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SUMMARY

In contrast to our knowledge of mechanisms govern-
ing circuit formation, our understanding of how neu-
ral circuits are maintained is limited. Here, we show
that Dicer, an RNaseIII protein required for process-
ing microRNAs (miRNAs), is essential for mainte-
nance of the spinal monosynaptic stretch reflex
circuit in which group Ia proprioceptive sensory neu-
rons form direct connections with motor neurons.
In postnatal mice lacking Dicer in proprioceptor
sensory neurons, there are no obvious defects in
specificity or formation of monosynaptic sensory-
motor connections. However, these circuits degrade
through synapse loss and retraction of propriocep-
tive axonal projections from the ventral spinal cord.
Peripheral terminals are also impaired without re-
tracting from muscle targets. Interestingly, despite
these central and peripheral axonal defects, proprio-
ceptive neurons survive in the absence of Dicer-pro-
cessed miRNAs. These findings reveal that Dicer,
through its production of mature miRNAs, plays a
key role in the maintenance of monosynaptic sen-
sory-motor circuits.
INTRODUCTION

During nervous system development, neural circuits are typically

established, refined by pruning, and then maintained throughout

an animal’s lifetime. We now have amassed considerable knowl-

edge of how neural circuits are formed and refined during devel-

opment (Cohen and Greenberg, 2008; Sanes and Yamagata,

2009; Shen and Scheiffele, 2010), yet we know very little about

how neural circuits are maintained in the mammalian central

nervous system.

The monosynaptic spinal stretch reflex arc is essential for mo-

tor behaviors and is driven by a relatively simple circuit in which

group Ia proprioceptive sensory neurons, whose cell bodies are
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located in the dorsal root ganglia (DRGs), form monosynaptic

connections with particular sets of motor neurons in the ventral

spinal cord (Brown, 1981; Mears and Frank, 1997). Peripherally,

group Ia afferents project axons to muscle spindles, which pro-

vide feedback to the spinal cord about the state of muscle

contraction and limb position (Maier, 1997; Windhorst, 2007).

Recent studies have revealed the molecular mechanisms guid-

ing proprioceptive sensory afferent projections to the ventral

spinal cord and the formation of specific connections within their

target regions (Arber, 2012; Chen et al., 2003; Ladle et al., 2007;

Levine et al., 2012; Catela et al., 2015). Once these monosyn-

aptic sensory-motor circuits are formed, however, we know

little about how they are maintained over the lifespan of an

animal.

MicroRNAs (miRNAs) are non-coding short RNAs that control

gene expression and translational regulation (Hausser and

Zavolan, 2014). Immature miRNAs are transcribed from the

genome and subsequently processed by the RNaseIII enzyme,

Dicer (Krol et al., 2010). These mature miRNAs are essential

for cell survival in various kinds of neurons in mammals

(Petri et al., 2014) and have been found to be important

for establishing neuronal polarity, dendritic branch elaboration,

neurite outgrowth, and synaptic function in certain neuronal

subsets (Davis et al., 2008; Edbauer et al., 2010; Hancock

et al., 2014; Hong et al., 2013; Li et al., 2012; Muddashetty

et al., 2011).

In our study of monosynaptic sensory-motor circuits, we show

that Dicer, in proprioceptive sensory neurons, is not required

for initial circuit formation but is essential for long-term circuit

maintenance in mice.
RESULTS

Deletion of Dicer in Sensory Neurons Causes Sensory-
Motor Circuit Defects
To determine whether roles of Dicer in sensory-motor circuits

we first examined Dicer expression profiles in spinal cords and

DRGs of newborn wild-type mice at postnatal day 0 (P0). Dicer

was ubiquitously expressed in both the spinal cord and the

DRG (Figure 1A). Although Dicer has been shown to play a role
rts 17, 2163–2172, November 22, 2016 ª 2016 The Authors. 2163
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Figure 1. Loss of Dicer in Sensory Neurons

Affects Sensory-Motor Connections

(A) In situ hybridization ofDicer in the spinal cord and

DRG of a P0 wild-type mouse. Dicer is ubiquitously

expressed in the spinal cord and DRG.

(B and C) P28 control (B) and Dicerflox/flox; Pv-Cre (C)

mice. Dicerflox/flox; Pv-Cre mice show severe ataxia,

extensor rigidity, and posture abnormalities.

