226 research outputs found

    The Spitzer South Pole Telescope Deep Field Survey: Linking galaxies and halos at z=1.5

    Full text link
    We present an analysis of the clustering of high-redshift galaxies in the recently completed 94 deg2^2 Spitzer-SPT Deep Field survey. Applying flux and color cuts to the mid-infrared photometry efficiently selects galaxies at z1.5z\sim1.5 in the stellar mass range 10101011M10^{10}-10^{11}M_\odot, making this sample the largest used so far to study such a distant population. We measure the angular correlation function in different flux-limited samples at scales >6>6^{\prime \prime} (corresponding to physical distances >0.05>0.05 Mpc) and thereby map the one- and two-halo contributions to the clustering. We fit halo occupation distributions and determine how the central galaxy's stellar mass and satellite occupation depend on the halo mass. We measure a prominent peak in the stellar-to-halo mass ratio at a halo mass of log(Mhalo/M)=12.44±0.08\log(M_{\rm halo} / M_\odot) = 12.44\pm0.08, 4.5 times higher than the z=0z=0 value. This supports the idea of an evolving mass threshold above which star formation is quenched. We estimate the large-scale bias in the range bg=24b_g=2-4 and the satellite fraction to be fsat0.2f_\mathrm{sat}\sim0.2, showing a clear evolution compared to z=0z=0. We also find that, above a given stellar mass limit, the fraction of galaxies that are in similar mass pairs is higher at z=1.5z=1.5 than at z=0z=0. In addition, we measure that this fraction mildly increases with the stellar mass limit at z=1.5z=1.5, which is the opposite of the behavior seen at low-redshift.Comment: 32 pages, 22 figures. Published in MNRA

    A Multi-Code Analysis Toolkit for Astrophysical Simulation Data

    Full text link
    The analysis of complex multiphysics astrophysical simulations presents a unique and rapidly growing set of challenges: reproducibility, parallelization, and vast increases in data size and complexity chief among them. In order to meet these challenges, and in order to open up new avenues for collaboration between users of multiple simulation platforms, we present yt (available at http://yt.enzotools.org/), an open source, community-developed astrophysical analysis and visualization toolkit. Analysis and visualization with yt are oriented around physically relevant quantities rather than quantities native to astrophysical simulation codes. While originally designed for handling Enzo's structure adaptive mesh refinement (AMR) data, yt has been extended to work with several different simulation methods and simulation codes including Orion, RAMSES, and FLASH. We report on its methods for reading, handling, and visualizing data, including projections, multivariate volume rendering, multi-dimensional histograms, halo finding, light cone generation and topologically-connected isocontour identification. Furthermore, we discuss the underlying algorithms yt uses for processing and visualizing data, and its mechanisms for parallelization of analysis tasks.Comment: 18 pages, 6 figures, emulateapj format. Resubmitted to Astrophysical Journal Supplement Series with revisions from referee. yt can be found at http://yt.enzotools.org

    The Unusual Infrared Object HDF-N J123656.3+621322

    Get PDF
    We describe an object in the Hubble Deep Field North with very unusual near-infrared properties. It is readily visible in Hubble Space Telescope NICMOS images at 1.6um and from the ground at 2.2um, but is undetected (with signal-to-noise <~ 2) in very deep WFPC2 and NICMOS data from 0.3 to 1.1um. The f_nu flux density drops by a factor >~ 8.3 (97.7% confidence) from 1.6 to 1.1um. The object is compact but may be slightly resolved in the NICMOS 1.6um image. In a low-resolution, near-infrared spectrogram, we find a possible emission line at 1.643um, but a reobservation at higher spectral resolution failed to confirm the line, leaving its reality in doubt. We consider various hypotheses for the nature of this object. Its colors are unlike those of known galactic stars, except perhaps the most extreme carbon stars or Mira variables with thick circumstellar dust shells. It does not appear to be possible to explain its spectral energy distribution as that of a normal galaxy at any redshift without additional opacity from either dust or intergalactic neutral hydrogen. The colors can be matched by those of a dusty galaxy at z >~ 2, by a maximally old elliptical galaxy at z >~ 3 (perhaps with some additional reddening), or by an object at z >~ 10 whose optical and 1.1um light have been suppressed by the intergalactic medium. Under the latter hypothesis, if the luminosity results from stars and not an AGN, the object would resemble a classical, unobscured protogalaxy, with a star formation rate >~ 100 M_sun/yr. Such UV-bright objects are evidently rare at 2 < z < 12.5, however, with a space density several hundred times lower than that of present-day L* galaxies.Comment: Accepted for publication in the Astrophysical Journal. 27 pages, LaTeX, with 7 figures (8 files); citations & references updated + minor format change

    A Test of the Psychometric Characteristics of the BIS-Brief Among Three Groups of Youth

