119 research outputs found

    The majority of β-catenin mutations in colorectal cancer is homozygous

    Get PDF
    Background: β-catenin activation plays a crucial role for tumourigenesis in the large intestine but except for Lynch syndrome (LS) associated cancers stabilizing mutations of β-catenin gene (CTNNB1) are rare in colorectal cancer (CRC). Previous animal studies provide an explanation for this observation. They showed that CTNNB1 mutations induced transformation in the colon only when CTNNB1 was homozygously mutated or when membranous β-catenin binding was hampered by E-cadherin haploinsufficiency. We were interested, if these mechanisms are also found in human CTNNB1 mutated CRCs. Results: Among 869 CRCs stabilizing CTNNB1 mutations were found in 27 cases. Homo- or hemizygous CTNNB1 mutations were detected in 74% of CTNNB1 mutated CRCs (13 microsatellite instabile (MSI-H), 7 microsatellite stabile (MSS)) but only in 3% (1/33) of extracolonic CTNNB1 mutated cancers. In contrast to MSS CRC, CTNNB1 mutations at codon 41 or 45 were highly selected in MSI-H CRC. Of the examined three CRC cell lines, β-catenin and E-cadherin expression was similar in cell lines without or with hetereozygous CTNNB1 mutations (DLD1 and HCT116), while a reduced E-cadherin expression combined with cytoplasmic accumulation of β-catenin was found in a cell line with homozygous CTNNB1 mutation (LS180). Reduced expression of E-cadherin in human MSI-H CRC tissue was identified in 60% of investigated cancers, but no association with the CTNNB1 mutational status was found. Conclusions: In conclusion, this study shows that in contrast to extracolonic cancers stabilizing CTNNB1 mutations in CRC are commonly homo- or hemizygous indicating a higher threshold of β-catenin stabilization to be required for transformation in the colon as compared to extracolonic sites. Moreover, we found different mutational hotspots in CTNNB1 for MSI-H and MSS CRCs suggesting a selection of different effects on β-catenin stabilization according to the molecular pathway of tumourigenesis. Reduced E-cadherin expression in CRC may further contribute to higher levels of transcriptionally active β-catenin, but it is not directly linked to the CTNNB1 mutational status

    Molecular Alterations and Association with Clinical Parameters

    Get PDF
    Lynch syndrome is caused by germline mutations of DNA mismatch repair (MMR) genes, most frequently MLH1 and MSH2. Recently, MMR-deficient crypt foci (MMR- DCF) have been identified as a novel lesion which occurs at high frequency in the intestinal mucosa from Lynch syndrome mutation carriers, but very rarely progress to cancer. To shed light on molecular alterations and clinical associations of MMR-DCF, we systematically searched the intestinal mucosa from Lynch syndrome patients for MMR-DCF by immunohistochemistry. The identified lesions were characterised for alterations in microsatellite-bearing genes with proven or suspected role in malignant transformation. We demonstrate that the prevalence of MMR-DCF (mean 0.84 MMR-DCF per 1 cm2 mucosa in the colorectum of Lynch syndrome patients) was significantly associated with patients’ age, but not with patients’ gender. No MMR-DCF were detectable in the mucosa of patients with sporadic MSI-H colorectal cancer (n = 12). Microsatellite instability of at least one tested marker was detected in 89% of the MMR-DCF examined, indicating an immediate onset of microsatellite instability after MMR gene inactivation. Coding microsatellite mutations were most frequent in the genes HT001 (ASTE1) with 33%, followed by AIM2 (17%) and BAX (10%). Though MMR deficiency alone appears to be insufficient for malignant transformation, it leads to measurable microsatellite instability even in single MMR-deficient crypts. Our data indicate for the first time that the frequency of MMR-DCF increases with patients’ age. Similar patterns of coding microsatellite instability in MMR-DCF and MMR-deficient cancers suggest that certain combinations of coding microsatellite mutations, including mutations of the HT001, AIM2 and BAX gene, may contribute to the progression of MMR-deficient lesions into MMR-deficient cancers

    A phase II study for metabolic in vivo response monitoring with sequential 18FDG-PET-CT during treatment with the EGFR-monoclonal-antibody cetuximab in metastatic colorectal cancer: the Heidelberg REMOTUX trial

