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ABSTRACT 

 

Transcription factor (TF) binding specificities (motifs) are essential to the 

analysis of noncoding DNA and gene regulation. Accurate prediction of the 

sequence specificities of TFs is critical, because the hundreds of 

sequenced eukaryotic genomes encompass hundreds of thousands of TFs, 

and assaying each is currently infeasible. There is ongoing controversy 

regarding the efficacy of motif prediction methods, as well as the degree of 

motif diversification among related species. Here, we describe Similarity 

Regression (SR), a significantly improved method for predicting motifs. We 

have updated and expanded the Cis-BP database using SR, and validate its 

predictive capacity with new data from diverse eukaryotic TFs. SR 

inherently quantifies TF motif evolution, and we show that previous claims 

of near-complete conservation of motifs between human and Drosophila 

are grossly inflated, with nearly half the motifs in each species absent from 

the other. We conclude that diversification in DNA binding motifs is 

pervasive, and present a new tool and updated resource to study TF 

diversity and gene regulation across eukaryotes. 
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INTRODUCTION 

 

To understand the function of noncoding DNA, e.g. in gene regulation, it is 

essential to know the potential transcription factors (TFs) that can bind to any 

sequence. Libraries of experimentally-derived TF motifs, most typically position 

weight matrices 1, are widely used, and encompass at most a few thousand 

motifs, oriented mainly towards well-studied TFs in human and model systems 

(e.g. JASPAR) 2. Hundreds of eukaryotic genomes have now been sequenced, 

however, and analysis of gene expression and corresponding sequences in 

regulatory regions can be performed in virtually all of them. To enable such 

analyses, we previously described Cis-BP, a database of predicted TF motifs for 

59,998 TFs from 340 sequenced eukaryotes 3. The predictions in Cis-BP were 

made by simple amino acid sequence identity between DNA-binding domains 

(DBDs), with cutoffs for each DBD type established on the basis of replicate 

experiments and pairwise comparisons of motifs from different proteins with 

homologous DBD types.  

 

The initial Cis-BP system was clearly a first approximation, as it did not utilize 

known “specificity residues”, or prioritize DNA-contacting residues, and yielded 

an estimated 89% precision (with undetermined recall). Other approaches have 

been developed to predict motifs, including Affinity Regression (AR) 4, which 

predicts affinity to DNA/RNA k-mers on the basis of amino acid k-mer 

composition of proteins. AR was applied to only two families, however - 
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homeodomain TFs and RRM-containing RNA-binding proteins. Global 

“recognition codes” have also been described, which predict binding motifs on 

the basis of DNA-contacting residues, for C2H2 zinc finger and homeodomain 

proteins 5-7. It is unclear whether and how these methods will extend to the ~100 

other types of DBDs. 

 

More generally, there is uncertainty in the degree of diversity and evolution of 

eukaryotic TF motifs. It has been claimed that TF binding specificities are highly 

conserved between Drosophila and mammals 8, but at the same time, the 

specificity residues for C2H2 zinc finger proteins are very different just among 

mammals 9. There are numerous examples of TF diversification in other lineages 

(e.g. plants and fungi), indicating that TF evolution occurs in parallel to better-

established cis-regulatory turnover 10. The degree of divergence of TF motifs is 

an important question, as it impacts the degree to which gene regulation 

mechanisms are conserved. How motif diversification relates to protein structure 

and mechanisms of DNA binding is also largely unknown, except in a few cases 

11-13.  

 

We reasoned that developing a system for determining both similarity and 

dissimilarity of TF motifs would provide uniform and unbiased estimates of the 

extent to which TF motifs are conserved. Here, we describe an improved system, 

its incorporation into the Cis-BP database, validation experiments in several 
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eukaryotes, and use of the system to broadly describe TF motif evolution across 

eukaryotes.  

 

RESULTS 

 

Improved classification of TFs as having similar or different sequence 

specificity on the basis of protein sequence identity 

 

We improved our previous homology-based system 3 to account for the fact that 

some positions of the DBDs (e.g. base-contacting or “specificity” residues) have 

a stronger impact on sequence specificity than others. To do this, we assigned a 

weight to each residue when calculating similarity between two DBDs of the 

same class (C2H2, ETS, Forkhead, etc). Figure 1 displays the overall scheme. 

We use regression to assign the weights: for each pair of proteins, the 

independent variables are the binary vector of amino acid similarity at each 

position of an alignment to the Pfam HMM (Figure 1), while the dependent 

variable is the similarity in DNA sequence preference. The weights are the 

coefficients learned over all pairs for each DBD class (Figure 1D). We tested 

four variations of this scheme, including two different regression approaches 

(Linear and Logistic) and two different representations of sequence similarity 

(identity vs. BLOSUM62). Here, we trained the regression models to learn highly-

overlapping 8-mer E-score preferences obtained from universal Protein Binding 

Microarrays (PBMs 14); cataloged in Cis-BP 3. These scores are comparable 
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among different studies, thus circumventing the potentially confounding impact of 

motif derivation 15; we note, however, that the scheme could be trained on any 

metric of motif identity or similarity. Each variation of the scheme generates a 

different set of weights, which are selected by leave-one-out cross-validation. 

The best model for each DBD class is among these four (and simple amino acid 

identity) is also chosen in the same cross-validation. We refer to this procedure 

as “Similarity Regression” (SR). Application of SR to TF families whose DBDs 

are present in arrays (e.g. C2H2 ZFs) is explained in Figure S1.   

