-scales of hours to weeks (or in special cases,
it can be infinite). In contrast, our simulations predict variability on
time-scales of weeks to years. A major uncertainty in this predic-
tion is the poor statistical measure of the standard deviation of RM
measurement, which requires long-term RM monitoring to quantify.

Future observations of RM time variability, or spatially resolved
measurements using pulsars, will provide valuable information.
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APPENDIX A: ROTATION MEASURE
CONSTRAINT ON ACCRETION FLOW

In traversing the accretion flow, linearly polarized radio waves of
wavelength λ are rotated by RM λ2 radians, where

RM = e3

2πm2
ec

4

∫
nef (Te)B cos(θ) dl. (A1)

Here f (Te) is a ratio of modified Bessel functions: f (Te) =
K0(mec2/kBTe)/K2(mec2/kBTe) (Shcherbakov 2008), which sup-
presses RM by a factor ∝ T −2

e wherever electrons are relativistic.
The integral here covers the entire path from source to observer; θ is
the angle between B and the line of sight. This expression is appro-
priate for the frequencies at which RM has been observed; at lower
frequencies, where propagation is ‘superadiabatic’ (Broderick &
Blandford 2010) cos (θ ) → ±|cos (θ )|.

We adopt a power-law solution with negligible rotational support
in which ρ ∝ r−k, and the total pressure P ∝ r−kP with kP = k +
1; moreover we take Te ∝ r−kT for the relativistic electrons. The
hydrostatic equation dP/dr = −GMρ/r2 becomes

P = Pg + PB = GM

(k + 1)

ρ

r
, (A2)

and with Pg = βPB = βB2/(8π), ρ = neμe (where μe = 1.2mp is
the mass per electron),

B =
[

8π

(β + 1)(k + 1)

GMμene

r

]1/2

. (A3)

So long as k > 1/3 (so that RM converges at large radii) and k <

(1 + 4kT)/3 (so it converges inward as well), the RM integral is set

Figure A1. The logarithm of the relativistic RM factor, log10F(k, kT). The
true RM integral is modified by a factor F(k, kT) relative to an estimate
in which the non-relativistic formula is used, but the inner bound of inte-
gration is set to the radius Rrel at which electrons become relativistic; see
equation (A1).

around Rrel. Taking a radial line of sight (dl → dr), we write∫ ∞

0
nef (Te)B cos(θ) dr = F (k, kT)

∫ ∞

Rrel

neB cos(θ) dr

= 2

3k − 1
〈cos(θ )〉F (k, kT) [neBr]Rrel

,

(A4)

where 〈cos (θ )〉 encapsulates the difference between the true integral
what it would have been if θ = 0 all along the path, and F(k, kT)
encapsulates the difference between a smooth cut-off and a sharp
one. We plot F(k, kT) in Fig. A1; it is of order unity except as kT

approaches (3k − 1)/4. All together,

RM = 4e2 GM

m2
ec

5

〈cos(θ )〉F (k, kT)

3k − 1

[
μene(Rrel)3

π(k + 1)(β + 1)

Rrel

RS

]1/2

.

(A5)

To estimate ne(Rrel) from RM, one must make assumptions about
the uncertain parameters β, 〈cos (θ )〉, kT and Rrel/RS; then k can
be derived self-consistently from observations ne(RB) and RM. Our
fiducial values of these parameters are 10, 0.5, 0.5 and 100, respec-
tively, of which we consider the last to be the most uncertain. We
now discuss each in turn.

Although the magnetization parameter β could conceivably take
a very wide range of values, we consistently find β � 10 in our
simulations, with some tendency for β to decrease inward. We
consider it unlikely for the flow to be much less magnetized, given
the magnetization of the galactic centre and the fact that weak fields
are enhanced in most of the flow models under consideration.

If B wanders little in the region where the integrand is large (a
zone of width ∼Rrel around Rrel), and is randomly oriented rela-
tive to the line of sight 〈cos (θ )〉 � cos [θ (Rrel)], typically 1/2 in
absolute value. If the field were purely radial, 〈cos (θ )〉 would be
unity. Conversely, if B reverses frequently in this region (the num-
ber of reversals Nr is large) then 〈cos(θ )〉rms � 1/(2

√
Nr + 1) will

be small. However, Nr cannot be too large, or magnetic forces
are unbalanced. We gauge its maximum value by equating the
square of the buoyant growth rate, N 2 = [(3 − 2k)/5]GM/r3,
against the square of the Alfvén frequency N 2

r v2
A/r2. Noting that
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v2
A = GM/[2(β+1)(k+1)r], we find N 2

r � (2/5)(β+1)(k+1)(3−
2k). For β = 10 and k = 1, this implies 〈cos (θ )〉rms � 0.25, a very
minor suppression. We can therefore be confident that 〈cos (θ )〉 =
0.5 to within a factor of 2, unless β � 10 for some reason.

