
Early evolution of the T-box transcription factor family
Arnau Sebé-Pedrósa,b,1, Ana Ariza-Cosanoc,1, Matthew T. Weirauchd, Sven Leiningere, Ally Yangf, Guifré Torruellaa,
Marcin Adamskie, Maja Adamskae, Timothy R. Hughesf, José Luis Gómez-Skarmetac,2, and Iñaki Ruiz-Trilloa,b,g,2

aInstitut de Biologia Evolutiva (Consejo Superior de Investigaciones Científicas-Universitat Pompeu Fabra), 08003 Barcelona, Spain; bDepartament de
Genètica, Universitat de Barcelona, 08028 Barcelona, Spain; cCentro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas,
Universidad Pablo de Olavide-Junta de Andalucía, 41013 Sevilla, Spain; dCenter for Autoimmune Genomics and Etiology and Divisions of Rheumatology and
Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229; eSars International Centre for Marine Molecular Biology, 5008
Bergen, Norway; fTerrence Donnelly Centre and Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada M5S 3E1; and gInstitució
Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain

Edited by W. Ford Doolittle, Dalhousie University, Halifax, NS, Canada, and approved August 13, 2013 (received for review May 24, 2013)

Developmental transcription factors are key players in animal
multicellularity, being members of the T-box family that are
among the most important. Until recently, T-box transcription
factors were thought to be exclusively present in metazoans.
Here, we report the presence of T-box genes in several nonmeta-
zoan lineages, including ichthyosporeans, filastereans, and fungi.
Our data confirm that Brachyury is the most ancient member of
the T-box family and establish that the T-box family diversified at
the onset of Metazoa. Moreover, we demonstrate functional con-
servation of a homolog of Brachyury of the protist Capsaspora
owczarzaki in Xenopus laevis. By comparing the molecular pheno-
type of C. owczarzaki Brachyury with that of homologs of early
branching metazoans, we define a clear difference between uni-
cellular holozoan and metazoan Brachyury homologs, suggesting
that the specificity of Brachyury emerged at the origin of Metazoa.
Experimental determination of the binding preferences of the
C. owczarzaki Brachyury results in a similar motif to that of meta-
zoan Brachyury and other T-box classes. This finding suggests that
functional specificity between different T-box classes is likely
achieved by interaction with alternative cofactors, as opposed to
differences in binding specificity.
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Transcriptional regulation is a central aspect of animal de-
velopment. Thus, deciphering the early evolution of metazoan

transcription factors is vital for achieving a better understanding
of the origin of animals. The T-box family of genes is among the
most important developmental transcription factors present in
Metazoa. This family is characterized by an evolutionary con-
served DNA-binding domain of 180–200 amino acids, known as the
T-box domain (1–3). Brachyury is the founding and best-charac-
terized member of the T-box family, with well-established roles in
blastopore specification, mesoderm differentiation and, in chor-
dates, notochord formation (4–6). It has been hypothesized that
the ancestral role of Brachyury was primarily that of blastopore
determination and gastrulation (5, 7).
Other T-box classes include Tbx4/5, Tbx6, Tbx2/3, Eomes, and

Tbx1/15/20. With only a few exceptions (8), all classes of T-box
genes are widespread among bilaterian animals, with a handful
being identified and studied in nonbilaterian metazoans, such as
cnidarians (5, 9), ctenophores (7, 10), and sponges (11–14).
T-box genes were initially thought to be specific to metazoans
(13, 15), but two recent studies revealed the presence of T-box
genes in nonmetazoan lineages (14, 16), including the uni-
cellular filose amoeba Capsaspora owczarzaki, a close relative
of animals, and the chytrid fungus Spizellomyces punctatus.
T-box genes were not identified in any other sequenced eu-
karyote, suggesting that T-box genes were secondarily lost in
choanoflagellates (both in unicellular and colonial species)
and most fungi. Interestingly, one of the T-box genes identi-
fied in C. owczarzaki is a homolog of Brachyury, making it the
only Brachyury gene identified outside of metazoans to date
(16). However, the degree of conservation between C. owczarzaki

and metazoan Brachyury genes and whether T-box genes are
present in other unicellular lineages remained unclear.
Here, we report a taxon-wide survey of T-box genes in several