(D–G) Immunostaining of vGlut1 in control (D and F)

and Dicerflox/flox; Pv-Cre (E and G) mice at P21

(D and E) and P28 (F and G).

(H and I) Immunostaining of vGlut1 (green) and

ChAT (red) in control (H) and Dicerflox/flox; Pv-Cre (I)

mice at P28. Dotted lines outline the spinal cords.

(J and K) vGlut1+ terminal number/ChAT+ area from

control and Dicerflox/flox; Pv-Cre mice at P14, P21,

and P28 (J), and from control and Dicerflox/flox; Adv-

Cre mice at P7 and P14 (K). *p < 0.05, **p < 0.001,

Student’s t test, n = 5. Scale bar: 100 mm. See also

Figure S1.

Error bars represent SD.
in the neurogenesis of motor and DRG neurons (Chen et al.,

2011; Huang et al., 2010; Hancock et al., 2014), it is unclear

whether it functions in postmitotic motor neurons or DRG sen-
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sory neurons. In this study, we focused

on proprioceptive sensory neurons. We

targeted the deletion of Dicer in proprio-

ceptive sensory neurons by crossing

Dicerflox/flox mice with parvalbumin (Pv)-

Cre mice, which exhibit restricted Cre

expression in proprioceptive sensory

neurons within the DRG (Harfe et al.,

2005; Hippenmeyer et al., 2005). Although

endogenous Pv is expressed during

embryogenesis, Pv-Cre-mediated reco-

mbination occurs in the DRG from P0 (Lil-

ley et al., 2013). Using in situ hybridiza-

tion, we confirmed that Dicer mRNA was

not detected in large-diameter (presum-

ably proprioceptive) DRG neurons of P7

Dicerflox/flox; Pv-Cre mice (Figures S1A–

S1D). Prior to P14, Dicerflox/flox; Pv-Cre

mice survived without exhibiting any overt

motor behavioral phenotypes. By P21,

subtle behavioral deficits developed,

and by P28, the mice exhibited ataxia

(Figures 1B and 1C). Similar ataxic behav-

iors have been observed previously in

mutants such as Runx3 and Egr3 mice

that show compromised sensory-motor

development (Levanon et al., 2002; Tour-

tellotte and Milbrandt, 1998; Inoue et al.,

2002), suggesting that Dicerflox/flox; Pv-

Cremice may have similar sensory-motor

circuit defects. We first visualized the

proprioceptive sensory terminals in the

ventral spinal cords of the Dicer mutants

by immunostaining for vesicular gluta-
mate receptor 1 (vGlut1) (Oliveira et al., 2003; Alvarez et al.,

2004) (Figures 1D–1I). No obvious differences in the number of

vGlut1+ terminals in the ventral spinal cord were observed



between control and Dicerflox/flox; Pv-Cremice at P14 (Figure 1J;

data not shown). However, in the Dicer mutants, the number of

vGlut1+ proprioceptive sensory terminals was progressively

reduced compared to controls from P21 to P28 (Figures 1D–

1J), without any changes in ChAT+ motor neuron numbers, loca-

tions, or areas within the ventral spinal cord (Figures 1H, 1I, and

S1K; data not shown). Similarly, in P50Dicerflox/flox; Pv-Cremice,

vGlut1+ sensory terminals were almost completely absent

in the ventral spinal cord (Figures S2A and S2B). Taken together,

the decrease in vGlut1+ sensory terminals was consistent with

the timing of behavioral deficits observed in Dicerflox/flox;

Pv-Cre mice.

Since Pv is expressed in various regions of the brain (Celio,

1990), it was possible that changes in the brain rather than

the spinal cord of Dicerflox/flox; Pv-Cre mice could have caused

the behavioral phenotypes. To investigate this possibility, we

used another Cre mouse line, Advillin (Adv)-Cre, in which Cre

is expressed as early as embryonic day 12.5 (E12.5) in sensory

neurons in the DRG and trigeminal ganglia, but it is not ex-

pressed in any other regions of the brain or spinal cord (Hase-

gawa et al., 2007). Dicerflox/flox; Adv-Cre mice showed similar

reductions in vGlut1+ proprioceptive terminals in the ventral

spinal cord (Figures 1K and S1E–S1J) as well as similar behav-

ioral deficits as early as P10. Dicerflox/flox; Adv-Cre mice typi-

cally died of unknown causes around P14. Despite the timing

differences in phenotype progression, these data strongly sug-

gest that the behavioral deficits in Dicerflox/flox; Pv-Cre and

Dicerflox/flox; Adv-Cre mice are caused by disruptions in sen-

sory-motor circuits and not by compromised higher brain

circuits.

