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The field of brain connectomics develops our understanding of the brain’s intrinsic

organization by characterizing trends in spontaneous brain activity. Linear correlations

in spontaneous blood-oxygen level dependent functional magnetic resonance imaging

(BOLD-fMRI) fluctuations are often used as measures of functional connectivity (FC), that

is, as a quantity describing how similarly two brain regions behave over time. Given the

natural spectral scaling of BOLD-fMRI signals, it may be useful to represent BOLD-fMRI

as multiple processes occurring over multiple scales. The wavelet domain presents a

transform space well suited to the examination of multiscale systems as the wavelet basis

set is constructed from a self-similar rescaling of a time and frequency delimited kernel.

In the present study, we utilize wavelet transforms to examine fluctuations in whole-brain

BOLD-fMRI connectivity as a function of wavelet spectral scale in a sample (N = 31)

of resting healthy human volunteers. Information theoretic criteria measure relatedness

between spectrally-delimited FC graphs. Voxelwise comparisons of between-spectra

graph structures illustrate the development of preferential functional networks across

spectral bands.

Keywords: resting state, functional magnetic resonance imaging, functional connectivity, wavelet packet

transform, mutual information, clustering

INTRODUCTION

The advent of functional magnetic resonance imaging (fMRI) offers an unprecedented view into
normal brain function (Ogawa et al., 1990; Bandettini, 2012). One of the earliest uses of fMRI was to
localize areas of the brain involved in experimentally defined tasks. Changes in blood-oxygen level
dependent (BOLD) signals were statistically compared between task and control states (Belliveau
et al., 1991). However, these task-related activations account for relatively small deviations (5–10%)
from baseline metabolism (Raichle and Mintun, 2006). Biswal et al. (1995) analyzed the structure
of the BOLD signal’s spontaneous fluctuations to discover that temporal correlations in the low-
frequency BOLD signal demarcate the same regions of the brain as activated during certain tasks.
Mapping networks of “functional connectivity” (FC) based on intrinsic BOLD correlations has
since become a powerful tool for neuroscience research. Among normal adults, contiguous brain
networks (visual network, somatomotor network, cerebellar network, etc.) and networks composed
of multiple disconnected regions (the default mode network, the dorsal attention network, etc.) are
non-invasively identified through FC-fMRI (Fox et al., 2005; Vincent et al., 2008; Smith et al., 2009;
Yeo et al., 2011).
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Spontaneous BOLD fluctuations have been shown to match
a 1/f-type scaling of frequency, f , to power spectral density, S:
S
(

f
)

∝ 1/f γ (He, 2014). The spectral exponent, γ , has a
value of between 0.5 and 1 in BOLD data (Bullmore et al., 2004;
Herman et al., 2011). The physiological significance of 1/f-type
scaling of brain signals is hotly debated. Conceptually, natural
1/f-type systems emerge as large-scale realizations of many
granular and self-similar details. For instance, the 1/f-distributed
BOLD signal has been demonstrated to be a convolution of
discrete neural signaling events with a hemodynamic response
function (Logothetis et al., 2001). Some authors discount
multispectral features from 1/f-type signals as “scale-free”
organization—that is, the 1/f-type scaling indicates that a finite
set of properties describes the systems structures at all scales
(Goldberger et al., 2002; Mandelbrot, 2013). Other authors point
to fluctuations in the spectral exponent across brain regions
and between task and rest conditions as an indication that
variance in the multispectral evolution of brain signals bears
useful information (He et al., 2008; He, 2011, 2014). The
fact of the BOLD signal’s mean and deviant 1/f-type structure
motivates domain transformation that model spectral variability
(Medda et al., 2016; Bielczyk et al., 2017; Billings, 2017; Shakil
et al., 2017).