eukaryotic genomes and transcriptomes, including previously
undescribed genomic data from several close relatives of meta-
zoans, such as the other known filasterean species (Ministeria
vibrans) and several ichthyosporean taxa (17), as well as genomic
data from calcarean sponges. We identify T-box genes inM. vibrans,
in all of the ichthyosporeans, and in several early-branching Fungi.
Our data pinpoints with unprecedented detail the evolutionary
history of T-box transcription factors. We also confirm that
Brachyury is the founding member of the T-box family and de-
fine previously undescribed classes of T-box genes.
To obtain a glimpse into the functional conservation of the

earliest Brachyury genes, we perform heterologous expression
experiments of the Brachyury homologs from C. owczarzaki,
Sycon ciliatum (Calcarea, Porifera), and Nematostella vectensis
(Anthozoa, Cnidaria) in Xenopus laevis, a well-established model
system for studying Brachyury (4, 7, 18). Our data show that
C. owczarzaki Brachyury (CoBra) can partially rescue Xenopus
laevis embryos injected with a dominant negative XBra construct.
However, CoBra, contrary to S. ciliatum Bra (SciBra) and
N. vectensis Bra (NvBra), activates target genes known to be
regulated by other T-box gene classes, but not by Brachyury.
We also use protein-binding microarrays to demonstrate that
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the binding specificity of CoBra is indistinguishable from that
of metazoan Brachyury and other T-box genes. Together, our
data suggest that the subfunctionalization of Brachyury and
other T-box classes is due to changes in interactions with
cofactors, as opposed to changes in the DNA-binding recog-
nition motif and that this subfunctionalization occurred at the
origin of the Metazoa, concomitant with the diversification of
the T-box family.

Results and Discussion
Genomic Survey of T-Box Genes in Nonmetazoan Species.We have
searched for T-box genes in recently sequenced eukaryotic
genomes and transcriptomes, including previously undescribed
genomic and/or transcriptomic data from unicellular holozoans
and calcarean sponges. This genomic survey has greatly extended
the number of nonmetazoan taxa in which T-box genes have been
identified. Our analyses reveal that T-box genes are present in at
least four fungi taxa, belonging to three different early-branching
fungal lineages (19): S. punctatus and Gonapodya prolifera (Chy-
tridiomycota), Pyromices sp. (Neocallimastigomycota), and Mor-
tierella verticillata (Mucoromycotina), all of which have a single
T-box gene (Fig. 1). No T-box genes were found in higher fungi
(Dikarya), in agreement with previous surveys (13, 14, 16). This
confirms that T-box transcription factors were lost during fungal
evolution (16). We also identified two T-box genes in the filas-
terean M. vibrans, as well as in each of the five ichthyosporeans
analyzed: seven T-box genes in Sphaeroforma arctica, six in Cre-
olimax fragrantissima, five in Abeoforma whisleri, two in Amoebi-
dium parasiticum, and four in Pirum gemmata. We did not identify
T-box genes in either of the two sequenced choanoflagellates (the
colonial Salpingoeca rosetta and the unicellular Monosiga brevi-
collis), confirming that T-box genes were also lost in this group
(16). No T-box genes are present outside the opisthokonts, under
the current taxon sampling.
To classify the T-box genes identified, we performed a phylo-

genetic analysis. The resulting tree demonstrates that all fungal
T-box homologs, as well as one (C. owczarzaki, M. vibrans, A.
whisleri, and P. gemmata) or several (C. fragrantissima, S. arctica,
and A. parasiticum) homologs from both filastereans and ichthyo-
sporeans cluster at the base of the Brachyury class (Fig. S1). This
result supports the notion that Brachyury is the most ancient
member of the T-box family (11, 13). Moreover, fungal, and
especially filasterean, Brachyury genes have most of the T-box
key DNA-binding and dimerization amino acids, as well as
conserved exclusive amino acid motifs of the Brachyury class
(Fig. S2). In contrast, the highly divergent T-box genes from

ichthyosporeans lack most of the known functional T-box
domain amino acids (Fig. S2).
Our tree also deciphers a previously undescribed class of T-