 

SR offers several advantages over previous approaches. For one, it inherently 

identifies residues that are informative regarding DNA sequence specificity. The 

weights obtained are highly biased towards DNA contacting regions and 

“specificity residues”, if known. Figure 1 illustrates weights for the well-studied 

homeodomain class, which has established specificity residues in DNA 

contacting positions 5, also Figure S3A). Weights for all eukaryotic DBD families 

are given in Supplementary Data 1 (shown for Homeodomains and C2H2 ZFs 

in Figures S3 A and B respectively). These weights correspond to known 

mechanisms of DNA recognition: there is a strong relationship between SR 

model weight and DNA contact frequency (Figure S3C). In addition, SR 

pinpoints known binding modes: for most TFs, weights are higher in the residues 

that contact the major groove, which is predominant among TFs. For Sox 

proteins, however, the weights are much higher in residues contacting the minor 

groove, consistent with structural data 16, while GAL4/Zinc Cluster proteins, 
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whose dimerization is organized along the DNA backbone 17, 18, receive high 

weights in backbone contacting residues (Figure S3C). 

 

A second advantage of SR is that, relative to overall similarity cutoffs, it confers a 

dramatic improvement in recall (i.e. total number of positive predictions) at 

identical precision values (displayed for Homeodomains in Figure 2A), 

particularly for families with a large amount of PBM data (summarized in Figure 

2B). In these precision/recall (PR) curves, positives are pairs of proteins with E-

score overlap that exceeds the 25th percentile of experimental replicates (the 

same threshold employed in 3), and negatives are all other pairs (note that the 

use of all other pairs underestimates the predictive potential because it includes 

experiments that are highly similar but below the stringent threshold utilized).  

 

SR also outperforms the AR method 4 in many cases. SR predicts similarity in 

DNA sequence specificity of two proteins, while AR directly predicts preferences 

of TFs/RBPs to individual DNA or RNA sequences on the basis of their protein 

sequences. Nonetheless, the two can be compared by using SR to predict 8-mer 

preferences from proteins that should have highly similar sequence preferences 

(see Methods for details).  Using an identical training set (i.e. the same 

experiments on the same proteins), SR slightly outperformed AR when predicting 

Z-score profiles for 315 held-out constructs across 19 TF families using either the 

single most similar protein (p < 0.01, Figure S4A), or by predicting the Z-scores 

as a composite of up to five most similar proteins (“Top 5”, p < 0.01, Figure 
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S4A). SR has the added benefit that it abstains from making poor predictions for 

dissimilar proteins, whereas AR makes a prediction for every protein, without an 

associated quality metric (Figure S4).  Compared to AR, SR “Highly Similar” has 

higher correlation to the measured 8-mer Z-score profiles than AR using the NN 

(p < 0.01), or Top 5 predictions p < 0.0001). These outcomes hold for most 

(albeit not all) individual TF families analyzed in isolation. For example, while SR 

performs equivalently to AR for Zinc cluster TFs, it scores higher for the 

Homeodomains and C2H2 ZF families (Figure S4B-D). 

 

Importantly, Similarity Regression can also be used to predict whether two 

proteins are highly unlikely to share DNA sequence specificity: employing the 

same learned weights described above, a threshold can be identified below 

which proteins will almost always bind very different sequences. In this analysis, 

we defined different sequence preferences to be an overlap of 20% or less 

among the highly preferred 8-mers. We allowed some overlap because many 

families bind a characteristic sequence “core” (e.g. many homeodomains bind 

TAAT-like sequences, even though their most highly-preferred 8-mers differ 

among family members). For each DBD type, we set an SR score threshold 

using a negative predictive value (NPV), at which 95% of pairs of proteins at that 

similarity score indeed have different sequence preferences. As shown in Figure 

S5A, SR outperformed unweighted alignments at discriminating these pairs with 

dissimilar sequence preference (increased specificity at the same NPV).  
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The two score thresholds obtained (one that predicts identity in sequence 

preferences, and the other that predicts difference in sequence preferences) are 

typically very different, such that there is a middle ground we refer to as 

“ambiguous”. Figure 2C shows that the ambiguous score range is, in fact, 

predictive of intermediate 8-mer overlap for Homeodomain TFs; the same 

phenomenon is observed in other TF families (data not shown). In all subsequent 

analyses, we therefore use the weighted models to classify all pairs of proteins 

sharing the same DBD type as either “Highly Similar”, “Ambiguous”, or 

“Dissimilar.” Multi-class accuracy of SR models and their improvement over %ID 

approaches are summarized by the Matthews Correlation Coefficient (MCC, 

Figure S5B), showing that SR outperforms unweighted alignments in all but four 

TF families. 