Perfectly scale-free systems may be constructed via
tessellations of self-similar fractals. Wavelet transforms offer
theoretically optimal domains for investigating 1/f-type signals
because of the self-similarity properties of some wavelet basis
sets (Ciuciu et al., 2012). For instance, multispectral wavelet
filters may be constructed by simply dilating and translated
a compactly supported kernel (a wavelet function, ψ). Such
continuous wavelet transforms facilitate a time-frequency
signal decomposition across a continuous range of scales
(Grossmann and Morlet, 1984; Kronland-Martinet et al., 1987;
Billings and Keilholz, 2018). Orthonormal wavelet bases (ψ,
and the scaling functions, φ) may also be constructed to afford
a discrete segmentation, and a perfect reconstruction, of an
input signal across multiple resolutions (Daubechies, 1988,
1992). Since their development, wavelets have become an
important tool in fMRI analysis (Bullmore et al., 2004). Several
methodological studies have shown the usefulness of combining
wavelet filtering with various connectivity metrics to better
characterize FC networks (Achard and Bullmore, 2007; Sato
et al., 2007; Chang and Glover, 2010; Eryilmaz et al., 2011; Guo
et al., 2012; Schröter et al., 2012). These and other methods have
been extended into investigations of fMRI based biomarkers
for neurological diseases such as addiction (Salomon et al.,
2012; Lam et al., 2013), depression (Salomon et al., 2011; Meng
et al., 2013), Parkinson’s (Skidmore et al., 2011), Alzheimer’s
(Supekar et al., 2008; Wang et al., 2013), and schizophrenia
(Alexander-Bloch et al., 2010; Bassett et al., 2012).

Abbreviations: FC, functional connectivity; fMRI, functional magnetic resonance

imaging; FC-fMRI, functional connectivity of functional magnetic resonance

imaging data; TR, repetition time; LFF, low-frequency fluctuations (0.01–0.1Hz);

MFF, mid-frequency fluctuations (0.1–0.2Hz); WPT, wavelet packet transform;

DiPj, indices for the wavelet decomposition depth (D) i and position (P) j; HC,

hierarchical clustering; VI, variation in information.

The present study seeks to characterize the BOLD signal’s
functional connectivity across multiple spectral scales. The study
is motivated by findings from multiple sources citing patterns in
FC-fMRI organization at in frequency bands within and beyond
the habitually sampled low-frequency fluctuation (LFF) range
(0.01–0.1Hz). For instance, Kalcher et al. (2014) demonstrated
large FC network variations among tissue types and gray-matter
seed-regions when tissues and ROIs were filtered into different
passbands (<0.1Hz; 0.1–0.25Hz; 0.25–0.75Hz; 0.75–1.4Hz).
Wu et al. (2008) showed that cortical networks tend to organize
in the frequency range between 0.01 and 0.06Hz while limbic
networks organize between 0.01 and 0.14Hz. Chang and Glover
(2010) showed that the frequency band harboring maximal
correlation strength within the default mode network changed
over time. Billings et al. (2017) mapped these multispectral
fluctuations onto a 2-dimensional neighborhood embedding.
The present study uses a series of data-driven techniques to
observe how BOLD FC networks differ across a multiscale
wavelet bases.

MATERIALS AND METHODS

Data Acquisition
Neuroimaging data were downloaded from the 1000 Functional
Connectomes Project website (Milham, 2013), specifically, the
Enhanced Rockland Sample Multiband Imaging Test-Retest Pilot
Dataset uploaded by the Nathan Kline Institute for Psychiatric
Research (Nooner et al., 2012; Nathan Kline Institute for
Psychiatric Research, 2013). This dataset was chosen as it was one
of the first to make use of multiband imaging (Feinberg et al.,
2010) to produce BOLD scans with short repetition times (TR =

0.645 s). Study data were derived from 32 individuals randomly
chosen from the database (n. female = 22, n. right handed = 31,
n. no handedness= 1, mean age= 44 y, std. age= 18 year). One
volunteer’s data was excluded after becoming corrupted during
preprocessing.

Each volunteer’s dataset consisted of whole-brain BOLD-
weighted functional scans acquired on a 3T Siemens Magnetome
TriTom (multiband EPI; TR 645ms; TE 30ms; 40 slices; FOV
22.2 cm × 22.2 cm; 3mm isotropic voxels; 900 images). A 32-
channel anterior/posterior head coil facilitated multiband EPI
imaging at high temporal resolution. An MPRAGE scan was
acquired to facilitate alignment (TR 1900ms; TE 2.52ms; 176
slices; FOV 25 cm× 25 cm; 1mm isotropic voxels).