boxes (Tbx7), which includes the remaining (non-Brachyury)
filasterean and ichthyosporean T-box genes, as well as homologs
from sponges (S. ciliatum, Leucosolenia complicata, and Amphi-
medon queenslandica) (Fig. 1 and Fig. S1). Statistical support for
this clade is not high, due to the short number of amino acids of the
T-box domain, but the group is recovered by both maximum like-
lihood and Bayesian analyses. Included in the Tbx7 group there is
a C. owczarzaki T-box gene with two T-box DNA-binding domains,
a configuration not present in any reported T-box gene. This is,
however, not uncommon in other eukaryotic transcription factor
families. It has been hypothesized that multiple DNA-binding
domains can increase the length and diversity of DNA recognition
motifs recognizable by the limited number of DNA-binding domain
families (25, 26). Whether this or other explanations account for
the presence of this T-box gene in C. owczarzaki remains to be
elucidated.

A Revised Evolutionary History of Metazoan T-Box Classes. Previous
studies have identified T-box genes in nonbilaterian metazoans
(11–14). This knowledge has enabled a reconstruction of the
Urmetazoan T-box complement, which putatively included three
classes (Tbx4/5, Brachyury, and a putative Tbx1/15/20), with
other classes being added in a stepwise manner through the
evolution of metazoans. Thus, Tbx2/3, Tbx1, Tbx15, and Tbx20
originated within eumetazoans (Cnidaria + Bilateria), whereas
Tbx6 and Eomes classes originated within bilaterians. Our phy-
logenetic analysis, which includes previously undescribed data
not only from several fungi and unicellular relatives of Metazoa,
but also from two calcarean sponges, allows us to reevaluate the
evolutionary history of the T-box family. Our data show that
sponges, potentially the earliest-branching Metazoa (20, 21),
have a much more complex complement of T-box genes than
previously thought (Fig. 1). Both the homoscleromorph sponge
Oscarella carmela and the ctenophore Mnemiopsis leidyi have
a Tbx1/15/20 homolog, which shares with all other Tbx1/15/20
members an exclusive amino acid insertion (Fig. S2). The pre-
sumed Tbx1/15/20 homologs identified in the demosponges
A. queenslandica and Axinella verrucosa (13) were previously
thought to comprise a new demosponge-specific T-box class (14).
We also recover this group, but surprisingly it also includes
a sequence from the deuterostome Saccoglossus kowalevski. We
have preserved the nomenclature TbxPor, following ref. 14.
We further identified a Tbx2/3 class member in the sponge

O. carmela, as well as in the ctenophores M. leidyi and Pleuro-
brachia pileus. This suggests that the Tbx2/3 class was already
present at the origin of animals. In agreement with previous
results, we identified Tbx4/5 in most early-branching metazoans,
except in ctenophores. Besides the Tbx7 (see above), we also
define the group Tbx8, which to date includes only sponges
(demosponges and O. carmela), Trichoplax adharens, N. vectensis
and two bilaterians (S. kowalevskii and Lottia gigantea). Both
groups appear to have been lost in some lineages during meta-
zoan evolution. As in previous studies (7, 14), our data do not
support the monophyly of Tbx6 class, but no putative orthologs
were identified in early-branching metazoans. Thus, this class
likely evolved later during metazoan evolution. Further, in con-
trast to previous reports that considered the Eomes class as a
bilaterian innovation (13), we could identify homologs in the
calcarean sponges L. complicata and S. ciliatum.
Finally, our results demonstrate that Brachyury is the most