 

Validation of sequence specificity classifications using new PBM data 

 

To confirm that the models correctly classify previously unseen proteins, we 

generated new PBM data for 340 TFs representing multiple eukaryotic kingdoms, 

with a particular focus on Cannabis sativa (a medicinal plant), Caenorhabditis 

briggsae (a nematode), Aspergillus nidulans and Neurospora crassa (model 

fungi), and also 15 human TFs (Table S1). These TFs were selected on the 

basis of at least one of two different criteria: first, to increase the number of 

experimentally determined motifs for TFs in these species of interest, and 

second, to obtain novel motifs by analyzing proteins that are dissimilar to TFs 
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with known motifs. We used these data as a validation set to test how well SR 

models measure the similarity of TF sequence specificity on unseen data (Figure 

2D). The TF similarity classifications for the newly analyzed proteins are correctly 

predicted for 81.2% of the predicted Highly Similar and 95.2% of the predicted 

Dissimilar pairs, regardless of their level of similarity to other proteins in Cis-BP, 

confirming that the models are accurate with independent data. Indeed, there is 

an overall correlation between SR score and 8-mer overlap between the held-out 

data and the most similar training construct (by SR score) for each TF family’s 

SR model (Figure S6, median R2 = 0.63). Figure 3 provides examples of 

conservation and divergence of motifs in the new data.  

 

New TF similarity predictions, motifs, and genomes improve Cis-BP 

 

To capitalize on the increased recall of SR relative to unweighted alignments, we 

implemented the method in Cis-BP, which compiles known TF motifs and tracks 

homology relationships among similar TFs. Since Cis-BP was described in 2014, 

both the number of sequenced eukaryotes and the number of known motifs has 

roughly doubled. We therefore updated Cis-BP, which now includes 741 

genomes (previously 340) and 11,493 experimentally determined motifs, 

corresponding to 4,560 distinct proteins (previously 6,559 motifs for 3,202 distinct 

proteins), and implemented SR across all 392,333 known and putative eukaryotic 

TFs. We also updated many other properties of the database (e.g. genome 

builds and DBD models) (see Online Methods). 
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The incorporation of SR to Cis-BP increases the number of TFs with predicted 

motifs by more than 25,000 compared to our previous method, at the same 

expected precision - a 16% overall increase, on identical genomes, DBDs, and 

motifs). Coverage of numerous TF families is increased dramatically (Figure 

S7A). For instance, 10 TF families more than doubled their motif coverage, 

including Zinc cluster TFs (123% increase) and Sox (162% increase), the second 

and seventh most abundant families in Cis-BP respectively. The average species 

now has 7% more TFs with motifs (experimental and predicted), yielding an 

average motif coverage of 41% (with 75% for human) (Figure S7B) and a total 

coverage of 158,606 out of 392,333 eukaryotic TFs (40.4%). This updated Cis-

BP database can be found at http://cisbp.ccbr.utoronto.ca/, where TF 

annotations, motifs, and PBM data compiled from our lab and other public 

databases can be accessed, and downloaded. In addition to increased coverage, 

the new build, which contains many more genomes, also reveals many new 

families of TFs with still-unknown sequence specificity. 

 

Evolution of sequence specificity across Eukarya 

 

Finally, we used the motif predictions and the Cis-BP update to gain an overview 

of TF motif conservation and divergence over eukaryotic evolution. We focused 

on 84 species with well-annotated genomes (present in Ensembl and/or Uniprot, 

species listed in Figure S7B). For each protein, we identified the protein with the 

http://cisbp.ccbr.utoronto.ca/
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highest SR model score as described above in each other species, and recorded 

the classification (i.e. highly similar, ambiguous, dissimilar). If there is no protein 

with the same DBD type in the other species, then the TF is labeled as “DBD not 

shared” with the other species. Thus, there are four possible labels for each 

TF/species comparison, and they are mutually exclusive. 

 

Figure 4 shows that eukaryotic kingdoms display qualitatively similar trends in 

the proportion of TFs within each of the categories above, with respect to 

divergence time. At ~100 Mya (e.g. origin of placental mammals, and eudicot 

plants), ~75% of motifs are conserved (highly similar) and an additional ~5% are 

potentially conserved (ambiguous category). But at 900 Mya (origin of 

metazoans), only ~60% are conserved or potentially conserved; a similar 

proportion is obtained for the origin of fungi (~1055 mya). Within the plant 

kingdom (~1160 Mya), only slightly more motifs are conserved or potentially 

conserved (~65%). Across kingdoms (e.g. between fungi and metazoan), most 

DBDs are not shared 19, and are thus not comparable. Even among those that 

are comparable (i.e. DBD families that are present in both), the majority have 

dissimilar or ambiguous motifs.  

 

Much of the divergence in motifs occurs in a small number of TF families (Figure 

5 and Figure S8), but these families have a large number of members, and in 

general are already known for their lineage-specific expansions: C2H2 zinc 

fingers in metazoa, Nuclear Hormone Receptors in nematodes, and Myb proteins 



 13 

in plants. The SR analysis thus underscores DNA sequence specificity as a 

mode of diversification following duplication of these proteins. Many other 

families appear rigid in their DNA binding motifs, however, and presumably 

diversify in function by other mechanisms (e.g. bZIP and bHLH proteins are able 

to diversify through changes in heterodimerization partners) 20, 21. 

 

One striking example of C2H2 diversification is counter to a previous claim in the 

literature, but is supported by extensive experimental data. A previous study 8 

claimed that there is near-perfect conservation of binding motifs for TFs between 

human and Drosophila. This discrepancy appears to be due to the fact that the 

Nitta study was highly biased towards families that do not diversify, while C2H2 

zinc fingers - the largest class of TFs in both species – were represented by only 

a few examples. SR predicts that the vast majority of C2H2s ZF proteins do not 

have conserved motifs (Figure 6A), and existing experimental data confirm this 

prediction (Figure 6B and 6C). Even those that have 1-to-1 orthology 

relationships often differ substantially in their DNA binding specificity, illustrating 

that simple orthology alone can be a poor predictor of shared motifs (Figure 6B). 