Preprocessing
A series of preprocessing steps were carried out over the
entire data set to bring data points into temporal and spatial
alignment. These steps were conducted using revision 6,470 of
the Statistical Parametric Mapping MATLAB toolbox (Friston
et al., 2011). Slice timing mismatches were corrected per each
slice’s multiband acquisition time. Within-scan images were
realigned to correct for movement between repetitions. Each
scan’s mean realigned image was co-registered to the volunteer’s
structural image. Structural images were segmented into 5 tissue
classes: gray matter, white matter, cerebrospinal fluid (CSF),
bone, and soft tissue. A warping matrix was evaluated and
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used to normalize each scan from subject space to MNI space.
Images were smoothed by an 8 × 8 × 8mm Gaussian kernel.
Volunteer images were realigned to the group mean of the
functional images. A gray-matter mask was applied to all images.
Voxels included in the mask were required to have at least a
50% probability of containing gray matter across all volunteers.
Finally, motion terms were regressed from voxel time-series.

Multispectral Decomposition, the Wavelet
Packet Transform
The wavelet packet transform (WPT) is a generalization
of domain transforms utilizing orthonormal wavelet bases
(Daubechies, 1988; Coifman and Wickerhauser, 1992; Coifman
et al., 1992). The WPT is conducted via iterative convolutions of
an input signal, x(t), with paired high-pass and low-pass filters,
h and g. The filters are quadrature mirrors of one another and
divide the input into orthogonal subbands. Successive filtering
operations produce trees of wavelet packet coefficients over
d ∈ [0, 1, 2, . . . ,∞] sets of 2d evenly segmented subbands.
Application of the WPT filtering schema d times is called the
decomposition’s “depth.” The set of “positions,” p ∈ [0, . . . , 2d],
denote frequency ranges of packets at depth d. The zeroth
depth is the space of the broadband signal. Each of the
zeroth positions is a fully low-pass filter of variable width.
The range of each packet’s passband is roughly equivalent to
[

p
(

fs
2

)

2d
,
(p+1)

(

fs
2

)

2d

]

(Hz), where fs is the sampling frequency.

In the present study, the filtered data existing at depth di and
position pj is given the shorthand notation “DdiPpj.” Thus,
the D2P0 signal is quarter-band signal covering the lowest
frequencies, and the D2P3 signal is the quarter-band signal
covering the highest frequencies.

For the present study, we generated a filterbank from
Daubechies’ 7-tap wavelet. The Daubechies family of wavelets
offers the highest number of vanishing moments, or taps, for
a given support width. Increasing the number of taps sharpens
the filter edges in the Fourier domain at the cost of increased
filter length (i.e., blurring in the time domain). Daubechies’ 7-
tap wavelet produces short duration filters with good spectral
separation. Each voxel signal was filtered into packet coefficients
at all positions of WPT depths 0 through 6, generating a total
of 127 subbands. For more details on WPT theory and usage,
the reader is referred to Supplemental Figure S1, the works of
Coifman (Coifman et al., 1992), Daubechies (Daubechies, 1988,
1992), Mallat (Mallat, 1989, 1999), and Meyer (Meyer, 1993), as
well as the technical notes of Misiti et al. (2013).

Data Structure
Reorganization of individual datasets for multi-subject
hierarchical clustering was performed by concatenating the
coefficients of a single wavelet packet, voxel-by-voxel, from all
brain voxels, and from all volunteers, into spectrally-delimited
group-level datasets.