widely distributed class of T-box genes, with members present in
all major clades: sponges (Calcarea, Demospongia, Homoscler-
omorpha, and Hexactinellida), ctenophores, placozoans, cni-
darians, all analyzed bilaterians, and all nonmetazoan taxa with
T-box family members. This suggests that Brachyury was the
ancestral T-box gene from which all other classes evolved (Fig.
1). Further, at least two classes of T-box were already present at
the origin of the Holozoa (Bra and Tbx7), and the Urmetazoan
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T-box complement was therefore much larger than previously
thought (Bra, Eomes, Tbx2/3, TbxPor, Tbx4/5, Tbx1/15/20, Tbx7,
and Tbx8), suggesting a sudden diversification of T-box classes at
the onset of Metazoa. Overall, our data show that T-box is an
ancient transcription factor of opisthokont origin, with members
present in several species belonging to five different nonmetazoan
lineages (Filasterea, Ichthyosporea, and the early-branching fungi
Neocallimastigomycota, Chytridiomycota, and Mucoromycotina).
Evolutionarily, the T-box family is highly dynamic, with multiple
secondary losses along evolution (with the exception of Brachyury,
which is conserved in many lineages, but lost, for example, in
C. elegans (8) and A. queenslandica), some fast-evolving members
(for example, in sponges and ichthyosporeans), expansions (such
as three paralogous eumetazoan classes related to the ancestral
Tbx1/15/20), and major rearrangements, such as the double
T-box domain found in C. owczarzaki (16).

Functional Conservation of C. owczarzaki and S. ciliatum Brachyury.
Given its univocal phylogenetic position and the high degree of
conservation at the amino acid level of C. owczarzaki Brachyury
(Figs. S1 and S2), we decided to test its functional conservation
within a metazoan context. We also included another C. owc-
zarzaki T-box in our analyses (CoTbox3, a member of the Tbx7
class), as a non-Brachyury gene control from the same taxon.
We used Xenopus as a model system, as it has previously been
used to characterize T-box genes from early-branching metazoans
(4, 7, 18).
Xenopus embryos injected with an mRNA encoding a domi-

nant negative form of Brachyury (XBra_En) show defective
gastrulation and impairment of muscle development (27). This
phenotype is partially rescued by coinjection of XBramRNA. We
used embryos injected with XBra_En mRNA to compare the

rescue capacity of XBra, CoBra, and C. owczarzaki Tbox3
(CoTbx3) mRNAs (Fig. 2). Surprisingly, both C. owczarzaki
genes rendered a proportion of rescued embryos largely similar
to those observed in embryos injected with the endogenous XBra
(Fig. 2A), as determined by the general shape of the injected
embryos and by in situ hybridization for the muscle gene MyoD.
These results were confirmed by quantitative RT-PCR experi-
ments that further demonstrated that different mesodermal-
derived genes could be rescued by these coinjections (Fig. 2B).
However, the possibility exists that the XBra_En construct un-
specifically affects other T-box genes (because they have sim-
ilar DNA-binding motifs; see below). Thus, these results should
be interpreted with caution; we can only conclude that both
CoBra and CoTbx3 can roughly mimic endogenous XBra
function.
For this reason, we next evaluated if this similar rescue po-

tential is the consequence of the capacity of these genes to ac-
tivate similar downstream target genes. It has been shown that
not all T-box genes activate the same target genes. For example,
in animal caps assays, Tbx6 (VegT) strongly activates a broad
panel of mesendodermal genes such as Wnt11, Wnt8, endo-
dermin, Sox17, chordin, and pintallavis while Brachyury strongly
activates Wnt11 and weakly activates Sox17, while it never acti-
vates chordin (7, 28, 29). This difference seems to be due to the
ability of Brachyury to interact with the cofactor Smad1. This
interaction, which takes place through an N-terminal domain of
the Brachyury protein, allows the activation of Xom, a repressor
of dorsal mesendodermal genes (30, 31). We therefore com-
pared the ability of different T-box genes to activate these target
genes in Xenopus overexpression assays. For comparison, we also
included the T-box gene of the fungus S. punctatus (SpBra), the
Bra gene of the cnidarian N. vectensis (NvBra) and the two Bra
paralogs of the calcarean sponge S. ciliatum (SciBra1 and SciBra2).
Fig. 3 shows the molecular phenotypes obtained in animal

