12 research outputs found

    Title page Glucuronide production by whole-cell biotransformation using genetically engineered fission yeast S. pombe

    Get PDF
    Abstract Drug metabolites generated by UDP glycosyltransferases (UGTs) are needed for drug development and toxicity studies, especially in the context of safety testing of metabolites during drug development. Since chemical metabolite synthesis can be arduous, various biological approaches have been developed; however, no whole-cell biotransformation with recombinant microbes that express human UGTs was yet achieved. In this study we expressed human UDP glucose-6-dehydrogenase (UGDH) together with several human or rat UGT isoforms in the fission yeast Schizosaccharomyces pombe and generated strains that catalyze the whole-cell glucuronidation of standard substrates. Moreover, we established two methods to obtain stable isotope-labeled glucuronide metabolites: The first uses a labeled aglycon, while the second employs 13 C 6 -glucose as a metabolic precursor of isotope-labeled UDPglucuronic acid (UDP-GA) and yields a sixfold labeled glucuronide. The system described here should lead to a significant facilitation in the production of both labeled and unlabeled drug glucuronides for industry and academia. DMD 30965

    The human GID complex engages two independent modules for substrate recruitment

    No full text
    The human GID (hGID) complex is a conserved E3 ubiquitin ligase regulating diverse biological processes, including glucose metabolism and cell cycle progression. However, the biochemical function and substrate recognition of the multi-subunit complex remain poorly understood. Using biochemical assays, cross-linking mass spectrometry, and cryo-electron microscopy, we show that hGID engages two distinct modules for substrate recruitment, dependent on either WDR26 or GID4. WDR26 and RanBP9 cooperate to ubiquitinate HBP1 in vitro, while GID4 is dispensable for this reaction. In contrast, GID4 functions as an adaptor for the substrate ZMYND19, which surprisingly lacks a Pro/N-end degron. GID4 substrate binding and ligase activity is regulated by ARMC8α, while the shorter ARMC8β isoform assembles into a stable hGID complex that is unable to recruit GID4. Cryo-EM reconstructions of these hGID complexes reveal the localization of WDR26 within a ring-like, tetrameric architecture and suggest that GID4 and WDR26/Gid7 utilize different, non-overlapping binding sites. Together, these data advance our mechanistic understanding of how the hGID complex recruits cognate substrates and provides insights into the regulation of its E3 ligase activity.ISSN:1469-221XISSN:1469-317

    Sloan Digital Sky Survey: Early Data Release

    No full text

    Siponimod versus placebo in secondary progressive multiple sclerosis (EXPAND): a double-blind, randomised, phase 3 study

    No full text
    International audienc
    corecore