Hierarchical Clustering (HC)
HC organizes a collection of data into distinctive groups through
a deterministic algorithm. First, a distance metric, S1

(

i, j
)

, is

calculated between all i and j indices of voxel signals. In the
present study, we followed the practice of defining functional
connectivity via the Pearson correlation distance over real valued
wavelet coefficients. Voxels and/or clusters of voxels are then
clustered together, beginning with the closest voxels/clusters, and
continuing until only a single cluster exists. After each clustering
step, an updated distance metric, the linkage distance, S2

(

a, b
)

,
is calculated between all clusters a and b. For the present study,
the linkage distance is defined as the average of the correlation
distances between voxels in each cluster:

S2
(

a, b
)

=
1

(nanb)

na
∑

i=1

nb
∑

j=1

S1
(

i ∈ a, j ∈ b
)

. (1)

Variables na and nb are the number of voxels contained within
clusters a and b. Further details on hierarchical clustering may be
found in Supplemental Figure S2.

FC Networks Clustered Against
Dendrogram Inconsistencies
An HC map’s hierarchy may be visualized by plotting successive
links as a dendrogram. For the dendrograms of the present
study, voxels are ordered along the abscissa, and the linkage
distance numbers the ordinate axis. Horizontal lines are plotted
between clusters joined at a given linkage distance. Vertical
lines measure the linkage distance between ‘successive clusters.
Voxels are ordered along the abscissa in such a way as to
minimize the length of each horizontal link. This arrangement
results in the most related clusters being arranged adjacent
to one another along the abscissa, i.e., the order of voxels
along the abscissa is a linear projection of cluster similarity.
A pictorial description of this process may be found in
Supplemental Figure S2.

Concrete clusterings are produced by pruning links between
intermediate clusters in the HC dendrogram. One method of
dendrogram pruning identifies a threshold linkage distance that
demarcates a specified number of clusters. For this study, the
choice of how to prune the HC map was informed by calculating
the inconsistency value of each link in the HC map. The
inconsistency value of each link quantifies the relative change in
linkage distance(s) between each link and up to g − 1 previous
links. The higher the inconsistency value, the more dissimilar
are the elements connected at that particular link relative to the
elements connected beneath that link (Zahn, 1971). Small values
for the variable g bring the inconsistency algorithm to focus on
locally inconsistent links in the HC map. Alternatively, larger
values of g will search the area below each link to provide a more
globally representative assessments of cluster inconsistency. For
a given HC map, the kth link’s inconsistency value is calculated
as Y4

(

k
)

=
(

z
(

k
)

− Y1

(

k
))

/Y2

(

k
)

. Where Y1

(

k
)

is the mean

of the linkage distances for the kth link and the first g − 1 links
beneath it. The quantity Y2

(

k
)

is the standard deviation of the kth

set of linkage distances. The quantity z(k) is the linkage distance
of the kth link. Having set the g-value to perform either a local
(g = 2) or a global search (g ≫ 2), we select a threshold level
of inconsistency values above which to remove all of the most
inconsistent links, and all of their dependents. By pruning the
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HC tree along natural cleavage points, natural clusterings may be
better resolved.

Quantifying FC Network Similarity
We utilized a mutual information-based criterion to compare
parcellations of FC networks. Specifically, we use Marina Meila’s
normalization for mutual information between clusterings called
the variation in information (VI) (Meilǎ, 2007):

VI
(

C′,C′′
)

=
[

H
(

C′
)

− I
(

C′,C′′
)]

+
[

H
(

C′′
)

− I
(

C′,C′′
)]

.(2)

Here, H is the entropy of a clustering, H (C) =

−
∑k

i=1 P (i) log2P (i), with P (i) the probability, |Ci|
n , of

choosing a voxel from the ith cluster in C from all n
voxels. The term I is the mutual information between
clusterings, I

(

C′,C′′
)

=
∑k

i=1

∑l
j=1 P

(

i, j
)

log2
P(i,j)

P(i)P(j)
, where

P
(

i, j
)

=
|C′

i∩C
′′
j|

n . The first term in equation (2) may be thought
of as how much information is lost when going from clustering
C’ to C”. The second term is then how much information is left
to be gained when going from C’ to C” (Wagner and Wagner,
2007).