Loss of Dicer Causes Retraction of Central Projections
of Proprioceptive Sensory Neurons without Significant
Neuronal Cell Death
To further characterize the effects of Dicer deletion on mono-

synaptic sensory-motor circuits, we determined Dicer’s effects

on cell survival and proprioceptive axon morphology. To track

cell survival, we monitored the expression of TrkC, a proprio-

ceptive sensory neuron marker (Klein et al., 1994), in proprio-

ceptive cell bodies. At P14 and P21, the numbers of TrkC+

DRG neurons were similar between control and Dicerflox/flox;

Pv-Cre mice, but at P28, those were reduced in Dicerflox/flox;

Pv-Cre mice (Figures 2A–2C). The number of apoptotic propri-

oceptive neurons was slightly but significantly increased in

Dicerflox/flox; Pv-Cre mice at P21 and P28 over the control

mice (Figures S2E–S2I); however, by P50, it appeared that

the numbers of proprioceptive sensory neurons were similar

in Dicerflox/flox; Pv-Cre and control mice (Figures S2C and

S2D). In Dicerflox/flox; Adv-Cre mice, we did not find any reduc-

tions in TrkC+ DRG neurons at P10 (Figure 2D) when these mice

exhibited ataxia. Therefore, strong reductions in vGlut1+ termi-

nals do not appear to be explained by proprioceptive sensory

neuron cell death in Dicerflox/flox; Pv-Cre or Dicerflox/flox;

Adv-Cre mice.

Next, we examined the central projections of proprioceptive

sensory neurons in Dicerflox/flox; Pv-Cre mice. To visualize the

axons, we injected Neurobiotin into dorsal roots (Clarke et al.,

2011) to label both cutaneous and proprioceptive axons (Figures
2E–2G). In control mice, Neurobiotin+ cutaneous and proprio-

ceptive sensory axons projected to the dorsal and ventral horns

of the spinal cord, respectively (Figures 2E and 2G). In contrast,

in Dicerflox/flox; Pv-Cre mice, Neurobiotin+ sensory axons were

detected only in the dorsal, but not the ventral, spinal cord (Fig-

ures 2F–2H), indicating that proprioceptive axons had retracted

from the ventral spinal cord. We also found that Pv+ sensory

axons had similarly retracted from the ventral horn inDicerflox/flox;

Adv-Cre mice at P10 (Figures 2I and 2J). Despite the loss in

ventral axonal projections, the Dicerflox/flox; Adv-Cre mice

showed no obvious differences in vGlut1+ synapse densities

(vGlut1+ terminal numbers/Pv+ axon volume) compared to con-

trol mice at P10, suggesting that axon and synapse losses

occurred concurrently in Dicerflox/flox; Adv-Cre mice (Figures

2K–2M). Taken together, these data demonstrate that the

vGlut1+ proprioceptive sensory terminals had decreased in the

ventral spinal cord in proportion with the reduction in proprio-

ceptive axonal density in the ventral horn in Dicer mutant mice.

Importantly, these processes occurred in the absence of signif-

icant sensory neuron cell death.

Defective Peripheral Axonal Terminations of Ia
Proprioceptive Sensory Neurons in Dicer Mutant Mice
We then examined the peripheral projections of group Ia pro-

prioceptive sensory neurons at their target muscle spindles. To

visualize the group Ia terminals at the muscle spindle, we

crossed Dicerflox/flox; Pv-Cre with Thy1-GFP transgenic mice

(Feng et al., 2000), in which GFP is expressed by motor and sen-

sory neurons (Zhang et al., 2015). GFP+ Ia axons innervated

Egr3+ intrafusal muscle fibers in control and Dicerflox/flox; Pv-

Cre mice at P21 (Figures 3A and 3B), but the total number

of axons was largely reduced in Dicerflox/flox; Pv-Cre mice in

the rectus femoris muscle at P21 and P28 (Figure 3E). P28

Dicerflox/flox; Pv-Cre mice rarely exhibited clear GFP+ Ia afferent

terminals. Instead, they showed an aberrant morphology lacking

typical Ia afferent axonal terminal patterns (Figure 3D). Egr3+ in-

trafusal muscle fibers appeared intact in these mutants, but they

lacked innervation by GFP+ Ia axons (Figure 3D). Interestingly,

some Ia afferents did not retract from the muscle (Figure 3D).