The precise value of kT is not important unless it approaches or
falls below the minimum value (3k − 1)/4. If electron conduction
is very strong this is unavoidable, as rapid transport implies kT � 0;
however in this case the relativistic region disappears, as discussed
below. Alternately, if relativistic electrons are trapped and adiabatic,
Te ∝ ρ1/3 and kT = k/3; however kT < (3k − 1)/4 then requires k <

3/5, which can only be realized within the CDAF model. Finally,
if electrons remain strongly coupled to ions, kT = 1 and we only
require k < 5/3.

The location at which electrons become relativistic, Rrel, is quite
uncertain. Models such as those of Yuan, Quataert & Narayan
(2003), in which electrons are heated while advecting inward, pre-
dict Rrel � 102RS. The maximum conceivable Rrel corresponds to
adiabatic compression of the electrons, inward from the radius at
which they decouple from ions; this yields about 500/(1 + k)RS. If
conduction is very strong, however, electrons should remain cold
throughout the flow; in this case we should replace Rrel/RS → 1 and
F(k, kT) → 1 in equation (A5).

Adopting our fiducial values for the other variables, and taking
F(k, kT) → 1 for lack of knowledge regarding kT, we may solve
for the self-consistent value of k which connects the density at RB

with ne(Rrel) derived from equation (A5). We find k → (0.90, 1.23,
1.32) for Rrel/RS → (200, 100, 1), respectively. As noted in the
text, the current small set of RM measurements allows a 2 order of
magnitude range in RMest, and k ∼ 1 is consistent with data. Longer
observations of time and amplitude will improve the constraints.

APPENDIX B: INNER BOUNDARY
CONDITIONS

The inner boundary conditions were determined by first solving for
the vacuum solution of the magnetic field inside the entire inner
boundary cube. Then inside the largest possible sphere within this
cube, matter and energy were removed.

To simplify the programming, we put the entire inner boundary
region on one node. This meant that the grid had to be divided over
an odd number of nodes in each Cartesian direction.

B1 Magnetic field

In order to determine the vacuum magnetic field solution, we use
the following two Maxwell equations for zero current:

∇ · B = 0, (B1)

∇ × B = 0. (B2)

Equation (B2) enables us to write B = ∇φ, for some scalar function
φ. Combining this with (B1) we obtain Laplace’s equation:

∇2φ = 0, (B3)

which we solve with Neumann boundary conditions (the normal
derivative n̂ · ∇φ specified) given by B · n̂ on the boundary of the
cube.

Since the MHD code stores the values of B on the left-hand cell
faces, we must solve for φ in cell centres and then take derivatives to
get the value of B on the cell boundary. Let the inner boundary cube
be of side length N, consisting of cells numbered 1, . . . , N in all
three directions. In order to simplify the problem, we set B · n̂ = 0

on five of the six faces of the cube, and find the contribution to φ

from one face at a time.
Suppose B · n̂ = 0 on all of the faces except the i = N + 1 face

(i.e., BN+1,j ,k
x can be non-zero). The Laplace equation (B3) with

Neumann boundary conditions only has a solution if the net flux of
field into the cube is zero. Since all of the boundary conditions are
zero except for the i = N + 1 face, that face must have a net flux
through it of zero. Defining

BN+1
x = 1

N 2

N∑
j=1

N∑
k=1

BN+1,j ,k
x (B4)

to be the average of Bx on the i = N + 1 face, and letting bN+1,j ,k
x =

BN+1,j ,k
x − BN+1

x , bN+1,j ,k
x can be used as the boundary condition

and BN+1
x will be added in later.