Voxelwise Comparisons of FC Networks
One important question to ask when comparing multispectral
realizations of FC networks is how specific brain regions
contribute to whole-brain network variability. The approach used
in the present study characterized voxelwise connectivity as the
degree of overlap between each voxel’s nearest neighbors, as
expanded between spectrally delimited FC graphs. Specifically,
the Jaccard distance compared how similar the nearest 5% of
correlating voxels are in each subband network:

JDvw =
#
[(

vj 6= wj

)

∩
((

vj 6= 0
)

∪
(

wj 6= 0
))]

#
[(

vj 6= 0
)

∪
(

wj 6= 0
)] . (3)

The Jaccard distance quantifies the percentage of binary elements
that differ between sets v and w. Results were reported as the
average voxel-wise Jaccard distance across volunteers. Analysis
was limited to the D6P1 (12–24 mHz), D5P1 (24–48 mHz), D4P1
(48–97 mHz), D5P4 (97–121 mHz), D5P5 (121–143 mHz), and
D4P3 (141–194 mHz) packets because potentially divergent FC
networks were consistently produced by packets in these ranges
(see Discussion and Results). Each packet graph was compared to
the graph constructed from wideband BOLD images. Wideband
images were generated from the inverse WPT of only the six
aforementioned packets (coefficients from other packets were set
to zero before taking the inverse).

RESULTS

Functional Connectivity Maps Across
Spectra
To understand the overall variation of FC-fMRI networks across
spectra, Figure 1 displays their cross-sectional views. Owing
to space limitations, only a subset of packet networks are
shown. Displayed packets follow the discrete wavelet transform
schema, a multiresolution filter bank spanning the full spectral

FIGURE 1 | Illustrates the similarities and differences between functional

connectivity networks across spectra. Each clustering contains 355 ± 4

clusters (see Supplemental Figure 3). Coloration is a projection from each

cluster’s location on its dendrogram onto a 1D colorbar (see

Supplemental Figure 2).

range without overlap. Each subband network was realized as
a clustering with 355 ± 4 clusters. The number of clusters was
derived upon consultation with the inconsistency values across
packets (g >> 2, for a global search). These data are provided in
Supplemental Figure S3.

Both similarities and differences exist in the networks
produced within each subband. Whereas FC networks in the
LFF range possess many of the networks expected from previous
studies—including a default mode network, a somatomotor
network, frontal and visual networks, etc.—such networks
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become less defined at frequencies above 0.2Hz. Rather, these
frequencies produce FC networks with increased segmentation
among midbrain and brainstem regions, and with reduced
segmentation among cortical regions. A category of mid-
frequency fluctuations (MFF) (0.1 – 0.2Hz) displays a mixture of
increased midbrain/brainstem segmentation with some cortical
segmentation (e.g., the bilateral angular gyri of the default mode).
DC frequency information also resembles known cortical brain
networks; however, the networks appear blurred by comparison
to networks constructed with LFF’s.

Variation in Information (VI) Across Spectra
We can quantify the relatedness between spectrally delimited
functional connectivity networks by assessing the VI between
clusterings. A triangle plot of inter-spectral FC BOLD
network VI distances is provided in Supplemental Figure S4.
These distances are used in a hierarchical clustering
(Supplemental Figure S5). Links were quantified via the
“average” linkage metric. The plots in Figure 2 show the results
from pruning the dendrogram in two ways. Part A of the figure
shows a coarse clustering from pruning the link having the single
highest local inconsistency value (g=2). Part B of the figure
shows a finer clustering that removes the first inconsistency value
(g>>2) between any two packets in the LFF range.

Part A of the figure shows that the single largest jump
in linkage distance occurs when connecting the D5P4 and
D5P5 packets. This is an indication that sharp differences exist
between FC networks above and below approximately 0.12Hz.
Alternatively, if inconsistency values are stabilized by averaging

FIGURE 2 | Plots hierarchical clusterings of the similarities between functional

connectivity networks across spectra. The distance metric was variation in

information between concrete clusterings (Intermediate results are provided in

Supplemental Figures 3, 4). To better assess the decomposition’s natural

segmentation, the dendrogram was pruned at a coarse scale (A) and at a fine

scale (B) (Associated dendrograms are displayed in Supplemental Figure 5).