We found a similar array of defects in Dicerflox/flox; Adv-Cre

mice at P10 (Figure 3F; data not shown). Last, in a set of control

experiments, we did not find any defects in motor axon innerva-

tion of neuromuscular junctions in P28 Dicerflox/flox; Pv-Cre

mice (Figures 3G–3J). These data reveal that Dicer is required

for maintenance of group Ia proprioceptive sensory afferent

terminations in target muscle spindles.

Defects in Proprioceptive Peripheral Projections in
Dicer Mutants Do Not Likely Cause Deficits in the
Central Terminals of Proprioceptive Sensory Neurons
Because muscle spindle-derived neurotrophic factor 3 (NT-3)

has been shown to affect monosynaptic sensory-motor connec-

tions (Mentis et al., 2011; Shneider et al., 2009), it was possible

that defects in retrograde signaling from muscle spindles to pro-

prioceptive sensory neurons in Dicer mutants caused deficits in

the central terminals of proprioceptive sensory neurons. To test

this possibility, we transected the sciatic nerve in P7 wild-type

mice and analyzed sensory-motor connections at various time
Cell Reports 17, 2163–2172, November 22, 2016 2165
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Figure 2. Loss of Dicer in Sensory Neurons Affects Proprioceptive Central Axon Projections

(A and B) Immunostaining of TrkC in DRGs of control (A) and Dicerflox/flox; Pv-Cre (B) mice at P28.

(C and D) Relative TrkC+ neuron number from control and Dicerflox/flox; Pv-Cremice at P14, P21, and P28 (C), and from control and Dicerflox/flox; Adv-Cremice at

P10 (D). *p < 0.05, Student’s t test, n = 5.

(E and F) Central projections of DRG neurons were visualized by Neurobiotin backfills in control (E) and Dicerflox/flox; Pv-Cre (F) mice at P28.

(G) Schematic representation of the Neurobiotin backfill method. Central projections of all DRG neurons are labeled by Neurobiotin. Cutaneous and proprio-

ceptive sensory axons project to the dorsal and ventral spinal cord, respectively.

(H) Relative Neurobiotin (NB)+ axon area in the ventral spinal cords of P28 control and Dicerflox/flox; Pv-Cre mice. *p < 0.05, Student’s t test, n = 4.

(I and J) Immunostaining of Pv from spinal cords of control (I) and Dicerflox/flox; Adv-Cre mice (J) at P10.

(K and L) Immunostaining of Pv (green), vGlut1 (red), andGFP (blue, Thy1-GFP) from the ventral spinal cords of control (K) andDicerflox/flox;Adv-Cremice (L) at P10.

(M) Quantification of vGlut1+ terminal number per Pv+axon volume (per cubicmicrometer) in P10 control andDicerflox/flox;Adv-Cremice. No significant differences

were observed (Student’s t test, n = 4). Scale bar: 100 mm (B, F, and J), 10 mm (L). See also Figure S2.

Error bars represent SD.
points (Figure 3K). There were no significant differences in

vGlut1+ terminal numbers at P21 (postinjury day 14), and vGlut1+

terminal number decreased only from P28 (Figure 3L). These
2166 Cell Reports 17, 2163–2172, November 22, 2016
data suggest that defects in retrograde signaling from the pe-

ripheral muscles are unlikely to contribute to the proprioceptive

sensory terminal deficits in Dicer mutants.
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(A–D) Muscle spindles were labeled by GFP (green, Thy1-GFP), Egr3 (red), and DAPI (blue) from rectus femoris muscles of control (A and C) and Dicerflox/flox;

Pv-Cre (B and D) at P21 (A and B) and P28 (C and D).

(E and F) Quantification of muscle spindle numbers from rectus femoris muscles of control and Dicerflox/flox; Pv-Cre (E), and Dicerflox/flox; Adv-Cre mice (F).

*p < 0.05, **p < 0.01, Student’s t test, n = 5.