As a control, C2H2 proteins predicted by SR to have highly similar motifs 

between human and Drosophila do display highly similar motifs in the 

experimental data (Figure S9), even though they were obtained using different 

techniques (primarily HT-SELEX 8, 22 vs. Bacterial 1-hybrid 23, 24).  
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DISCUSSION 

 

We anticipate that SR will contribute to our understanding of TF function in 

several ways. First, it presents several advantages in the task of predicting 

motifs. Like simple homology (i.e. percent identity), the score it produces serves 

as a confidence measure that can be used to avoid incorrect predictions. At the 

same time, the dramatically increased recall (i.e. coverage) of SR, relative to 

percent identity, provides a large increase in the number of predicted motifs, 

which are now included in our update of the Cis-BP database. 

 

Second, the weights (i.e. coefficients) produced by SR are often highest for 

known specificity residues and DNA contacting positions. Thus, unstudied 

positions with high weights represent candidates for new determinants of TF 

sequence specificity. Together with structural data, these weights may also shed 

new light on biophysical aspects of DNA binding. 

 

SR can also predict when proteins are unlikely to share sequence preferences.  

To our knowledge, prior to this study, there has been no systematic examination 

of the overall degree of trans-regulatory change among eukaryotes. Our 

analyses lend strong support to the notion that cis-regulatory turnover is 

accompanied by alterations to trans-regulators, even over relatively short 

timescales (<100 My), and that these changes are concentrated in large families 

with established patterns of diversification. This study is the first major analysis of 
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TF sequence specificity for both Cannabis and Aspergillus, and both the outputs 

of SR and the new data generated highlight the diversity of DNA binding motifs in 

both the plant and fungal lineages. Despite less diversity in the specificity 

residues of individual C2H2-ZF domains of fungi, relative to metazoa 13, proteins 

containing these domains contribute substantially to diversification of motifs in 

fungi, presumably due to the fact that multiple C2H2 domains can be combined 

in different ways. Myb domains also contribute substantially in multiple lineages 

(both plants and fungi). The GAL4/ZnClus domain proteins, which have also 

expanded in fungi, have largely conserved monomeric binding specificity in their 

DBDs, and thus more likely contribute to TF diversification by alterations in 

spacing and orientation of dimeric sites as homo or heterodimers 25. 

 

SR also confirms the extreme diversity of motifs in the C2H2-ZF family. C2H2-

ZFs are the fastest evolving TF family in the recent human lineage 26, and SR 

indicates (and experimental data confirm) that their sequence specificities are 

largely distinct from those in Drosophila, even among their clear orthologs. 

Intriguingly, in Drosophila species, even 1-1 orthologs of C2H2 TFs frequently 

differ in specificity residues, and these differences are predicted to impact DNA 

sequence preferences 27. In human, there is strong evidence that retroelement 

silencing by KRAB-containing C2H2-ZFs plays a role in their evolution; it is 

unclear what the driving force is, outside of tetrapods, to which the KRAB domain 

is restricted.  
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Knowing the sequence specificities of TFs is an important first step in their 

characterization. Overall, we anticipate that SR and the results it produces will 

represent a major advance in our understanding of the function and evolution of 

both TFs and gene regulatory mechanisms.  
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METHODS 

  

Similarity Regression (SR). SR is formulated as a regression task where the 

dependent variable (Y) is a metric of similarity in DNA sequence specificity 

between pairs of proteins (see below), and the independent variables (the feature 

vector X) are identity or similarity in amino acid residues at each individual 

position of the aligned DBDs, for the same pairs of proteins. To make the 

alignment, each instance of a DBD is aligned to its corresponding Pfam HMM 

using the semi-global method implemented in aphid 28, recording match positions 

(i.e. positions present in the HMM). An example alignment of two homeodomain 

sequences is presented in Figure 1A. At each position of the aligned sequences, 

either identity (as binary values) or similarity (BLOSUM62 substitution score 29) is 

recorded (Figure 1B), yielding the feature vector for each the TF pair. For TF 

families that have DBDs present in arrays (mainly C2H2 ZFs and Myb/SANT) the 

best un-gapped and overlapping pairwise alignment of DBD arrays (Figure S1A) 

is found by selecting the alignment offset with the maximum amino acid identity. 

For a multi-DBD alignment, the feature vector is generated by the average score 

(identity or similarity) in each position of the DBD alignment from all DBD arrays, 

normalizing by the DBD length of the longest protein (Figure S1B). 

 

In the analyses described, the metric of similarity in DNA sequence specificity 

between pairs of proteins (Y) is calculated from the 8-mer PBM data as the 

fraction of high-scoring 8-mers (E-score > 0.45) that are shared between two TFs 
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(i.e. intersection/union for two experiments, referred to as “E-score overlap”). For 

each TF family, E-score overlaps that exceed the 25th percentile of experimental 

replicates (the same threshold employed in 3) are taken as having “Highly 

Similar” specificities. The Highly Similar labels are used as positives for training 

logistic SR models (see next paragraph), and also for evaluating the performance 

of SR (e.g. by Precision-Recall (PR) analysis).  E-score overlaps less than 0.2 

are taken as having “Dissimilar” specificities, allowing some overlap because 

many families bind a characteristic sequence while their highest-affinity 8-mers 

differ. The Dissimilar labels are used as negatives to define the score threshold 

below which TFs are unlikely to share specificities in a Negative Predictive Value 

(NPV) analysis. 

