145 research outputs found

    Coherent Excitation of the 6S1/2 to 5D3/2 Electric Quadrupole Transition in 138Ba+

    Full text link
    The electric dipole-forbidden, quadrupole 6S1/2 5D3/2 transition in Ba+ near 2051 nm, with a natural linewidth of 13 mHz, is attractive for potential observation of parity non-conservation, and also as a clock transition for a barium ion optical frequency standard. This transition also offers a direct means of populating the metastable 5D3/2 state to measure the nuclear magnetic octupole moment in the odd barium isotopes. Light from a diode-pumped, solid state Tm,Ho:YLF laser operating at 2051 nm is used to coherently drive this transition between resolved Zeeman levels in a single trapped 138Ba+ ion. The frequency of the laser is stabilized to a high finesse Fabry Perot cavity at 1025 nm after being frequency doubled. Rabi oscillations on this transition indicate a laser-ion coherence time of 3 ms, most likely limited by ambient magnetic field fluctuations.Comment: 5 pages, 5 figure

    Precommitment low-level Neurog3 expression defines a long-lived mitotic endocrine-biased progenitor pool that drives production of endocrine-committed cells

    Get PDF
    The current model for endocrine cell specification in the pancreas invokes high-level production of the transcription factor Neurogenin 3 (Neurog3) in Sox9(+) bipotent epithelial cells as the trigger for endocrine commitment, cell cycle exit, and rapid delamination toward proto-islet clusters. This model posits a transient Neurog3 expression state and short epithelial residence period. We show, however, that a Neurog3(TA.LO) cell population, defined as Neurog3 transcriptionally active and Sox9(+) and often containing nonimmunodetectable Neurog3 protein, has a relatively high mitotic index and prolonged epithelial residency. We propose that this endocrine-biased mitotic progenitor state is functionally separated from a pro-ductal pool and endows them with long-term capacity to make endocrine fate-directed progeny. A novel BAC transgenic Neurog3 reporter detected two types of mitotic behavior in Sox9(+) Neurog3(TA.LO) progenitors, associated with progenitor pool maintenance or derivation of endocrine-committed Neurog3(HI) cells, respectively. Moreover, limiting Neurog3 expression dramatically increased the proportional representation of Sox9(+) Neurog3(TA.LO) progenitors, with a doubling of its mitotic index relative to normal Neurog3 expression, suggesting that low Neurog3 expression is a defining feature of this cycling endocrine-biased state. We propose that Sox9(+) Neurog3(TA.LO) endocrine-biased progenitors feed production of Neurog3(HI) endocrine-committed cells during pancreas organogenesis

    A Method for Serial Tissue Processing and Parallel Analysis of Aberrant Crypt Morphology, Mucin Depletion, and Beta-Catenin Staining in an Experimental Model of Colon Carcinogenesis

    Get PDF
    The use of architectural and morphological characteristics of cells for establishing prognostic indicators by which individual pathologies are assigned grade and stage is a well-accepted practice. Advances in automated micro- and macroscopic image acquisition and digital image analysis have created new opportunities in the field of prognostic assessment; but, one area in experimental pathology, animal models for colon cancer, has not taken advantage of these opportunities. This situation is primarily due to the methods available to evaluate the colon of the rodent for the presence of premalignant and malignant pathologies. We report a new method for the excision and processing of the entire colon of the rat and illustrate how this procedure permitted the quantitative assessment of aberrant crypt foci (ACF), a premalignant colon pathology, for characteristics consistent with progression to malignancy. ACF were detected by methylene blue staining and subjected to quantitative morphometric analysis. Colons were then restained with high iron diamine–alcian blue for assessment of mucin depletion using an image overlay to associate morphometric data with mucin depletion. The subsequent evaluation of ACF for beta-catenin staining is also demonstrated. The methods described are particularly relevant to the screening of compounds for cancer chemopreventive activity

    TCT-117 Quality of Life Outcomes Among High-Risk Patients Undergoing TAVR via the Transapical Approach: A PARTNER Continued Access Substudy

    Get PDF
    El fin de este artículo es realizar una comparación entre dos técnicas empleadas para la Resolución de Ambigüedades basándose en su expresión matemática más simple y en su aplicación a las medidas geodésicas

    Disentangling Multispectral Functional Connectivity With Wavelets

    Get PDF
    The field of brain connectomics develops our understanding of the brain's intrinsic organization by characterizing trends in spontaneous brain activity. Linear correlations in spontaneous blood-oxygen level dependent functional magnetic resonance imaging (BOLD-fMRI) fluctuations are often used as measures of functional connectivity (FC), that is, as a quantity describing how similarly two brain regions behave over time. Given the natural spectral scaling of BOLD-fMRI signals, it may be useful to represent BOLD-fMRI as multiple processes occurring over multiple scales. The wavelet domain presents a transform space well suited to the examination of multiscale systems as the wavelet basis set is constructed from a self-similar rescaling of a time and frequency delimited kernel. In the present study, we utilize wavelet transforms to examine fluctuations in whole-brain BOLD-fMRI connectivity as a function of wavelet spectral scale in a sample (N = 31) of resting healthy human volunteers. Information theoretic criteria measure relatedness between spectrally-delimited FC graphs. Voxelwise comparisons of between-spectra graph structures illustrate the development of preferential functional networks across spectral bands

    Coexistent ARID1A–PIK3CA mutations promote ovarian clear-cell tumorigenesis through pro-tumorigenic inflammatory cytokine signalling

    Get PDF
    Ovarian clear-cell carcinoma (OCCC) is an aggressive form of ovarian cancer with high ARID1A mutation rates. Here we present a mutant mouse model of OCCC. We find that ARID1A inactivation is not sufficient for tumor formation, but requires concurrent activation of the phosphoinositide 3-kinase catalytic subunit, PIK3CA. Remarkably, the mice develop highly penetrant tumors with OCCC-like histopathology, culminating in hemorrhagic ascites and a median survival period of 7.5 weeks. Therapeutic treatment with the pan-PI3K inhibitor, BKM120, prolongs mouse survival by inhibiting tumor cell growth. Cross-species gene expression comparisons support a role for IL-6 inflammatory cytokine signaling in OCCC pathogenesis. We further show that ARID1A and PIK3CA mutations cooperate to promote tumor growth through sustained IL-6 overproduction. Our findings establish an epistatic relationship between SWI/SNF chromatin remodeling and PI3K pathway mutations in OCCC and demonstrate that these pathways converge on pro-tumorigenic cytokine signaling. We propose that ARID1A protects against inflammation-driven tumorigenesis
    • …
    corecore