(G–J) Motor axons and neuromuscular junctions were labeled by Thy1-GFP (G and H) and tetramethylrhodamine a-bungarotoxin (aBTX) (I and J) in gluteus
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No Obvious Defects in the Establishment of Sensory-
Motor Reflex Circuits in Dicer Mutant Mice
Our data suggest that inDicerflox/flox;Pv-Cremice,monosynaptic

sensory-motor circuits are initially formed, but not maintained

after P14. To address whether initial sensory-motor circuits are

functional in terms of synaptic specificity and formation, we

focused on the obturator and quadriceps sensory-motor reflex

arcs. Proprioceptive Ia afferents form monosynaptic connec-

tions with motor neurons innervating the same or synergistic

muscles but not antagonistic muscles (Frank and Mendelson,

1990). Previous studies have shown that Ia afferents conveying

sensory information from either obturator or quadriceps nerves

do not form synaptic contacts on motor neurons supplying

the opposite muscles (Mears and Frank, 1997). We performed

intracellular recordings from obturator and quadriceps motor

neurons following obturator and quadriceps sensory nerve

stimulation, respectively (Figure 3M), using short-latency input

recordings to identify the monosynaptic sensory-motor re-

sponses. In control mice, latencies of homonymous connec-

tions, obturator-to-obturator and quadriceps-to-quadriceps,

ranged between 4.9–6.1 and 4.3–6.2 ms, respectively (gray

bins in Figures 3N and 3O), which were similar to the latencies

recorded from Dicerflox/flox; Pv-Cre mice (Figures 3N and 3O),

suggesting that these connections are monosynaptic. The

amplitudes of monosynaptic excitatory postsynaptic potentials

(EPSPs) were measured from recordings from the obturator

and quadriceps motor neurons after obturator and quadriceps

sensory nerve stimulation, respectively. The EPSP amplitudes

of Dicerflox/flox; Pv-Cre mice were similar to those observed in

control mice (Figures 3P and 3Q). Therefore, these data indicate

that obturator and quadriceps sensory afferents properly form

monosynaptic connections with homonymous motor neurons

in Dicerflox/flox; Pv-Cre mice.

We then examined whether Dicer is involved in establishing

the synaptic specificity of monosynaptic sensory-motor connec-

tions by recording from obturator motor neurons following

quadriceps nerve stimulation or from quadriceps motor neu-

rons following obturator nerve stimulation. We did not find

any aberrant monosynaptic connections in these antagonistic

sensory-motor connection pairs in both littermate control and

Dicerflox/flox; Pv-Cre mice (Figures 3N and 3O). Taken together,

these data indicate that Dicer does not regulate the specificity

or formation of obturator and quadriceps sensory-motor reflex

circuits.

Downstream Targets of Dicer Activity
To deduce the molecular logic of sensory-motor circuit main-

tenance regulated by Dicer, we analyzed both miRNAs and

mRNAs in control and Dicer mutant mice by RNA sequenc-

ing (RNA-seq) analysis. First, we compared miRNA expression
(M) Schematic representation of intracellular recordings from motor neurons follo

motor neurons (MNs) were identified by antidromic responses following obturator

(N and O) Quantification of the shortest latencies of EPSP onset from individual

cordings with Q stimulation (O) in control and Dicerflox/flox; Pv-Cre (D-Pv) mice.

(recordings of Ob motor neurons with Ob nerve stimulation or Q motor neuron re

(P and Q) Quantification of amplitudes of homonymous monosynaptic EPSPs fro

Error bars represent SD.
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patterns in DRGs of control and Dicerflox/flox; Pv-Cre mice at

P21 (Figure 4A). Expression of some miRNAs such as mir-486

and -3107 were unchanged, whereas other miRNAs showed

approximately 20%–30% reductions inDicermutants compared

to control mice (Figure 4A). For instance, mir-127 was highly ex-

pressed in the DRG and showed a 30% reduction in Dicerflox/flox;

Pv-Cremice (Figure 4A). The miRNAs with only reduced expres-

sion in Dicer mutants suggests that they are expressed in both

proprioceptive and cutaneous sensory neurons in the DRG. To

determine whether mir-127 expression is indeed decreased

in proprioceptive sensory neurons of Dicer mutant mice, we

examined mir-127 expression (Figures 4B–4F). mir-127 was

highly expressed in most DRG neurons at P7 and P21 (Figures

4B and 4E). Most large-diameter NeuN+ neurons (which are

presumably proprioceptive sensory neurons) lacked mir-127

expression in Dicerflox/flox; Pv-Cre mice at P21 (dotted lines in

Figures 4F and 4F0). In contrast, small-diameter neurons (which

are presumably cutaneous sensory neurons) still expressed

mir-127 in Dicerflox/flox; Pv-Cre mice (arrow in Figure 4F). In

Dicerflox/flox; Adv-Cre mice, both large- and small-diameter

NeuN+ neurons lacked mir-127 expression (Figure 4C; dotted

lines in Figures 4D and 4D0 for large-diameter NeuN+ neuron).