caps (Fig. 3 A and B) and whole embryos (Fig. 3C and Fig. S3)
injected with different Brachyury mRNA homologs. Metazoan
homologs (NvBra, SciBra1, and SciBra2) showed largely similar
molecular phenotypes to that previously reported for Xenopus
Bra (7, 28), as they activated Wnt11 but not chordin. However,
sponge homologs, unlike cnidarian and Xenopus Brachyury
mRNAs, were unable to activate Sox17 and endodermin. In addi-
tion, NvBra and SciBra1 activated pintallavis and wnt8, respectively,
indicating some difference in the regulatory potential among meta-
zoan Brachyury homologs. Despite their ability to rescue the loss
of XBra function (see above), a different molecular phenotype was
observed in embryos injected with C. owczarzaki Brachyury (CoBra)
and Tbx7 (CoTbx3) mRNAs, which strongly activated all mesen-
dodermal genes. This suggests a clear boundary between metazoan
and nonmetazoan Brachyury homologs, which may be explained
by the ability of the metazoan Brachyury orthologs to interact
with cofactors that restrict their function, such as Smad1. In-
terestingly, this factor is present in the genome of S. ciliatum, but
not in the genome of C. owczarzaki (16). Finally, we obtained
discrepant results in the different assays with the fungus homolog
(SpBra), with no clear patterns of gene activation, neither strong
activation levels. This might be explained by the fact that the
fungal T-box genes, including SpBra, are very divergent (Fig. S2).
Several amino acid motifs have been suggested to be key

determinants of the specificity of Brachyury, compared with
other T-box family members. We therefore asked whether any of
these motifs could account for the differences observed between
metazoan and nonmetazoan homologs. Ref. 28 proposed that
the presence of a Lysine in position 149 of XBra accounts for its
differential behavior, compared with other T-box classes such as
Tbx6 (VegT) and Eomes, which instead have an Asparagine at
this position. Our alignments (Fig. S2) indicate that this position
is indeed conserved in the N. vectensis and S. ciliatum Brachyury
proteins. However, despite the presence of an Arginine (R) in-
stead of a Lysine (K) in the CoBra protein, we do not believe that
this difference alone can explain the drastic phenotypic differ-
ences we observed between metazoan Brachyury and CoBra,
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especially when considering that R is a hydrophilic basic amino
acid, being extremely similar to Lysine, and it is very different
from the neutral Asn (N) found in all other T-box classes. In
fact, SciBra2 also has an R in this position and, nonetheless, it
does not activate chordin (Fig. 3). Ref. 30 proposed that an
N-terminal domain is responsible for the interaction between
Brachyury and Smad1, which would restrict its function spa-
tially. Indeed organisms whose Brachyury lack this domain,
such as Drosophila Bra or ascidian Bra, are unable to behave
as endogenous XBra (31). However, the ctenophore M. leidyi,
the sponge S. ciliatum, and the cnidarianN. vectensis Bra homologs
lack the conserved N-terminal region and, nonetheless, behave

similarly to XBra. Finally, ref. 18 proposed that a conserved motif
in the C-terminal activation domain (called the R1 domain), which
is present in Bilateria and Cnidaria, is responsible for Brachyury
specificity. However, this domain is again not present in M. leidyi
or S. ciliatum Brachyury homologs. Thus, our data, together with
the results from ref. 7, suggest that the difference between meta-
zoan and nonmetazoan Brachyury homologs in their ability to
mimic endogenous XBra functions cannot be explained by the
presence of any of these specific amino acidic motifs outside of
the T domain. To gain further insights into this question, we
constructed six different XBra-CoBra gene chimeras, combining
N-terminal domain, T-box, and C-terminal domain from each
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normalized with endogenous Histone 4. Error bars represent SD from at least two different biological replicates. (B) In situ hybridization to detect chordin and
Sox17 expression in animal caps injected with the Brachyury mRNAs indicated above each panel. (C) Whole-mount in situ hybridization of Sox17, chordin, and
Wnt11 genes in stage 11–12 Xenopus embryos injected with the Brachyury orthologs indicated above each panel. All embryos are shown in the same ori-
entation. Dotted lines represent the closing blastopore; the black arrowhead indicates the dorsal side, and the white arrowhead highlights ectopic expression.
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taxa (Fig. S4). While most chimeras largely behaved as XBra, the
CoBra-XBra-CoBra fusion activated the same panel of down-
stream genes as CoBra (Fig. 3), although chordin up-regulation
was limited. Therefore, N-terminal and C-terminal domains, even
though they do not contain any recognizable conserved amino
acidic motifs, could largely account for the metazoan Brachyury
homologs specificity (including those from sponges and cteno-
phores). This observation is in agreement with the protein-bind-
ing microarrays (PBM) results (see below), which show no
differences in DNA-binding motif specificities between CoBra
and metazoan Brachyury homologs.