 

For each TF family, we trained four SR models that varied in the representation 

of protein similarity (identity or BLOSSUM substitution score) and in the 

representation of the data (either linear or logistic regression models).  Each 

regression model is trained in R 30 using glmnet 31 constrained to fit positive 

regression coefficients, selecting the optimal Ridge (L2) regularization strength 

using cross-validation (CV). Since the data consist of pairs, normal k-fold cross-

validation is invalid, as random training and test splits would not be independent. 

To solve this problem, we train the models using leave-one-TF-out CV (testing on 

data points made from a single TF’s comparisons) which we implemented using 

the caret package 32. This performance measure can be interpreted as how well 
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an SR model generalizes to unseen TFs, and is used to select the optimal 

regularization parameters and score thresholds for each regression model. 

 

An outline of the SR model generation and selection for Homeodomain TFs is 

presented in Figure S2. First the optimal regularization strength is selected using 

the CV procedure implemented in caret, yielding a selected model for each 

feature/output combination. For each regression model, and the unweighted 

alignment identity method, two thresholds are derived to predict TFs with Highly 

Similar, or Dissimilar specificities. To select these thresholds, the predictions on 

held-out data from each CV fold are combined and compared with their known 

TF similarity labels. To identify TFs with Highly Similar sequence specificities (E-

score overlap > TF family replicate threshold) a Precision-Recall (PR) curve is 

generated on the held-out data, and a score threshold is selected from the curve 

such that it yields 75% precision (a heuristic identical to that in our previous study 

3). A threshold for Dissimilar specificities is derived by finding a Negative 

Predictive Value (NPV) cutoff that classifies 95% of TFs below that score 

threshold as having truly dissimilar specificities (E-score overlap < 0.2). For each 

threshold, the recall of positive and negative predictions was recorded to 

evaluate the improvement of SR models over unweighted alignments. The Highly 

Similar and Dissimilar thresholds are then applied to the predictions to classify 

each TF pair in the held-out data as having Highly Similar, Ambiguous or 

Dissimilar specificities for each SR model (and for the unweighted alignment 

method). The best SR model is then selected by comparing the 3-class 
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predictions to ground truth labels and selecting the model with the best Matthews 

Correlation Coefficient (MCC), a metric of multi-class classification accuracy that 

is sensitive to class imbalance. This process yields a single final SR model for 

each TF family, composed of a weight vector (i.e. coefficients for X values, which 

are the selected measure of protein similarity), as well as two thresholds for the 

dependent variable (Y) that are used to predict whether two TFs have Highly 

Similar, Ambiguous, or Dissimilar sequence specificities. 

 

Comparing SR weights with known DNA-contacting residues.  We used the 

DNAproDB database 33 to compare the SR weights with known protein-DNA 

contacts. DNAproDB catalogues DNA–protein complexes present in the Protein 

Data Bank 34, annotating the amino acid residues that contact the DNA backbone 

and bases in the major and minor grooves. We transferred these annotations to 

our models by first extracting all the protein sequences in DNAproDB and 

identified DBDs using hmmscan and the same Pfam HMM models and 

thresholds as Cis-BP. We then parsed the nucleotide-residue interactions for 

each structure into backbone, major, and minor groove interactions (scored using 

DNAproDB recommended Buried solvent Accessible Surface Area (BASA), 

hydrogen bond, and van der Waals interaction thresholds), and associated them 

with the position of the residue in the DBD alignment. We represented the 

interactions as a Contact Frequency for each type of DNA contact, by 

normalizing the number of nucleotide-residue interactions that occurred in each 

position of the DBD by the number of protein-DNA structures containing that 
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DBD. Correspondence between SR weights and the three classes of DNA 

contacts were evaluated using partial correlations, which assess the correlation 

between each contact type after removing the effects of the other two contacts 

on the SR weights. 

 

Comparison of SR with Affinity Regression.  Affinity Regression (AR) predicts 

Z-scores of DNA 8-mers from short peptides in the protein sequence. Here, we 

implemented a softcoded python version of AR, ensuring similar performance on 

the original data reported in 4, and using identical constructions of the protein and 

DNA features. A single AR model for each TF family was trained using the same 

data as the corresponding SR model, and the number of informative components 

selected after dimensionality reduction was set to capture 90% of the singular 

values’ weights. To predict the Z-scores of uncharacterized/tested transcription 

factors, AR determines their protein K-mer vectors to predict the similarities of 

the held-out TF to all characterized protein profiles in the training set. AR uses 

these similarities to reconstruct the Z-score profiles weighted by the predicted 

similarities: (1), using either the nearest (NN) or Top 5 nearest neighbours; and 

(2), a geometrical reconstruction from the span of the training vectors, proposed 

and applied in the Affinity Regression paper. AR was applied to the new TFs 

present in the new PBM data from this study. 