Taken together, these data indicate that mir-127 is expressed

in both proprioceptive and cutaneous sensory neurons in the

DRG, and Dicer deletion affects maturation of these miRNAs.

To determine the direct and indirect target genes of these

miRNAs, we analyzed mRNA gene expression profiles in the

DRG, comparing Dicerflox/flox; Adv-Cre (P10) and Dicerflox/flox;

Pv-Cre (P21) mutant mice with control mice (P10 or P21). We

examined all genes expressed in the DRG (fragments per kilo-

base of transcript per million mapped reads [FPKM] > 3) and

plotted the fold changes in gene expression over the levels in

control mice (Figures 4G and 4H). From these plots, we identi-

fied sets of upregulated (fold change > 150%, p < 0.05, green

areas) and downregulated genes (fold change < 75%, p <

0.05, purple areas) in both Dicerflox/flox; Adv-Cre and Dicerflox/flox;

Pv-Cre mice (Figure 4I). Gene ontology (GO) enrichment anal-

ysis of upregulated genes suggests that many of these genes

are associated with the extracellular matrix or involved in growth

factor binding (Figure S3K). For example, vitronectin (Vtn)

expression was upregulated in the DRG of Dicer mutants

(225% and 339% in Dicerflox/flox; Adv-Cre and Dicerflox/flox;

Pv-Cre mice compared to control mice, respectively; Figures

S3I and S3J). Expression of proprioceptor-specific genes,

Pv/Pvalb and Er81/Etv1, were reduced in both Dicerflox/flox;

Adv-Cre and Dicerflox/flox; Pv-Cre mice, respectively (Figures

S3C, S3D, S3G, and S3H). Conversely, TrkC (Ntrk3) and

Runx3 were only slightly decreased in Dicerflox/flox; Adv-Cre

and Dicerflox/flox; Pv-Cre mice, respectively, compared to

controls (Figures S3A, S3B, S3E, and S3F).
wing muscle nerve stimulation. Obturator (Ob) (blue) and quadriceps (Q) (red)

and quadriceps sensory nerve stimulation (Ob stim. and Q stim.), respectively.

Q motor neuron recordings with Ob stimulation (N) and Ob motor neuron re-

Monosynaptic ranges (gray bins) were defined by homonymous connections

cordings with Q nerve stimulation) in control mice.

m Ob (P) and Q motor neurons (Q). Scale bar: 10 mm (D), 500 mm (J).
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To identify potential direct targets of these miRNAs, we

searched for putative binding sites in the 30-UTRs of genes upre-
gulated inDicerflox/flox;Pv-Cremice (Figure 4J). First, we selected

the 50 most abundant miRNAs in the DRGs of control mice,

which collectively represented over 90% of all the DRGmiRNAs,

and found that 35 of those miRNAs were downregulated in

Dicerflox/flox; Pv-Cre DRGs (Figure 4A). We then examined

the 30-UTRs of upregulated mRNA sequences in Dicerflox/flox;

Pv-Cre DRGs for putative binding sites for those 35 miRNAs. In

total, we identified almost 60 potential directmiRNA gene targets

(red boxes in Figure 4J). In situ hybridization experiments re-

vealed that expression of F-box only protein 2 (Fbxo2), a poten-

tial target of mir-127, was upregulated in large-diameter NeuN+

neurons in the DRGs of Dicerflox/flox; Pv-Cre mice compared

to controls (Figures 4K and 4L).