C. owczarzaki Brachyury Has a Conserved T-Box DNA-Binding Motif.
To further investigate the function of C. owczarzaki Brachyury,
we determined its binding preferences using universal PBM (32,
33). Our results indicate that CoBra has a highly similar motif to
that determined in the mouse Bra-homolog, called T (Fig. 4) (28,
34–36). Moreover, our results indicate that the T-box DNA
recognition sequence is strongly conserved, both across a wide
range of T-box classes [including Eomes (37), Tbx1, Tbx4, and
Tbx2] and also across different organisms (Fig. 4 and Fig. S1).
Thus, our data from the protist C. owczarzaki suggest that T-box
genes have preserved a DNA recognition motif that has un-
dergone very little change during evolutionary time, even with
the diversification of the family at the origin of Metazoa. These
results suggest that cooperative interactions of T-box genes with
different cofactors, as opposed to differences in DNA-binding
sequence recognition, are the key means through which members
of this family have diverged in function. Similar findings have
been reported, for example, for Hox family transcription factors
(38). Moreover, it is likely that regulation of temporal expression
could contribute to differences in function. The conserved
binding motif also helps to explain the ability of CoBra to rescue
endogenous XBra and to activate several downstream T-box tar-
gets in Xenopus, but without the specificity of XBra, probably due
to the inability of CoBra to interact with cofactors. In sharp con-
trast, the Brachyury orthologs of the early-branching metazoan
S. ciliatum can perfectly mimic the behavior of endogenous XBra.

Conclusions
Our data, which include several previously unreported T-box
genes from sponges, fungi, ichthyosporeans, and filastereans,
allow us to reconstruct T-box transcription factor family evolu-
tion with unprecedented detail. We have also analyzed the most
conserved nonmetazoan Brachyury homolog known to date, that
of the filose amoeba C. owczarzaki, a close relative of Metazoa
(17, 39).
Our results demonstrate that the repertoire of T-box tran-

scription factors in premetazoans is much richer than previously
thought, with members of this family present in several fungi,
ichthyosporeans, and filastereans. T-box genes evolved in the last
common ancestor of all opisthokonts (Fig. 1) and were second-
arily lost in higher fungi (Dikarya) and in choanoflagellates.
Phylogenetic analyses and molecular signatures confirm that

Brachyury is the most ancient member of the T-box genes. A new
member of the family (Tbox7) evolved later, within the Holozoa
clade, with members present in some ichthyosporeans, filaster-
eans, and sponges, but was secondarily lost in other metazoans.
The T-box family radiated at the origin of Metazoa in a highly
dynamic scenario with some fast-evolving classes (such as Tbx7
and Tbx8) and some classes that have been secondarily lost (such
as Tbx7 and TbxPor, which are only present in sponges). After
this initial period, the number of classes stabilized until the
emergence of Tbx1, Tbx15, and Tbx20 from a common Tbx1/15/
20 ancestor at the stem of Cnidaria + Bilateria and the origin of
Tbx6 at the stem of Bilateria.
The subfunctionalization of Brachyury seems to have been

well-established at the very origin of the Metazoa. However, the
high number of T-box classes (including some, like Tbx7 or
TbxPor, that were subsequently lost), the uneven distribution of
T-box classes in sponges, and the presence of fast-evolving T-box
genes in sponges suggest an early scenario of fast evolution of
new T-box classes.
Results of our analyses indicate that the binding specificity of

Brachyury is highly conserved among metazoan and non-
metazoans, as well as between Brachyury and other T-box clas-
ses. This reinforces the idea that cofactor interactions may be
responsible for the functional differences observed between
different T-box classes and may also explain why the Brachyury
of C. owczarzaki, although clearly a Brachyury ortholog, does not
have the ability to interact with cofactors in a Xenopus heterol-
ogous context, in sharp contrast to the Brachyury of sponges,
ctenophores, or cnidarians. Most likely, these restrictions were
set at the origin of Metazoa with the radiation of T-box classes,
as evidenced by the perfect functional mimic of SciBra and M.
leidyi Bra (7) with XBra. In that sense, both CoBra and CoTbx3 (a
member of the Tbx7 class) behave as what we call “pan-Tbox”
genes, activating all potential targets (like chordin) that will later
in evolution be controlled by specific T-box classes (in the case of
chordin, Tbx6 and Eomes). Through time, novel T-box specific-
ities were established through the evolution of new functional
interactions with different cofactors.