Overall, networks segment into passbands. Sub-bands containing DC

frequencies self-associate. Granular differences among high frequency

packets are likely artifactual owing to increased noise at high frequencies.

the change in linkage distances over a large number of previous
links (g>>2), FC networks are shown to segment into a
multiresolution filterbank of passbands (i.e., the set of wavelet
packets in the first position of each depth). In both clusterings,
FC networks containing DC frequencies form a separate group.

Taken as a whole, FC networks appear to segment into at least
four types when drawing from different spectral components: (1)
networks of 0.01 to 0.1Hz LFF’s, (2) networks of >0.2Hz high-
frequency fluctuations, (3) networks of 0.1–0.2Hz MFFs, and (4)
networks of DC frequency fluctuations. Additional varieties of
FC networks may exist within finer passbands in the LFF and
MFF ranges.

Voxelwise Connectivity Between Spectra
A good way to assess differences between multispectral FC-fMRI
networks is to observe differences in the group membership of
individual voxels. To this end, we calculated Jaccard distances
between the nearest neighbors (via correlation) of each voxel,
in each spectral subband, vs. the correspond voxel from
wideband filtered images. Slice representations of voxelwise
network comparisons are shown in Figure 3. A series of
tables detailing the 20 regions with the most similar and
the least similar connectivity patterns from each subband
are provided in Supplemental Tables 1–6. Histograms of the
mean Jaccard distances are provided in Supplemental Figure S6.
Supplemental Figure S7 displays standard deviations of Jaccard
distances for reference.

Regions showing marked similarity across spectra include
many areas of the cerebral cortex, including, the intracalcerine
cortex, the lateral occipital cortex, the lingual gyrus, precuneous,
precentral gyrus, frontal pole, and post-central gyrus. LFFs
from the D5P1 packet (0.24 and 0.48Hz) show the strongest
voxelwise similarity with the spectral average (mean JD ∼=

0.5). Networks produced by frequencies above and below the
D5P1 band show less similar voxelwise correlation in cortical
regions. Additionally, these spectra show many differences in the
correlation neighborhood of voxels in regions of the midbrain,
basal ganglia, and the temporal lobe, including, the globus
palladus, the thalamus, the hippocampus, the caudate, and the
temporal pole. The most extreme deviations from the spectral
average are observed from MFF packets above 0.12Hz. The
mean voxelwise Jaccard distance is ∼0.8 for packets D5P5
(121–143 mHz) and D4P3 (141–194 mHz). The the mean
JD is ∼0.6 for the four other lower frequency packets (see
Supplemental Figure S6).

DISCUSSION

It is common practice in fMRI studies to band-pass filter signals
to the LFF range (Biswal et al., 1996; Murphy et al., 2013).
The present study confirms the utility of this practice while
providing insights into its limitations. Figure 2A Demonstrates
that the connectivity structure of BOLD fluctuations can form a
homogenous LFF group. But this LFF group structure is seen as
homogenous only relative to a sharp change in network structure
occurring at ∼0.12Hz. An alternative perspective which takes
more information about the evolution of each cluster into
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FIGURE 3 | Identifies similarities and differences in voxelwise functional

connectivity graphs among selected sub bands. Variations are relative to the

mean across the six sub bands. Cool colors indicate voxels sharing similar

functional connectivity graphs. Warm colors demarcate dis-similarly connected

voxels. Data histograms are provided in Supplemental Figure 6. Images

displaying data standard deviations are provided in Supplemental Figure 7.

The supplemental tables provide neuroanatomical labels for the most similar

and dissimilar regions.

account (Figure 2B) demonstrates that LFF networks may form
two distinct networks before differences in an MFF network
are observed. A look at the associate dendrogram shows that
both ways to segment networks in the 0.01–0.2Hz range may
be equally valid (Supplemental Figure S6). Indeed, the LFF and
MFF networks cluster together later in the dendrogram. Similar
trends are observed in previous studies using images from
the same volunteers but with different EPI parameter choices
(Billings, 2017).