    Get PDF
    The current study empirically investigates the relationships between the Dark Triad personality traits and cyber-aggression among adolescents (14–18 year old). The sample consisted of 324 participants aged 14–18 (M = 16.05, SD = 1.31). Participants completed the Short Dark Triad (SD3) as a measure of the Dark Triad personality traits, the Facebook Intensity Scale and a scale to measure cyber-aggression. Structural equation modelling was applied to investigate the relationships. Results show that only Facebook intensity and psychopathy significantly predict cyber-aggression, when controlling for age and gender. Findings are discussed regarding the potential importance to further study Dark Triad traits, and psychopathy in particular, in the context of adolescent cyber-aggression

    Hubble Space Telescope Imaging of the CFRS and LDSS Redshift Surveys---III. Field elliptical galaxies at 0.2 < z < 1.0

    Full text link
    Surface photometry has been performed on a sample of 46 field elliptical galaxies. These galaxies are described well by a deVaucouleurs R^{1/4} profile. The sample was selected from the combined Canada-France and LDSS redshift surveys and spans the range 0.20 < z < 1.00. The relationship between galaxy half-light radius and luminosity evolves such that a galaxy of a given size is more luminous by Delta M_B=-0.97 \pm 0.14 mag at z=0.92 and the mean rest-frame color shifts blueward by Delta (U-V) =-0.68 \pm 0.11 at z=0.92 relative to the local cluster relations. Approximately 1/3 of these elliptical galaxies exhibit [OII] 3727 emission lines with equivalent widths > 15 angstroms indicating ongoing star formation. Estimated star-formation rates imply that \le 5% of the stellar mass in the elliptical galaxy population has been formed since z=1. We see no evidence for a decline in the space density of early-type galaxies with look-back time. The statistics and a comparison with local luminosity functions are both consistent with the view that the population of massive early-type galaxies was largely in place by z~1. This implies that merging is not required since that time to produce the present-day space density of elliptical galaxies.Comment: 21 pages plus 8 figures plus 5 tables. Accepted by Astrophysical Journa

    High-throughput screen using a single-cell tyrosine phosphatase assay reveals biologically active inhibitors of tyrosine phosphatase CD45

    Get PDF
    Many cellular signaling events are regulated by tyrosine phosphorylation and mediated by the opposing actions of protein tyrosine kinases and phosphatases. Protein tyrosine phosphatases are emerging as drug targets, but poor cell permeability of inhibitors has limited the development of drugs targeting these enzymes [Tautz L, et al. (2006) Expert Opin Ther Targets 10:157–177]. Here we developed a method to monitor tyrosine phosphatase activity at the single-cell level and applied it to the identification of cell-permeable inhibitors. The method takes advantage of the fluorogenic properties of phosphorylated coumaryl amino propionic acid (pCAP), an analog of phosphotyrosine, which can be incorporated into peptides. Once delivered into cells, pCAP peptides were dephosphorylated by protein tyrosine phosphatases, and the resulting cell fluorescence could be monitored by flow cytometry and high-content imaging. The robustness and sensitivity of the assay was validated using peptides preferentially dephosphorylated by CD45 and T-cell tyrosine phosphatase and available inhibitors of these two enzymes. The assay was applied to high-throughput screening for inhibitors of CD45, an important target for autoimmunity and infectious diseases [Hermiston ML, et al. (2003) Annu Rev Immunol 21:107–137]. We identified four CD45 inhibitors that showed activity in T cells and macrophages. These results indicate that our assay can be applied to primary screening for inhibitors of CD45 and of other protein tyrosine phosphatases to increase the yield of biologically active inhibitors

    Precision Measurements of the Cluster Red Sequence using an Error Corrected Gaussian Mixture Model

    Full text link
    The red sequence is an important feature of galaxy clusters and plays a crucial role in optical cluster detection. Measurement of the slope and scatter of the red sequence are affected both by selection of red sequence galaxies and measurement errors. In this paper, we describe a new error corrected Gaussian Mixture Model for red sequence galaxy identification. Using this technique, we can remove the effects of measurement error and extract unbiased information about the intrinsic properties of the red sequence. We use this method to select red sequence galaxies in each of the 13,823 clusters in the maxBCG catalog, and measure the red sequence ridgeline location and scatter of each. These measurements provide precise constraints on the variation of the average red galaxy populations in the observed frame with redshift. We find that the scatter of the red sequence ridgeline increases mildly with redshift, and that the slope decreases with redshift. We also observe that the slope does not strongly depend on cluster richness. Using similar methods, we show that this behavior is mirrored in a spectroscopic sample of field galaxies, further emphasizing that ridgeline properties are independent of environment.Comment: 33 pages, 14 Figures; A typo in Eq.A11 is fixed. The C++/Python codes for ECGMM can be downloaded from: https://sites.google.com/site/jiangangecgmm