DISCUSSION

Monosynaptic sensory-motor circuits have been extensively

studied using electrophysiology, mouse genetics, andmolecular

approaches since the 1950s (Brown, 1981; Arber, 2012; Ladle

et al., 2007; Catela et al., 2015). However, how these and all other

circuits in the nervous system are properly maintained over the

lifespan of an animal is unclear. Our studies using mutant mice

show that Dicer, expressed by proprioceptive sensory neurons,

is required for the maintenance of sensory-motor circuits. In our

Dicer mutant mice, sensory-motor and peripheral defects arose

simultaneously, raising the possibility that the peripheral deficits

disrupted the intracellular transport of important muscle spindle-

derived signaling molecules. To test this, we performed periph-

eral axon transections on P7wild-typemice to intentionally block

intracellular transport. However, sensory-motor connections

were affected only after a 21-day lag postsurgery (Figure 3), indi-

cating that disrupted signaling from the periphery is likely not

causing the central deficits in Dicer mutants. Alternatively, it

could be that proprioceptive central defects immediately affect

the peripheral projections of proprioceptive sensory neurons in

Dicer mutants, or that Dicer may simultaneously regulate main-

tenance of both central and peripheral axons of proprioceptive

sensory neurons.

To uncover some of the Dicer-regulated mechanisms underly-

ing circuit maintenance, we examined miRNAs in the DRG

that had diminished expression in the Dicer mutants, and

also searched for upregulated and downregulated genes. The

reduced expression of Er81 in proprioceptors in Dicer mice

was of particular interest, because Ia proprioceptive sensory

axons in Er81mutants fail to reach the ventral spinal cord (Arber
Figure 4. Potential Downstream Targets of Dicer-Mediated Pathways

(A) Expression profiles of miRNAs in the DRGs of control and Dicerflox/flox; Pv-Cre

(B–F) In situ hybridization ofmir-127 in DRGs of P7 control (B), Dicerflox/flox; Adv-C

show NeuN (green) staining of images (D)–(F). Dotted lines indicate large-diame

A limited number of small-diameter neurons still expressed mir-127 in Dicerflox/flo

(G and H) Plots of mRNA fold-change differences (log2) versus p values (log10)

Dicerflox/flox; Adv-Cre at P10 (H). Green areas show upregulated genes (p < 0.05,

(I) Upregulated and downregulated genes in both Dicerflox/flox; Pv-Cre and Dicerfl

(J) Network map showing putative regulatory relationships between miRNAs (blu

(K and L) In situ hybridizations of Fbxo2 in DRGs of P21 control (K) and Dicerflox/flox

Dotted lines indicate large-diameter NeuN+ neurons. Scale bar: 100 mm (C), 10 m
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et al., 2000). In the absence of Dicer, proprioceptive group Ia

neurons may start losing their overall proprioceptive transcrip-

tional identities, which could then lead to the altered axonal

phenotypes observed in Dicer mutant mice.

Our RNA-seq analyses also identified several miRNAs that

might promote the upkeep of neural circuits. Because miRNAs

regulate not only mRNA stability but also translation, Dicer

deletion may cause differences in protein expression without

affecting mRNA levels (a scenario that would not have been de-

tected in our RNA-seq analyses). Therefore, further examination

of these miRNAs, including miRNA-127, -182, and -183, their

target genes, and the resulting proteomes ofDicer-depleted pro-

prioceptive sensory neurons, will provide useful insights into

whether miRNAs function to control gene or protein expression

of molecules essential for preserving monosynaptic sensory-

motor circuits.

Our studies suggest that neural circuit maintenance is an

active process requiring a precise transcriptional program. How-

ever, what types of extrinsic and/or intrinsic signaling pathways

are involved, and which mechanisms promote circuit stability

over the lifetime of an animal? A delicate balance must be struck

between the need for circuit preservation and the ability to alter

neural circuitry in response to stress and injury. Finally, a greater

understanding of circuit maintenance may provide new inroads

toward preventing circuit degeneration via bolstering circuit

maintenance mechanisms in patients suffering from neurode-

generative disease.

EXPERIMENTAL PROCEDURES

Mice

The following mouse lines were used: Dicer-floxed (Harfe et al., 2005), Pv-Cre

(Hippenmeyer et al., 2005), Adv-Cre (Hasegawa et al., 2007), and Thy1-GFP

(Feng et al., 2000) mice. Mouse handling and procedures were approved by

the Institutional Animal Care and Use Committee at the Cincinnati Children’s

Hospital Research Foundation.

Tissue Preparation

Spinal cords and DRGs were fixed in 4% paraformaldehyde (PFA)/phosphate

buffer (PB) for 2 hr for immunohistochemistry or overnight for in situ hybridiza-

tion. Afterward, they were vibratome sectioned at 100–200 mm or cryostat

sectioned at 10–20 mm.