We use separation of variables to solve for φ. Set φijk = XiYjZk,
substitute into (B3), and rearrange to get

Xi+1 − 2Xi + Xi−1

Xi
+ Y j+1 − 2Y j + Y j−1

Y j

+ Zk+1 − 2Zk + Zk−1

Zk
= 0. (B5)

Now let

Y j+1 − 2Y j + Y j−1

Y j
= −η2, and (B6)

Zk+1 − 2Zk + Zk−1

Zk
= −ω2. (B7)

Solving equations (B6) and (B7) with the boundary conditions,

Y j
m = cos

mπ
(
j − 1

2

)
N

, Zk
n = cos

nπ
(
k − 1

2

)
N

, (B8)

η2
m = 4 sin2 mπ

2N
, ω2

n = 4 sin2 nπ

2N
. (B9)

Substituting (B6), (B7) and (B9) into (B5), and solving, yields

Xi
mn = cosh

αmnπ
(
i − 1

2

)
2N

, (B10)

where

αmn = 2N

π
arcsinh

√
sin2

nπ

2N
+ sin2

mπ

2N
. (B11)

Finally, putting this all together,

φijk =
N−1∑
m=0

N−1∑
n=0

Amn cos
mπ

(
j − 1

2

)
N

cos
nπ

(
k − 1

2

)
N

× cosh
αmnπ

(
i − 1

2

)
N

,
(B12)

and define A00 = 0.
To determine the coefficients Amn we add in the final boundary

condition (i = N + 1), and get

Amn = 4

N 2

1

2 sinh(αmnπ) sinh(αmnπ/2N )

×
N∑

j=1

N∑
k=1

bN+1,j ,k
x cos

mπ(j − 1
2 )

N

× cos
nπ

(
k − 1

2

)
N

. (B13)

A similar calculation may be performed for the case when the i =
1 boundary has non-zero field. After finding the contribution from
each face, we store their sum in φ.
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Figure B1. Vacuum solution of the magnetic field is calculated in the central
region. The field lines outside of the central region show the boundary
condition.

To deal with the subtracted cube face field averages, let

φ
ijk
0 = B

1jk
x i + Bi1k

y j + B
ij1
z k

+ B
N+1,j ,k
x − B

1jk
x

2N
(i2 + j 2)

+ B
N+1,j ,k
x + Bi,N+1,k

y − B
1jk
x − Bi1k

y

2N
(j 2 + k2), (B14)

and add this to φ. φ0 is the potential of a cube where each face has
the uniform magnetic field given by the average of the magnetic
field on the corresponding face of the inner boundary cube.

To find B, we set

Bijk
x = φijk − φi−1,j ,k, (B15)

Bijk
y = φijk − φi,j−1,k, (B16)

Bijk
z = φijk − φi,j,k−1. (B17)

In Fig. B1 we used the magnetic field solver with a boundary
condition consisting of field going in one side and out an adjacent
side of the box. This boundary condition tests both the φ0 component
of the solution (since faces have non-zero net flux) as well as the
Fourier series component (since faces have non-constant magnetic
field).

B2 Density and pressure

Inside the largest possible sphere that can be inscribed within the
inner boundary cube, we adjust the density and pressure so that the
Alfvén speed and the sound speed are both equal to the circular
speed. We accomplish this by setting

ρ = B2r

GMBH
, (B18)

p = GMBHρ

rγ
. (B19)

We then set p to 0.1p. ρ and p were assigned minimum values of
0.1 times the average value of ρ outside of the sphere, and 0.001,
respectively, to ensure stability.

APPENDIX C: ANIMATION OF
MAGNETICALLY FRUSTRATED
CONVECTION SIMULATION

The qualitative behaviour of the accretion flow is best illustrated
in the form of a movie, available as Supporting Information with
the electronic version of the article. This movie shows case 25.
The raw simulation used 6003 grid cells. The Bondi radius is
at 1000 grid units, where one grid unit is the smallest central
grid spacing. The full box size is 80003 grid units. Colour rep-
resents the entropy, and arrows represent the magnetic field vec-
tor. The right-hand side shows the equatorial plane (yz), the left-
hand side shows a perpendicular plane (xy). The moving white
circles represent the flow of an unmagnetized Bondi solution, start-
ing at the Bondi radius. On average, the fluid is slowly mov-
ing inward, in a state of magnetically frustrated convection. Var-
ious other formats can also be seen at http://www.cita.utoronto.ca/
pen/MFAF/blackhole_movie/index.html.

SUPPORTING INFORMATION

Additional Supporting Information may be found in the online ver-
sion of this article:

Movie C1. Animation of magnetically frustrated convection simu-
lation.

Please note: Wiley-Blackwell are not responsible for the content or
functionality of any supporting materials supplied by the authors.
Any queries (other than missing material) should be directed to the
corresponding author for the article.
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