 

We used three means to predict the Z-score profile for each held-out TF using 

SR: (1) copying the Z-score profile from the protein with the highest SR score 
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(NN, or Nearest Neighbor); (2) combining the Z-score profiles of the five proteins 

with the highest SR scores (“Top 5 NNs”), weighting the Z-scores for each of the 

five by the corresponding SR score; and (3) combining the Z-scores from all TFs 

in the training set that are predicted by SR to have Highly Similar specificities 

(SR Highly Similar), weighting the Z-scores for each of them by the 

corresponding SR score. We evaluated the accuracy of SR and AR predictions 

using the Pearson correlation coefficient (PCC) between the predicted Z-score 

profile and the experimental Z-scores. We used paired Wilcoxon signed-rank 

tests to identify significant differences in mean PCC ranks between Z-score 

reconstruction methods.   

 

Updates to the Cis-BP database.  We performed extensive updates to the Cis-

BP database, encompassing changes to both the data and the methodologies.  

Build 2.0 of Cis-BP now contains data for 741 species (up from 340) (http://cisbp-

dev.ccbr.utoronto.ca/ - development version: 1.98d, user name: reviewer, 

password: checkCisbp).  In addition to adding new species, updated genome 

builds were incorporated for all existing species, where available.  Each of these 

updates includes the latest available protein sequences, protein and gene IDs, 

gene names, and gene aliases. Further, the set of human TFs contained in Cis-

BP now matches the set of 1,639 curated TFs provided in our recent review 26. 

DBD scans were performed using updated Pfam HMM models 35, including 

models for EBF1 (COE1_DBD), FLYWCH, and ICP4 (Herpes_ICP4_N). We also 

removed models for DP and SART-1, which are now known to not bind DNA with 

http://cisbp-dev.ccbr.utoronto.ca/
http://cisbp-dev.ccbr.utoronto.ca/


 23 

specificity.   A total of 1,358 new motifs were obtained from 38 different sources, 

including 541 HT-SELEX motifs obtained for human TFs from methylated and 

unmethylated DNA 36, 534 DAP-seq motifs for Arabidopsis thaliana 37, 248 HT-

SELEX Drosophila melanogaster motifs 8, and 221 ChIP-exo and ChIP-seq-

derived C2H2 zinc finger motifs 38.  Existing motif sources such as UNIPROBE 39, 

Transfac 40, JASPAR 41, and HOCOMOCO 42 were also updated to include data 

from the latest database builds.  In addition to these improvements in the 

database contents, this update of Cis-BP also incorporates several 

methodological advances.  First, when two predicted DBDs overlap in a given 

protein, only the DBD with the most significant HMMER p-value is retained.  

Second, matches to the Pfam Myb/SANT domain are now further subclassified 

into Myb (which binds DNA specifically; also contains Myb-like sequences which 

are also likely to bind DNA), or SANT (which does not bind DNA specifically).  In 

brief we scored each Myb/SANT domain with the Myb (PS51294), Myb-like 

(PS50090), and SANT (PS51293) specific PROSITE 43 models and annotated 

domains by the profile with the highest score. This procedure is now applied to 

both remove SANT-only containing proteins (which are not TFs), and remove 

SANT domains from proteins that contain both Myb and SANT domains. Third, 

we removed 1-1 orthologs (reciprocal best BLAST hits) of metazoan proteins with 

false-positive human TFs derived from a recent curation effort 26.  Finally, motif 

inferences in Cis-BP are now performed using the Similarity Regression 

approach described in this manuscript, as opposed to the original method, which 

was based on amino acid identity. 
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Predicting TF motif conservation across species.  To evaluate motif 

conservation between species we used the TF annotations and DBD sequences 

from Cis-BP (v2.0). For each pair of species analyzed, we used SR to predict TF 

similarity for all pairs of TFs from the same TF family. To calculate the 

conservation of each TF in each species relative to a second species, we report 

the maximum SR score among all TFs in the second species, and the resulting 

similarity classification. If the TF was from a family that is not shared between 

species (e.g. DBD families that are clade-specific) we assume that the motif is 

not conserved, and report the TF as uncomparable with the label “DBD not 

shared”. We obtained the time to the last common ancestor (Divergence Time) 

from the TimeTree database 44. 

 

To identify the most similar proteins between human and Drosophila we 

employed BLASTP 45 with default settings, using full-length TF sequences 

present in Cis-BP. The closest TF in each species (BLAST NN) was identified 

using the minimum E-value, and reciprocal best BLAST NNs (putative 1-1 

orthologs) were recorded. 

 

DNA Binding Doman (DBD) Cloning. 350 novel A. nidulans transcription factor 

binding domains were been selected for analysis and 180 were successfully 

cloned into the expression vector (pTH6838) and validated by sequencing. These 

were cloned using RNA extracted from the wild-type A. nidulans strain (FGSC 
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A4). cDNA was generated by RT-PCR using random hexameric primers.  Proof-

reading KOD Hot Start DNA polymerase was used to amplify the DBD-coding 

region, and extracted from a 1% agarose gel using a Silica Bead DNA Gel 

Extraction Kit (Thermo Fisher Scientific Inc., 2013).  Double digests were 

performed using the restriction endonucleases AscI (10U/μL) (Thermo Fisher 

Scientific Inc., 2013) and SbfI-HF (20U/μL) (New England Biolabs, 2014). The 

fragments were ligated into the expression vector using T4 DNA ligase (New 

England Biolabs, 2014). Constructs were verified by Sanger sequencing (GATC 

Biotech. 2014). Other DBDs were cloned by previously reported procedures 3. 