Methods
Microinjection of Brachyuru Genes into Xenopus Embryos. The entire coding
regions of Brachyury genes from different species (CoBra, CoTbox3, SciBra1,
SciBra2, NvBra, and SpBra) as well as six different CoBra-XlBra chimeras
(representing all possible N-terminal domain, T-box, and C-terminal domain
combinations) were inserted into the multicloning site of pCS2+ (40).
mRNAs, prepared as previously described (41), were injected in Xenopus
embryos at two-four-cell stage in a single blastomere at 500–1,000 pg per
embryo. X-Gal staining was performed as described elsewhere (42).

Histochemistry. Xenopus embryos were fixed in MEMFA (0.1 M 3-(N-Morpholino)
propanesulfonic acid (Mops), 2 mM EGTA, 1 mM MgSO4, and 3.7% (vol/vol)
formaldehyde, pH7.4) for 1h at room temperature and then kept in meth-
anol at −20 °C. Antisense RNA probes were prepared from cordin, Wnt11,
and Sox17β cDNAs using dioxigenin (Roche). Xenopus embryos were hy-
bridized as described (43). After immunostaining, embryos were bleached
by the treatment with 10% H2O2 in PBS under the light for 2–3 h.

Animal Caps Assays and Quantitative RT-PCR. Animal caps were prepared as
previously described (44) and cultured until stage 13 according to Nieuw-
koop and Faber (45). For qRT-PCR, total RNA from 10 animals caps or five
stage-30 embryos was isolated with TRIzol (Gibbco) followed by phenol/
chloroform extraction. cDNA synthesis was performed using SuperScript III
kit (Invitrogen) according to the manufacturer’s protocol. SYBR-Green real-
time PCR was performed on CFX96 BioRad Detection System using iTaq
Universal SYBR-Green Supermix (BioRad). All reactions were done in dupli-
cates in at least two different biological replicas. The expression of histone
4 (H4) was used as a control. For a list of primers used for these experiments,
see Table S1.

Gene Searches and Phylogenetic Analysis. A primary search was performed
using the basic local alignment sequence tool (BLAST: BlastP and TBlastN)
using Homo sapiens and C. owczarzaki proteins as queries against protein,
genome, and transcriptome databases with the default BLAST parameters

Co Bra Mouse T Mouse Eomes

Mouse Tbx1 Mouse Tbx2 Mouse Tbx4

Fig. 4. CoBra-binding motifs derived from PBM data (SI Methods). For
comparison, different mouse T-box classes binding motifs also derived from
PBM data [except mouse T, based on SELEX (Systematic Evolution of Ligands
by Exponential Enrichment) (34)]. See also Dataset S2.
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and an e-value threshold of e-5 at the National Center for Biotechnology
Information (NCBI) and against completed or ongoing genome project
databases at the Joint Genome Institute (JGI) (for Piromyces sp., Gonapodya
prolifera, and other early-branching fungi available) and the Broad Institute
(for M. verticillata, S. rosetta, S. arctica, and S. punctatus). For A. whisleri,
P. gemmata, A. parasiticum, and M. vibrans we assembled the trace RNAseq
data using the Trinity assembler. C. fragrantissima genomic sequences were
assembled using the whole-genome shotgun (WGS) assembler (http://
sourceforge.net/apps/mediawiki/wgs-assembler/index.php?title5Main_Page).
In both cases, we performed local BLAST searches and annotated the se-
quences manually. We also performed profile hidden Markov model searches
using HMMER3.0b2 (46) to confirm that we were retrieving all T-box ortho-
logs. For details on phylogenetic analyses, see SI Methods.

Protein-Binding Microarrays. Details of the design and use of universal PBMs
has been described elsewhere (32, 33). For further details, see SI Methods.
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