    Get PDF
    BACKGROUND: The epidermal growth factor receptor monoclonal antibody cetuximab has proven activity in metastatic colorectal cancer. To date, the mechanisms of action are not completely understood. Especially the impact on tumor glucose metabolism, or tumor vascularization remains largely unclear. The understanding of mechanisms such as early changes in tumor metabolism is of clinical importance since there may be a substantial influence on choice and sequence of drug combinations. Early signals of response to cetuximab may prove useful to identify patients having a relevant clinical treatment benefit. The objective of this trial is to evaluate the predictive relevance of the relative change in (18 )F-Fluorodeoxyglucose tumor uptake for early clinical response during short-term single agent treatment with cetuximab. Early clinical response will be routinely measured according to the response evaluation criteria in solid tumors. Accompanying research includes cytokine immune monitoring and analysis of tumor proteins and tumor genes. METHODS/DESIGN: The REMOTUX trial is an investigator-initiated, prospective, open-label, single-arm, single-center early exploratory predictive study. The first (18 )F-FDG PET-CT is conducted at baseline followed by the run-in phase with cetuximab at days 1 and 8. At day 14, the second (18 )F-FDG PET-CT is performed. Subsequently, patients are treated according to the Folfiri-cetuximab regimen as an active and approved first-line regimen for metastatic colorectal carcinoma. At day 56, clinical response is evaluated with a CT-scan compared to the baseline analysis. Tracer uptake is assessed using standardized uptake values (SUVs). The main hypothesis to be tested in the primary analysis is whether or not the relative change in the SUV from baseline to day 14 has any predictive relevance for early clinical response determined at day 56. Patients are followed until death from any cause or until 24 months after the last patient has ended trial treatment. DISCUSSION: The aim of this trial is to evaluate metabolic changes in metastatic colorectal cancer during short-term single agent treatment with cetuximab and to analyse their potential of predicting early clinical response. This could be helpful to answer the question if early identification of patients not responding to cetuximab is possible. TRIAL REGISTRATION: ClinicalTrials.gov NCT200811021020; EudraCT 20090132792

    Association between TAS2R38 gene polymorphisms and colorectal cancer risk

    Get PDF
    Molecular sensing in the lingual mucosa and in the gastro-intestinal tract play a role in the detection of ingested harmful drugs and toxins. Therefore, genetic polymorphisms affecting the capability of initiating these responses may be critical for the subsequent efficiency of avoiding and/or eliminating possible threats to the organism. By using a tagging approach in the region of Taste Receptor 2R38 (TAS2R38) gene, we investigated all the common genetic variation of this gene region in relation to colorectal cancer risk with a case-control study in a German population (709 controls and 602 cases) and in a Czech population (623 controls and 601 cases). We found that there were no significant associations between individual SNPs of the TAS2R38 gene and colorectal cancer in the Czech or in the German population, nor in the joint analysis. However, when we analyzed the diplotypes and the phenotypes we found that the non-taster group had an increased risk of colorectal cancer in comparison to the taster group. This association was borderline significant in the Czech population, (OR = 1.28, 95% CI 0.99-1.67; P(value) = 0.058) and statistically significant in the German population (OR = 1.36, 95% CI 1.06-1.75; P(value) = 0.016) and in the joint analysis (OR = 1.34, 95% CI 1.12-1.61; P(value) = 0.001). In conclusion, we found a suggestive association between the human bitter tasting phenotype and the risk of CRC in two different populations of Caucasian origin

    Mutations in POLE and survival of colorectal cancer patients – link to disease stage and treatment

    Get PDF
    Recent molecular profiling studies reported a new class of ultramutated colorectal cancers (CRCs), which are caused by exonuclease domain mutations (EDMs) in DNA polymerase ϵ (POLE). Data on the clinical implications of these findings as to whether these mutations define a unique CRC entity with distinct clinical outcome are lacking. We performed Sanger sequencing of the POLE exonuclease domain in 431 well-characterized patients with microsatellite stable (MSS) CRCs of a population-based patient cohort. Mutation data were analyzed for associations with major epidemiological, clinical, genetic, and pathological parameters including overall survival (OS) and disease-specific survival (DSS). In 373 of 431 MSS CRC, all exons of the exonuclease domain were analyzable. Fifty-four mutations were identified in 46 of these samples (12.3%). Besides already reported EDMs, we detected many new mutations in exons 13 and 14 (corresponding to amino acids 410–491) as well as in exon 9 and exon 11 (corresponding to aa 268–303 and aa 341–369). However, we did not see any significant associations of EDMs with clinicopathological parameters, including sex, age, tumor location and tumor stage, CIMP, KRAS, and BRAF mutations. While with a median follow-up time of 5.0 years, survival analysis of the whole cohort revealed nonsignificantly different adjusted hazard ratios (HRs) of 1.35 (95% CI: 0.82–2.25) and 1.44 (0.81–2.58) for OS and DSS indicating slightly impaired survival of patients with EDMs, subgroup analysis for patients with stage III/IV disease receiving chemotherapy revealed a statistically significantly increased adjusted HR (1.87; 95%CI: 1.02–3.44). In conclusion, POLE EDMs do not appear to define an entirely new clinically distinct disease entity in CRC but may have prognostic or predictive implications in CRC subgroups, whose significance remains to be investigated in future studies

