169 research outputs found

    Requirement for Dicer in Maintenance of Monosynaptic Sensory-Motor Circuits in the Spinal Cord

    Get PDF
    SummaryIn contrast to our knowledge of mechanisms governing circuit formation, our understanding of how neural circuits are maintained is limited. Here, we show that Dicer, an RNaseIII protein required for processing microRNAs (miRNAs), is essential for maintenance of the spinal monosynaptic stretch reflex circuit in which group Ia proprioceptive sensory neurons form direct connections with motor neurons. In postnatal mice lacking Dicer in proprioceptor sensory neurons, there are no obvious defects in specificity or formation of monosynaptic sensory-motor connections. However, these circuits degrade through synapse loss and retraction of proprioceptive axonal projections from the ventral spinal cord. Peripheral terminals are also impaired without retracting from muscle targets. Interestingly, despite these central and peripheral axonal defects, proprioceptive neurons survive in the absence of Dicer-processed miRNAs. These findings reveal that Dicer, through its production of mature miRNAs, plays a key role in the maintenance of monosynaptic sensory-motor circuits

    Information-based methods for predicting gene function from systematic gene knock-downs

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The rapid annotation of genes on a genome-wide scale is now possible for several organisms using high-throughput RNA interference assays to knock down the expression of a specific gene. To date, dozens of RNA interference phenotypes have been recorded for the nematode <it>Caenorhabditis elegans</it>. Although previous studies have demonstrated the merit of using knock-down phenotypes to predict gene function, it is unclear how the data can be used most effectively. An open question is how to optimally make use of phenotypic observations, possibly in combination with other functional genomics datasets, to identify genes that share a common role.</p> <p>Results</p> <p>We compared several methods for detecting gene-gene functional similarity from phenotypic knock-down profiles. We found that information-based measures, which explicitly incorporate a phenotype's genomic frequency when calculating gene-gene similarity, outperform non-information-based methods. We report the presence of newly predicted modules identified from an integrated functional network containing phenotypic congruency links derived from an information-based measure. One such module is a set of genes predicted to play a role in regulating body morphology based on their multiply-supported interactions with members of the TGF-<it>β </it>signaling pathway.</p> <p>Conclusion</p> <p>Information-based metrics significantly improve the comparison of phenotypic knock-down profiles, based upon their ability to enhance gene function prediction and identify novel functional modules.</p

    A search engine to identify pathway genes from expression data on multiple organisms

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The completion of several genome projects showed that most genes have not yet been characterized, especially in multicellular organisms. Although most genes have unknown functions, a large collection of data is available describing their transcriptional activities under many different experimental conditions. In many cases, the coregulatation of a set of genes across a set of conditions can be used to infer roles for genes of unknown function.</p> <p>Results</p> <p>We developed a search engine, the Multiple-Species Gene Recommender (MSGR), which scans gene expression datasets from multiple organisms to identify genes that participate in a genetic pathway. The MSGR takes a query consisting of a list of genes that function together in a genetic pathway from one of six organisms: <it>Homo sapiens</it>, <it>Drosophila melanogaster</it>, <it>Caenorhabditis elegans</it>, <it>Saccharomyces cerevisiae</it>, <it>Arabidopsis thaliana</it>, and <it>Helicobacter pylori</it>. Using a probabilistic method to merge searches, the MSGR identifies genes that are significantly coregulated with the query genes in one or more of those organisms. The MSGR achieves its highest accuracy for many human pathways when searches are combined across species. We describe specific examples in which new genes were identified to be involved in a neuromuscular signaling pathway and a cell-adhesion pathway.</p> <p>Conclusion</p> <p>The search engine can scan large collections of gene expression data for new genes that are significantly coregulated with a pathway of interest. By integrating searches across organisms, the MSGR can identify pathway members whose coregulation is either ancient or newly evolved.</p

    Transcription factor binding to Caenorhabditis elegans first introns reveals lack of redundancy with gene promoters

    Get PDF
    Gene expression is controlled through the binding of transcription factors (TFs) to regulatory genomic regions. First introns are longer than other introns in multiple eukaryotic species and are under selective constraint. Here we explore the importance of first introns in TF binding in the nematode Caenorhabditis elegans by combining computational predictions and experimentally derived TF-DNA interaction data. We found that first introns of C. elegans genes, particularly those for families enriched in long first introns, are more conserved in length, have more conserved predicted TF interactions and are bound by more TFs than other introns. We detected a significant positive correlation between first intron size and the number of TF interactions obtained from chromatin immunoprecipitation assays or determined by yeast one-hybrid assays. TFs that bind first introns are largely different from those binding promoters, suggesting that the different interactions are complementary rather than redundant. By combining first intron and promoter interactions, we found that genes that share a large fraction of TF interactions are more likely to be co-expressed than when only TF interactions with promoters are considered. Altogether, our data suggest that C. elegans gene regulation may be additive through the combined effects of multiple regulatory regions

    Similarity Regression predicts evolution of transcription factor sequence specificity

    Get PDF
    Transcription factor (TF) binding specificities (motifs) are essential to the analysis of noncoding DNA and gene regulation. Accurate prediction of the sequence specificities of TFs is critical, because the hundreds of sequenced eukaryotic genomes encompass hundreds of thousands of TFs, and assaying each is currently infeasible. There is ongoing controversy regarding the efficacy of motif prediction methods, as well as the degree of motif diversification among related species. Here, we describe Similarity Regression (SR), a significantly improved method for predicting motifs. We have updated and expanded the Cis-BP database using SR, and validate its predictive capacity with new data from diverse eukaryotic TFs. SR inherently quantifies TF motif evolution, and we show that previous claims of near-complete conservation of motifs between human and Drosophila are grossly inflated, with nearly half the motifs in each species absent from the other. We conclude that diversification in DNA binding motifs is pervasive, and present a new tool and updated resource to study TF diversity and gene regulation across eukaryotes

    Early evolution of the T-box transcription factor family

    Get PDF
    Deèelopmental transcription factors are key players in animal multicellularity, being members of the T-box family that are among the most important. Until recently, T-box transcription factors were thought to be exclusièely present in metazoans. Here, we report the presence of T-box genes in seèeral nonmetazoan lineages, including ichthyosporeans, filastereans, and fungi. Our data confirm that Brachyury is the most ancient member of the T-box family and establish that the T-box family dièersified at the onset of Metazoa. Moreoèer, we demonstrate functional conserèation of a homolog of Brachyury of the protist Capsaspora owczarzaki in Xenopus laeèis. By comparing the molecular phenotype of C. owczarzaki Brachyury with that of homologs of early branching metazoans, we define a clear difference between unicellular holozoan and metazoan Brachyury homologs, suggesting that the specificity of Brachyury emerged at the origin of Metazoa. Experimental determination of the binding preferences of the C. owczarzaki Brachyury results in a similar motif to that of metazoan Brachyury and other T-box classes. This finding suggests that functional specificity between different T-box classes is likely achieèed by interaction with alternatièe cofactors, as opposed to differences in binding specificity

    A FOXO1-induced oncogenic network defines the AML1-ETO preleukemic program

    Get PDF
    Key Points Increased FOXO1 is oncogenic in human CD34+ cells and promotes preleukemia transition. FOXO1 is required by AE preleukemia cells for the activation of a stem cell molecular program.</jats:p
    corecore