1,131 research outputs found

    Choice Architecture to Improve Financial Decision Making

    Get PDF
    This is the author accepted manuscript. The final version is available from MIT Press via the DOI in this recordWe exploit the principles of choice architecture to evaluate interventions in the market for reloadable prepaid cards. Participants are randomized into three card menu presentation treatments - the market status quo, a regulation-inspired reform, or an enhanced reform designed to minimize attribute overload - and offered choices based on prior structural estimation of individual preferences. Consumers routinely choose incorrectly under the status quo, with tentative evidence the regulation-inspired presentation may increase best card choice, and clear evidence the enhanced reform reduces worst card choice. Welfare analysis suggests the regulation-inspired presentation offers modest gains, while the enhanced policy generates substantial benefits

    Bose-Fermi Mixtures in Optical Lattices

    Get PDF
    Using mean field theory, we have studied Bose-Fermi mixtures in a one-dimensional optical lattice in the case of an attractive boson-fermion interaction. We consider that the fermions are in the degenerate regime and that the laser intensities are such that quantum coherence across the condensate is ensured. We discuss the effect of the optical lattice on the critical rotational frequency for vortex line creation in the Bose-Einstein condensate, as well as how it affects the stability of the boson-fermion mixture. A reduction of the critical frequency for nucleating a vortex is observed as the strength of the applied laser is increased. The onset of instability of the mixture occurs for a sizeably lower number of fermions in the presence of a deep optical lattice.Comment: 7 pages, 6 figures, revtex4, 14th International Laser Physics Workshop (LPHYS'05

    From Nonspecific DNA–Protein Encounter Complexes to the Prediction of DNA–Protein Interactions

    Get PDF
    ©2009 Gao, Skolnick. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.doi:10.1371/journal.pcbi.1000341DNA–protein interactions are involved in many essential biological activities. Because there is no simple mapping code between DNA base pairs and protein amino acids, the prediction of DNA–protein interactions is a challenging problem. Here, we present a novel computational approach for predicting DNA-binding protein residues and DNA–protein interaction modes without knowing its specific DNA target sequence. Given the structure of a DNA-binding protein, the method first generates an ensemble of complex structures obtained by rigid-body docking with a nonspecific canonical B-DNA. Representative models are subsequently selected through clustering and ranking by their DNA–protein interfacial energy. Analysis of these encounter complex models suggests that the recognition sites for specific DNA binding are usually favorable interaction sites for the nonspecific DNA probe and that nonspecific DNA–protein interaction modes exhibit some similarity to specific DNA–protein binding modes. Although the method requires as input the knowledge that the protein binds DNA, in benchmark tests, it achieves better performance in identifying DNA-binding sites than three previously established methods, which are based on sophisticated machine-learning techniques. We further apply our method to protein structures predicted through modeling and demonstrate that our method performs satisfactorily on protein models whose root-mean-square Ca deviation from native is up to 5 Å from their native structures. This study provides valuable structural insights into how a specific DNA-binding protein interacts with a nonspecific DNA sequence. The similarity between the specific DNA–protein interaction mode and nonspecific interaction modes may reflect an important sampling step in search of its specific DNA targets by a DNA-binding protein

    Pinning of quantized vortices in helium drop by dopant atoms and molecules

    Get PDF
    Using a density functional method, we investigate the properties of liquid 4He droplets doped with atoms (Ne and Xe) and molecules (SF_6 and HCN). We consider the case of droplets having a quantized vortex pinned to the dopant. A liquid drop formula is proposed that accurately describes the total energy of the complex and allows one to extrapolate the density functional results to large N. For a given impurity, we find that the formation of a dopant+vortex+4He_N complex is energetically favored below a critical size N_cr. Our result support the possibility to observe quantized vortices in helium droplets by means of spectroscopic techniques.Comment: Typeset using Revtex, 3 pages and 5 figures (4 Postscript, 1 jpeg

    Modelling and simulating change in reforesting mountain landscapes using a social-ecological framework