In Situ Hybridizations

In situ hybridizations were performed according to standard protocols

(Imai et al., 2016). Template DNAs were cloned into the pCRII vector (Life

Technologies) by PCR using the following primers: 50-GACGACTTCCTGGAG

TATGACC-30, 50-TATCAGGTGGTTGAGGGTTTTC-30 for Dicer mRNA (Fig-

ure 1); 50-GAATGGAAGATGCCCAAGAA-30, 50-GAGGGTTTTCTCTGCGCT
mice at P21.

re (C and D) mice, and P21 control (E) and Dicerflox/flox; Pv-Cre (F) mice. (D0)–(F0)
ter NeuN+ neurons. Arrows indicate mir-127+ small-diameter NeuN+ neurons.
x; Adv-Cre mice (C and D).

of control versus Dicerflox/flox; Pv-Cre mice at P21 (G) and control versus and

>150%), whereas purple areas show downregulated genes (p < 0.05, <75%).
ox/flox; Adv-Cre mice.

e circles) and mRNAs (red squares).

; Pv-Cre (L) mice. (K0) and (L0) show NeuN (green) staining of images (K) and (L).

m (F0 and L0). See also Figure S3 and Tables S1, S2, and S3.



CTG-30 for Dicer mRNA (exon 23, for Figure S1). For mir-127, we used DIG-

labeled LNA probes (Exiqon).

Immunohistochemistry

Cryosections or vibratome sections were stained with the following primary

antibodies: anti-vGlut1 (Millipore; AB5905), anti-ChAT (Millipore; AB144),

anti-TrkC (R&DSystems; AF1404), anti-Pv (Swant; PV27), and anti-Egr3 (Santa

Cruz Biotechnology; SC-191). For TrkC staining, cryosections were heated

in 10 mM sodium citrate (pH 6.0). Images were scanned with a Nikon A1R

confocal microscope. Quantification of vGlut1+ terminals was performed

with IMARIS (Bitplane) software.

Neurobiotin Axonal Labeling

To label sensory axons, hemisected spinal cords were incubated in a recircu-

lating artificial cerebrospinal fluid (aCSF) bath containing NaCl (127 mM), KCl

(1.9 mM), KH2PO4 (1.2 mM), CaCl2 (2 mM), MgSO4 (1 mM), NaHCO3 (26 mM),

and D-glucose (20.5 mM), that was oxygenated. Dorsal roots were placed

in glass pipettes filled with Neurobiotin (Vector Laboratories) overnight.

Neurobiotin was visualized with Alexa 488-conjugated streptavidin (Life

Technologies).

Whole-Mount Muscle Staining

Gluteus and rectus femoris muscles were taken from Thy1-GFP+ mice and

fixed in 4% PFA/PB overnight. Afterward, muscles were incubated with tetra-

methylrhodamine-a-bungarotoxin (Life Technologies).

Intracellular Recordings

Dissections of spinal cords and electrophysiological recordings have been

previously described in detail (Imai et al., 2016; Fukuhara et al., 2013). Briefly,

spinal cords from P5–P7 newborn pups were hemisectioned in oxygenated

aCSF bath. Nerves were stimulated with 10-mA, 0.001-ms pulses. Intracellular

potentials were recorded using glass micropipettes filled with 2 M potassium

acetate with 0.5% Fastgreen and 300mM lidocaineN-ethyl bromide. Synaptic

potentials were recorded 20–60 times (1 Hz) and averaged. Obturator or quad-

riceps motor neurons were identified by antidromic activation.

Gene Expression and Data Analysis

DRGswere taken from control andDicerflox/flox;Adv-Cremice at P10 or control

and Dicerflox/flox; Pv-Cre mice at P21. RNA was isolated using the RNeasy kit

(QIAGEN). RNA-seq was performed on an Illumina HiSeq 2500 sequencing

system. Sequencing data were mapped using TopHat and analyzed with

CuffLinks (Trapnell et al., 2012; Lewis et al., 2005). To find putative miRNA

target sequences, we used mouse miRNA gene target predictions available

in the TargetScanMouse database (release 6.2) (Lewis et al., 2005). The

network map depicted in Figure 4 was created using Cytoscape software

(Shannon et al., 2003).

Statistical Analysis

Statistical evaluation was performed using Student’s t test, and values are

shown as mean ± SD. p < 0.05 is considered significant.
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