    Near-Infrared Galaxy Counts to J and K ~ 24 as a Function of Image Size

    Get PDF
    We have used the Keck 10m telescope to count objects as a function of image size in 2 high galactic latitude fields covering 1.5 arcmin^2 and reaching 50% completeness at K=24 and J=24.5 for stellar sources. Counts extend ~1 mag deeper in K than surveys with other telescopes; complement Keck surveys providing counts at comparable or shallower depths but not utilizing image structure; and extend by several magnitudes the J band counts from other surveys. We find the surface-density of objects at K=23 to be higher than previously found (~500,000/mag/deg^2), but at K<22 to be consistent with most other surveys in amplitude and slope (~0.36). J band counts have similar slope. J and K counts are in excess of our empirical no-evolution models for an open universe, and a factor of 2 higher than mild-evolution models at J and K ~ 23. The slope of the model counts is insensitive to geometry even in the near-infrared because the counts are dominated by low-luminosity (<0.1L*) objects at modest redshift (z<1) with small apparent sizes (r05<0.4", i.e. <4 kpc). The observed counts rise most steeply for these smaller objects, which dominate fainter than K=22.3 and J=23.3. However, the greatest excess relative to no-evolution models occurs for the apparently larger objects (median J-K~1.5). The size and colors of such objects correspond equally well to luminous (>0.1L*), galaxies at 1<z<4, or progressively more diffuse, low-luminosity (0.001-0.1L*) galaxies at z<1. We rule out the excess is from very low luminosity (<0.0001L*) red galaxies at z<0.25. There is a deficit of galaxies with red J-K colors corresponding to luminous, early-type galaxies at 1<z<3. Assuming the deficit is due to their appearance as blue galaxies, they account only for 10-30% of the excess of large, blue galaxies. [abridged]Comment: accepted for publication in ApJ; 34 pages text, 9 tables, 10 figures (embedded); full resolution figures available at http://www.astro.wisc.edu/~mab/publications/pub.htm

    Structural properties of discs and bulges of early-type galaxies

    Get PDF
    We have used the EFAR sample of galaxies to study the light distributions of early-type galaxies. We decompose the 2D light distribution of the galaxies in a flattened spheroidal component with a Sersic radial light profile and an inclined disc component with an exponential light profile. We show that the brightest, bulge dominated elliptical galaxies have a fairly broad distribution in the Sersic profile shape parameter n_B, with a median of about 3.7 and a sigma of ~0.9. Other galaxies have smaller n_B values, meaning that spheroids are in general less concentrated than the n_B=4 de Vaucouleurs-law profile. The results of our light decompositions are robust, even though without kinematic information we cannot prove that the spheroids and discs are really pressure- and rotation-supported stellar systems. If we assume that the detected spheroids and discs are indeed separate components, we can draw the following conclusions: 1) the spheroid and disc scale sizes are correlated; 2) bulge-to-total luminosity ratios, bulge effective radii, and bulge n_B values are all positively correlated; 3) the bivariate space density distribution of elliptical galaxies in the (luminosity, scale size)-plane is well described by a Schechter luminosity function in and a log-normal scale-size distribution at a given luminosity; 4) at the brightest luminosities, the scale size distribution of elliptical galaxies is similar to those of bright spiral galaxies; at fainter luminosities the elliptical scale size distribution peaks at distinctly smaller sizes than the spiral galaxy distribution; and 5) bulge components of early-type galaxies are typically a factor 1.5 to 2.5 smaller than the disks of spiral galaxies, while disc components of early-type galaxies are typically twice as large as the discs of spiral galaxies. [abridged]Comment: 16 pages, 18 figures. Accepted for publication in the MNRA

    The Massive and Distant Clusters of WISE Survey VI: Stellar Mass Fractions of a Sample of High-Redshift Infrared-selected Clusters

    Get PDF
    We present measurements of the stellar mass fractions (ff_\star) for a sample of high-redshift (0.93z1.320.93 \le z \le 1.32) infrared-selected galaxy clusters from the Massive and Distant Clusters of WISE Survey (MaDCoWS) and compare them to the stellar mass fractions of Sunyaev-Zel'dovich (SZ) effect-selected clusters in a similar mass and redshift range from the South Pole Telescope (SPT)-SZ Survey. We do not find a significant difference in mean ff_\star between the two selection methods, though we do find an unexpectedly large range in ff_\star for the SZ-selected clusters. In addition, we measure the luminosity function of the MaDCoWS clusters and find m=19.41±0.07m^*= 19.41\pm0.07, similar to other studies of clusters at or near our redshift range. Finally, we present SZ detections and masses for seven MaDCoWS clusters and new spectroscopic redshifts for five MaDCoWS clusters. One of these new clusters, MOO J1521+0452 at z=1.31z=1.31, is the most distant MaDCoWS cluster confirmed to date.Comment: Accepted to Ap
    corecore