    Beta-2-microglobulin Mutations Are Linked to a Distinct Metastatic Pattern and a Favorable Outcome in Microsatellite-Unstable Stage IV Gastrointestinal Cancers

    Get PDF
    Immune checkpoint blockade (ICB) shows remarkable clinical effects in patients with metastatic microsatellite-unstable (MSI) cancer. However, markers identifying potential non-responders are missing. We examined the prevalence of Beta-2-microglobulin (B2M) mutations, a common immune evasion mechanism, in stage IV MSI gastrointestinal cancer and its influence on metastatic pattern and patients’ survival under ICB. Twentyfive patients with metastatic, MSI gastrointestinal adenocarcinoma were included. Eighteen patients received ICB with pembrolizumab and one patient with nivolumab/ ipilimumab. Sequencing was performed to determine B2M mutation status. B2M mutations and loss of B2M expression were detected in 6 out of 25 stage IV MSI cancers. B2M mutations were strongly associated with exclusively peritoneal/peritoneal and lymph node metastases (p=0.0055). However, no significant differences in therapy response (25% vs. 46.6%, p>0.99) and survival (median PFS: 19.5 vs 33.0 months, p=0.74; median OS 39 months vs. not reached, p>0.99) were observed between B2Mmutant and B2M-wild type tumor patients. Among metastatic MSI GI cancers, B2Mmutant tumors represent a biologically distinct disease with distinct metastatic patterns. To assess ICB response in B2M-mutant MSI cancer patients, future studies need to account for the fact that baseline survival of patients with B2M-mutant MSI cancer may be longer than of patients with B2M-wild type MSI cancer

    The coding microsatellite mutation profile of PMS2-deficient colorectal cancer

    Get PDF
    Lynch syndrome (LS) is caused by a pathogenic heterozygous germline variant in one of the DNA mismatch repair (MMR) genes: MLH1, MSH2, MSH6 or PMS2. LS-associated colorectal carcinomas (CRCs) are characterized by MMR deficiency and by accumulation of multiple insertions/deletions at coding microsatellites (cMS). MMR deficiency-induced variants at defined cMS loci have a driver function and promote tumorigenesis. Notably, PMS2 variant carriers face only a slightly increased risk of developing CRC. Here, we investigate whether this lower penetrance is also reflected by differences in molecular features and cMS variant patterns. Tumor DNA was extracted from formalin-fixed paraffin-embedded (FFPE) tissue cores or sections (n = 90). Tumors originated from genetically proven germline pathogenic MMR variant carriers (including 14 PMS2-deficient tumors). The mutational spectrum was analyzed using fluorescently labeled primers specific for 18 cMS previously described as mutational targets in MMR-deficient tumors. Immune cell infiltration was analyzed by immunohistochemical detection of T-cells on FFPE tissue sections. The cMS spectrum of PMS2-deficient CRCs did not show any sig-nificant differences from MLH1/MSH2-deficient CRCs. PMS2-deficient tumors, however, displayed lower CD3-positive T-cell infiltration compared to other MMR-deficient cancers (28.00 vs. 55.00 per 0.1 mm(2), p = 0.0025). Our study demonstrates that the spectrum of potentially immunogenic cMS variants in CRCs from PMS2 gene variant carriers is similar to that observed in CRCs from other MMR gene variant carriers. Lower immune cell infiltration observed in PMS2-deficient CRCs could be the result of alternative mechanisms of immune evasion or immune cell exclusion, similar to those seen in MMR-proficient tumors.Hereditary cancer genetic

    Beta-2-microglobulin Mutations Are Linked to a Distinct Metastatic Pattern and a Favorable Outcome in Microsatellite-Unstable Stage IV Gastrointestinal Cancers