 

Protein Binding Microarrays (PBMs). PBM laboratory methods were performed 

as described previously 15, 46.  Each DBD-encoding plasmid was analyzed in 

duplicate on two different arrays with differing probe sequences. 8-mer Z- and E-

scores were calculated as previously described 14. We deemed experiments 

successful if at least one 8-mer had an E-score > 0.45 on both arrays, the 

complimentary arrays produced highly correlated E- and Z-scores, and the 

complimentary arrays yielded similar PWMs based on the PWM_align algorithm  

15.  Motifs shown (and deposited in Cis-BP) for each TF are chosen by cross-

replicate evaluation of three motif derivation methods (PWM_align, 

PWM_align_Z, and BEEML-PBM) 3, 47. 

 

Data and software availability.  New PBM data and motifs are deposited in 

GEO (accession number: GSE121420, reviewer password: mpcvcwwkjhgjvip), 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE121420
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and Cis-BP (http://cisbp.ccbr.utoronto.ca/). The SR code, and examples, are 

made available on GitHub (https://github.com/smlmbrt/SimilarityRegression).   

 

http://cisbp.ccbr.utoronto.ca/)
https://github.com/smlmbrt/SimilarityRegression
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FIGURE LEGENDS 

Figure 1. Overview of the Similarity Regression (SR) method. SR uses TF 
protein similarity to predict the similarity in TF sequence specificities. The 
procedure and results are outlined in this figure using Homeodomain TFs as an 
example. (A) First, each TF’s DBD sequence is aligned to the Pfam HMM as a 
common reference to generate a global alignment. Amino acids shown are 
coloured according to standard clustal colours for two homeodomains. (B) For 
each pair of TFs, amino acid similarity is measured at each position of the 
alignment, recording whether the two residues are identical or similar 
(BLOSSUM62 substitution score). This procedure is repeated for every pair of 
Homeodomain TFs with PBM data. (C) Regression is performed over a matrix in 
which each row is a pair of Homeodomain TFs, with the similarity of their DNA 
sequence specificities (E-score overlap) as the dependent Y variables (left), and 
protein similarity scores as independent X values (right). Sequence diversity 
among the TFs is represented here for reference, plotted as a logo above the 
protein similarity matrix. (D) The regression outputs a weight vector that indicates 
how much amino acid similarity in each position of the DBD contributes to DNA-
binding similarity.  Known specificity residues 48 are represented by an asterisk.  
 
 
Figure 2. SR classification of TFs as having Highly Similar or Dissimilar 
sequence specificities. (A) Precision-Recall curves for Homeodomains are 
shown for three prediction methods: simple DBD %ID, SR  using AA identity, and 
SR using BLOSUM similarity, on heldout data across all CV folds. Positives are 
pairs of TFs with Highly Similar specificities (E-score overlap > 25th percentile of 
replicate experiments), and Negatives are all other pairs. (B) Scatter plot 
comparing recall values (predicting Highly Similar specificities at 75% Precision 
threshold) for SR vs. simple %ID, for each TF family. The best of the four SR 
models is shown. Points are sized according to the number of PBM experiments 
used for training. (C) Smoothed density estimates for Homeodomain E-score 
overlaps in each predicted TF similarity class. Densities are filled according to 
the quartiles of the data. Vertical dashed lines indicate the E-score overlap 
thresholds used to define Dissimilar (blue line), and Highly Similar (black line) TF 
specificities in the initial data. (D) Percentage of actual TF similarities within each 
predicted TF similarity class, for new PBM data.  White dotted lines show 
expected percentages the for Highly Similar and Dissimilar classes (i.e. 
thresholds were chosen to achieve these levels on training data).   
 
 
Figure 3. New PBM data from the medicinal plant Cannabis sativa, and 
model fungi Aspergillus nidulans and Neurospora crassa for TFs with 
conserved and dissimilar motifs. Nearest neighbours for each new TF with 
PBM data were identified by finding the most similar TF (by SR score) with a 
motif from either Arabidopsis thaliana (for C. sativa), or Saccharomyces 
cerevisiae (for the fungi A. nidulans, and N. crassa). Motifs for (A) Myb/SANT 
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TFs from C. sativa, (B) C2H2 ZF TFs from N. crassa, and (C) TFs from five other 
TF families in A. nidulans are shown, with a neighbour-joining tree scaled by 
DBD amino acid identity in (A) and (B). The coloured bar represents predicted 
motif similarity. See Figure S5 for a comparison between SR predicted similarity 
and NN TF similarity for all new PBM data. 
 
 
Figure 4. Conservation of TF motifs within major eukaryotic kingdoms. The 
average percentage of TFs whose closest TF in the other species is Conserved 
(SR classifies as Highly Similar), Likely Conserved (SR Ambiguous), or Diverged 
(SR Dissimilar, and unshared DBDs) was calculated for each pair of species from 
the same kingdom (species and kingdoms are listed in Figure S6B). Each point 
represents the average percentage of TFs within each category, for each pair of 
species (i.e. average of species A vs. species B, and B vs. A), plotted against 
divergence time in millions of years. Divergence time is plotted on a square root 
scale to visualize differences between closely related species. Lines show a 
LOESS regression fit. 
 
 
Figure 5. Motif divergence of TF families in metazoans and plants. (A) 
Nested pie charts showing the percentage of human TFs whose closest TF in 
other metazoans is Highly Similar, Ambiguous, Dissimilar, or Not Shared, for the 
11 most abundant metazoan DBDs. The outer ring of each pie chart shows the 
proportion of human TFs in each SR-predicted similarity class relative to the 
other species; the inner ring shows the proportion of TFs for the other species, 
relative to human. (B) Motif similarity between Arabidopsis thaliana and other 
plants, for the 13 most abundant plant DBDs. 
 