While heterogeneous network properties across spectra are
often observed in electroencephalographic measurements (Lu
et al., 2007; Mantini et al., 2007), the presence of multispectral
network diversity in the BOLD signal is only recently beginning
to emerge. Zuo et al. (2010) and Xue et al. (2014) observed

differential activation patterns in slow-4 (0.027–0.073Hz ∼

D5P1) vs. slow-5 (0.01–0.027Hz ∼ D6P1) FC-fMRI activity.
Similarly, Thompson and Fransson (2015) demonstrated that
the centers of graph-theoretic hubs in cortical networks are
frequency dependent.

Having oversampling multispectral BOLD FC clusterings, the
present study selected a set of 6 passbands with potentially
distinct network properties (Figure 3). From these 6 passbands,
it appeared that a subband of the LFF range—the D5P1 packet
network—was very similar to the wideband average. As found by
Wu et al. (2008), networks in higher (MFF) frequencies tended
to hold unique connectivity structures in limbic regions, e.g., the
orbitofrontal cortex, hippocampus, and temporal pole. Indeed,
as MFFs and high frequency fluctuations acquire increased
differentiation among brain stem and midbrain regions, they
appear to lose some expected connectivity structures in
cortical regions (Figure 1). Notwithstanding, Boubela et al.
(2013) observed prototypical resting-state networks in BOLD
data sampled above 0.25Hz. Kalcher et al. (2014) confirmed
the presence of long-range functional connectivity at high
frequencies from rapid TR BOLD data.

At the low end of the LFF frequency range (0.01–0.024Hz,
D6P1 packet) cortical networks were similar to the wideband
average. By comparison, DC frequency networks appear blurred.
The blurring is likely from a noise source as DC frequency
networks structures are surprisingly similar despite the presence
of any higher frequency information. Birn et al. (2013) noted
that longer scans increase test-retest reliability of FC studies.
Methods from the present study may be adapted to investigate if
and how very slow brain rhythms (< 0.01Hz) coordinate unique
functional networks.

The present study observed that FC networks establish the
appearance of limbic MFF networks and cortical LFF networks.
Hypothetically, this is an indication that slow cortical dynamics
emerge from rapid information exchange among deeper brain
structures. If this is the case, then the difference maps in Figure 3

may show the accumulation of rapid (>0.12Hz) limbic activity
into slow (0.024 and 0.048Hz) cortical structures. Alternatively,
MFF BOLD signaling could be a kind of structured noise.

The presence of noise confounds is the chief concern limiting
the interpretation of study results. The gray-matter mask of
the present study included any voxel having at least a 50%
probability of containing gray matter in all volunteer images.
Some voxels were thereby included from outside gray matter
(e.g., from cerebrospinal fluid, white matter, and extra-cerebral
tissues). For instance, in Figures 1, 3, voxels at the edges of
gray matter regions appear to segment into their own clusters.
Some anatomical locations labeled in the supplemental tables
mark points in these clusters. Better segmentation of gray matter
regions may remove these confounds. None-the-less, the smooth
transition from limbic to cortical network types as brain rhythms
slow was observed in pairwise correlations between very many
gray matter voxels.

Observations of multispectral variability in brain FC are
contrary to the expectation that 1/f-type systems are scale-
free. There are, however, other interpretations that admit to
the simultaneous presence of 1/f-type power spectral densities
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alongside unique multiscale structures. Namely, unique large-
scale structures may be emergent properties of multiscale
granular activities. In the case of the brain, very many binary
action potentials must somehow sum to become a lifetime
of thoughts and feelings. Theoretically, the capacity for a
system to share information across scales is a measure of the
system’s complexity (Wolfram, 2002). Natural complex systems
like the brain must simultaneously build large-scale structures
from granular processes and fine-tune multiscale functions with
subband information. The unique information bearing capacity
of both granular and coarse measures of natural complex
systems should therefore encourage FC-fMRI studies to leverage
multispectral basis transforms (Billings and Keilholz, 2018).
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