    Get PDF
    Immune checkpoint blockade (ICB) shows remarkable clinical effects in patients with metastatic microsatellite-unstable (MSI) cancer. However, markers identifying potential non-responders are missing. We examined the prevalence of Beta-2-microglobulin (B2M) mutations, a common immune evasion mechanism, in stage IV MSI gastrointestinal cancer and its influence on metastatic pattern and patients’ survival under ICB. Twenty-five patients with metastatic, MSI gastrointestinal adenocarcinoma were included. Eighteen patients received ICB with pembrolizumab and one patient with nivolumab/ipilimumab. Sequencing was performed to determine B2M mutation status. B2M mutations and loss of B2M expression were detected in 6 out of 25 stage IV MSI cancers. B2M mutations were strongly associated with exclusively peritoneal/peritoneal and lymph node metastases (p=0.0055). However, no significant differences in therapy response (25% vs. 46.6%, p>0.99) and survival (median PFS: 19.5 vs 33.0 months, p=0.74; median OS 39 months vs. not reached, p>0.99) were observed between B2M-mutant and B2M-wild type tumor patients. Among metastatic MSI GI cancers, B2M-mutant tumors represent a biologically distinct disease with distinct metastatic patterns. To assess ICB response in B2M-mutant MSI cancer patients, future studies need to account for the fact that baseline survival of patients with B2M-mutant MSI cancer may be longer than of patients with B2M-wild type MSI cancer

    A simple approach for detecting HLA-A02 alleles in archival formalin-fixed paraffin-embedded tissue samples and an application example for studying cancer immunoediting

    Get PDF
    The HLA system represents a central component of the antigen presentation machinery. As every patient possesses a defined set of HLA molecules, only certain antigens can be presented on the cell surface. Thus, studying HLA type-dependent antigen presentation can improve the understanding of variation in susceptibility to various diseases, including infectious diseases and cancer. In archival formalin-fixed paraffin-embedded (FFPE) tissue, the HLA type is difficult to analyze because of fragmentation of DNA, hindering the application of commonly used assays that rely on long DNA stretches. Addressing these difficulties, we present a refined approach for characterizing presence or absence of HLA-A*02, the most common HLA-A allele in the Caucasian population, in archival samples. We validated our genotyping strategy in a cohort of 90 samples with HLA status obtained by an NGS-based method. 90% (n = 81) of the samples could be analyzed with the approach. For all of them, the presence or absence of HLA-A*02 alleles was correctly determined with the method, demonstrating 100% sensitivity and specificity (95% CI: 91.40%-100% and 91.19%-100%). Furthermore, we provide an example of application in an independent cohort of 73 FFPE microsatellite-unstable (MSI) colorectal cancer samples. As MSI cancer cells encompass a high number of mutations in coding microsatellites, leading to the generation of highly immunogenic frameshift peptide antigens, they are ideally suited for studying relations between the mutational landscape of tumor cells and interindividual differences in the immune system, including the HLA genotype. Overall, our method can help to promote studying HLA type-dependency during the pathogenesis of a wide range of diseases, making archival and historic tissue samples accessible for identifying HLA-A*02 alleles.Peer reviewe

    Distinct Mutational Profile of Lynch Syndrome Colorectal Cancers Diagnosed under Regular Colonoscopy Surveillance

    Get PDF
    Regular colonoscopy even with short intervals does not prevent all colorectal cancers (CRC) in Lynch syndrome (LS). In the present study, we asked whether cancers detected under regular colonoscopy surveillance (incident cancers) are phenotypically different from cancers detected at first colonoscopy (prevalent cancers). We analyzed clinical, histological, immunological and mutational characteristics, including panel sequencing and high-throughput coding microsatellite (cMS) analysis, in 28 incident and 67 prevalent LS CRCs (n total = 95). Incident cancers presented with lower UICC and T stage compared to prevalent cancers (p < 0.0005). The majority of incident cancers (21/28) were detected after previous colonoscopy without any pathological findings. On the molecular level, incident cancers presented with a significantly lower KRAS codon 12/13 (1/23, 4.3% vs. 11/21, 52%; p = 0.0005) and pathogenic TP53 mutation frequency (0/17, 0% vs. 7/21, 33.3%; p = 0.0108,) compared to prevalent cancers; 10/17 (58.8%) incident cancers harbored one or more truncating APC mutations, all showing mutational signatures of mismatch repair (MMR) deficiency. The proportion of MMR deficiency-related mutational events was significantly higher in incident compared to prevalent CRC (p = 0.018). In conclusion, our study identifies a set of features indicative of biological differences between incident and prevalent cancers in LS, which should further be monitored in prospective LS screening studies to guide towards optimized prevention protocols.Peer reviewe
    corecore