 
Figure 6. TF motif conservation between human and Drosophila 
melanogaster. A) Percentage of all TFs in human or Drosophila (as indicated) 
that fall into each SR motif similarity class. Stacked bar plots indicate TF family.  
(B,C) Experimentally determined motifs for individual Drosophila and human 
C2H2 zinc finger TFs, shown in pairs that correspond to the BLASTP best hit 
(Drosophila query to human database).  Reciprocal best BLASTP matches 
(putative 1-to-1 orthologs) are indicated with bidirectional arrows. (B) shows pairs 
predicted to be Dissimilar by SR; (C) shows pairs predicted to be Highly Similar 
by SR.  
 
 
Figure S1. Application of SR to TFs with an array of DBDs. (A) DBDs are first 
aligned to find the best ungapped and internal (maximizing amino acid identity) 
alignment. Examples of permissible alignment configurations are shown. (B) 
Alignments are then scored by calculating positional protein similarity features in 
each finger of a DBD array (e.g. C2H2 ZFs), and combined into a single 
representation by averaging the features by the length of the longest DBD array.  
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Figure S2. Additional SR model building and selection details. Four SR 
models are made for each TF family, and compared to unweighted alignment 
identity to identify the best SR model. The best model is selected after cross-
validation, and threshold selection by Matthews Correlation Coefficient (MCC). 
 
 
Figure S3. Comparison of SR weights to known DNA contacting residues. 
(A) Homeodomain, or (B) C2H2 ZF SR weights are compared to DNAproDB 
contact frequencies for DNA backbone, major and minor groove contacts, using 
partial correlations. TF amino acid sequence diversity (for the SR model training 
sequences) is displayed, for reference (above). (C) Partial correlations for all TF 
families with structural information in DNAproDB 33 are displayed and coloured 
according to the statistical significance, as -log10(p-value). 
 
 
Figure S4. Comparison of predicted Z-score profiles for SR, AR, and DBD 
%ID. (A) Individual points show the Pearson Correlation Coefficient of predicted 
vs. actual Z-score profiles for 315 TFs (those among the 340 that have SR 
models), for the reconstruction methods tested. Reconstruction methods are 
grouped by whether they are a mixture of one (Nearest Neighbour), or multiple 
(Z-score reconstructions) TF profiles, as indicated by grey bars above. Points are 
coloured by TF family (see legend). (B-D) Individual results for the three most 
abundant TF families in the test set are plotted separately: (B) Zinc cluster, (C) 
Homeodomain, and (D) C2H2 ZFs. 
 
 
Figure S5. Comparison of SR to DBD %ID at predicting TF pairs with 
Dissimilar specificities. (A) Scatter plot comparing the fraction of all dissimilar 
TF pairs captured by the 95% NPV threshold (Specificity). (B) Scatter plot 
showing Matthews correlation coefficient, which summarizes multi-class 
classification accuracy (for Highly Similar, Ambiguous, and Dissimilar TF 
sequence specificity) classification accuracy. In both panels, points are sized 
according to the number of PBM experiments used for training. 
 
 
Figure S6. Comparison of SR scores with experimentally determined 
similarity in DNA sequence specificity, for new PBM data. Predicted TF 
similarity (SR score) and actual DNA-binding similarity (PBM E-score overlap) 
are plotted for each new PBM experiment, vs the most similar (by SR score) TF 
in the training set. Results are displayed for each TF family with more than three 
TFs. Linear fit is shown, with correspodingR2 value. Points are coloured by their 
actual TF similarity based on family-specific E-score overlap thresholds.  
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Figure S7. Increase in percentage of TFs with a predicted motif in Cis-BP 
(SR vs. %ID). (A) The percentage of TFs with a “direct” (i.e. experimentally 
determined) (black bars), or predicted (grey bars) motif are plotted for the 50 
largest TF families in Cis-BP. Increase in percentage due to SR models is shown 
by red bars. Total number of TFs encompassed is shown at right. (B) Motif 
coverage in well-studied eukaryotes, plotted as in panel A. Relationships 
between the species are represented by divergence time (million years ago) 
obtained from the TimeTree database 44. The major clades of fungi, metazoans, 
and plants are coloured in red, blue, and green respectively. 
 
 
Figure S8. Motif divergence of TF families in fungi. Classifications of motif 
similarity are shown as in Figure 5. The outer ring of each pie chart represents 
Saccharomyces cerevisiae TFs similarities with respect to the species it’s being 
compared to (displayed along the phylogeny). The inner ring represents the 
compared species similarities with respect to S. cerevisiae. Branch length is the 
divergence time between species (millions of years). 
  
 
Figure S9. Motif similarity between corresponding Drosophila and human 
TFs (highest scoring BLASTP hits with Drosophila as query). Motif similarity 
was calculated between PWMs with experimentally determined motifs, using 
MoSBAT 49. (A) The maximum motif similarity for all pairs of human and fly TFs 
(i.e. considering that there are often multiple motifs per TF) is displayed as a 
boxplot, according to the SR predicted TF similarity for each NN pair. (B) Similar 
plot as panel (A), but only HT-SELEX data is used in the analysis. 
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Figure S5.
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Figure S7. 
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