    Get PDF
    Natural reforestation of European mountain landscapes raises major environmental and societal issues. With local stakeholders in the Pyrenees National Park area (France), we studied agricultural landscape colonisation by ash (Fraxinus excelsior) to enlighten its impacts on biodiversity and other landscape functions of importance for the valley socio-economics. The study comprised an integrated assessment of land-use and land-cover change (LUCC) since the 1950s, and a scenario analysis of alternative future policy. We combined knowledge and methods from landscape ecology, land change and agricultural sciences, and a set of coordinated field studies to capture interactions and feedback in the local landscape/land-use system. Our results elicited the hierarchically-nested relationships between social and ecological processes. Agricultural change played a preeminent role in the spatial and temporal patterns of LUCC. Landscape colonisation by ash at the parcel level of organisation was merely controlled by grassland management, and in fact depended on the farmer's land management at the whole-farm level. LUCC patterns at the landscape level depended to a great extent on interactions between farm household behaviours and the spatial arrangement of landholdings within the landscape mosaic. Our results stressed the need to represent the local SES function at a fine scale to adequately capture scenarios of change in landscape functions. These findings orientated our modelling choices in the building an agent-based model for LUCC simulation (SMASH - Spatialized Multi-Agent System of landscape colonization by ASH). We discuss our method and results with reference to topical issues in interdisciplinary research into the sustainability of multifunctional landscapes

    Macroscopic quantum tunneling of two-component Bose-Einstein condensates

    Full text link
    We show theoretically the existence of a metastable state and the possibility of decay to the ground state through macroscopic quantum tunneling in two-component Bose-Einstein condensates with repulsive interactions. Numerical analysis of the coupled Gross-Pitaevskii equations clarifies the metastable states whose configuration preserves or breaks the symmetry of the trapping potential, depending on the interspecies interaction and the particle number. We calculate the tunneling decay rate of the metastable state by using the collective coordinate method under the WKB approximation. Then the height of the energy barrier is estimated by the saddle point solution. It is found that macroscopic quantum tunneling is observable in a wide range of particle numbers. Macroscopic quantum coherence between two distinct states is discussed; this might give an additional coherent property of two-component Bose condensed systems. Thermal effects on the decay rate are estimated.Comment: 11 pages, 10 figures, revtex

    Superchemistry: dynamics of coupled atomic and molecular Bose-Einstein condensates

    Get PDF
    We analyze the dynamics of a dilute, trapped Bose-condensed atomic gas coupled to a diatomic molecular Bose gas by coherent Raman transitions. This system is shown to result in a new type of `superchemistry', in which giant collective oscillations between the atomic and molecular gas can occur. The phenomenon is caused by stimulated emission of bosonic atoms or molecules into their condensate phases

    Dark soliton states of Bose-Einstein condensates in anisotropic traps

    Full text link
    Dark soliton states of Bose-Einstein condensates in harmonic traps are studied both analytically and computationally by the direct solution of the Gross-Pitaevskii equation in three dimensions. The ground and self-consistent excited states are found numerically by relaxation in imaginary time. The energy of a stationary soliton in a harmonic trap is shown to be independent of density and geometry for large numbers of atoms. Large amplitude field modulation at a frequency resonant with the energy of a dark soliton is found to give rise to a state with multiple vortices. The Bogoliubov excitation spectrum of the soliton state contains complex frequencies, which disappear for sufficiently small numbers of atoms or large transverse confinement. The relationship between these complex modes and the snake instability is investigated numerically by propagation in real time.Comment: 11 pages, 8 embedded figures (two in color

    Executive function does not predict coping with symptoms in stable patients with a diagnosis of schizophrenia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Associations between coping with and control over psychotic symptoms were examined using the Maastricht Assessment of Coping Strategies-24, testing the hypothesis that the cognitive domain of executive functioning predicted quality and quantity of coping.</p> <p>Methods</p> <p>MACS-24 was administered to 32 individuals with a diagnosis of schizophrenia. For each of 24 symptoms, experience of distress, type of coping and the resulting degree of perceived control were assessed. Coping types were reduced to two contrasting coping categories: symptomatic coping (SC) and non-symptomatic coping (NSC; combining active problem solving, passive illness behaviour, active problem avoiding, and passive problem avoiding). Cognitive functioning was assessed using the GIT (Groninger Intelligence Test), the Zoo map (BADS: Behavioural Assessment of Dysexecutive function), Stroop-test and Trail making.</p> <p>Results</p> <p>Cognitive function was not associated with frequency of coping, nor did cognitive function differentially predict SC or NSC. Cognitive function similarly was not associated with symptom distress or level of perceived control over the symptom.</p> <p>Conclusion</p> <p>There was no evidence that cognitive function predicts quantity or quality of coping with symptoms in people with a diagnosis of schizophrenia. Variation in the realm of emotion regulation and social cognition may be more predictive of coping with psychotic symptoms.</p
    corecore