106 research outputs found

    The Political Economy of Heterogeneous Development: Quartile Effects of Income and Education

    Get PDF
    Does development lead to the establishment of more democratic institutions? Over the past 50 years, the countries have illustratred two very distinct stages of political development—authoritarian states with low levels of freedom on one side and democracies with liberal institutions on the other. We develop a new empirical strategy that allows for the first time to estimate the effects of development as well as changing unobserved country effects in driving democracy at these different stages of political development. We find income and education have the least effect on democracy when authoritarian regimes are consolidated and only changing country effects can lead to political development. Ironically, it is in highly democratic and wealthy nations that income and education start to play a role; however greater wealth and better educated citizenry can both help and hurt democracy depending again on what the country’s institutional legacies are. Far from accepting the notion that much of the developing world is cursed by unchanging and poor long-run institutions, policy-makers should take note that with democratization we also see changing country-specific factors that in turn condition the difference income and education can make for democracy.democracy, economic development, quantile regression

    Observations and Modeling of Scintillation in the Vicinity of a Polar Cap Patch

    Get PDF
    Small-scale ionospheric plasma structures can cause scintillation in radio signals passing through the ionosphere. The relationship between the scintillated signal and how plasma structuring develops is complex. We model the development of small-scale plasma structuring in and around an idealized polar cap patch observed by the Resolute Bay Incoherent Scatter Radars (RISR) with the Geospace Environment Model for Ion-Neutral Interactions (GEMINI). Then, we simulate a signal passing through the resulting small-scale structuring with the Satellite-beacon Ionospheric scintillation Global Model of the upper Atmosphere (SIGMA) to predict the scintillation characteristics that will be observed by a ground receiver at different stages of instability development. Finally, we compare the predicted signal characteristics with actual observations of scintillation from ground receivers in the vicinity of Resolute Bay. We interpret the results in terms of the nature of the small-scale plasma structuring in the ionosphere and how it impacts signals of different frequencies, and attempt to infer information about the ionospheric plasma irregularity spectrum

    The MRN complex in double-strand break repair and telomere maintenance

    Get PDF
    AbstractGenomes are subject to constant threat by damaging agents that generate DNA double-strand breaks (DSBs). The ends of linear chromosomes need to be protected from DNA damage recognition and end-joining, and this is achieved through protein–DNA complexes known as telomeres. The Mre11–Rad50–Nbs1 (MRN) complex plays important roles in detection and signaling of DSBs, as well as the repair pathways of homologous recombination (HR) and non-homologous end-joining (NHEJ). In addition, MRN associates with telomeres and contributes to their maintenance. Here, we provide an overview of MRN functions at DSBs, and examine its roles in telomere maintenance and dysfunction

    Greenland melt drives continuous export of methane from the ice-sheet bed

    Get PDF
    Ice sheets are currently ignored in global methane budgets1,2. Although ice sheets have been proposed to contain large reserves of methane that may contribute to a rise in atmospheric methane concentration if released during periods of rapid ice retreat3,4, no data exist on the current methane footprint of ice sheets. Here we find that subglacially produced methane is rapidly driven to the ice margin by the efficient drainage system of a subglacial catchment of the Greenland ice sheet. We report the continuous export of methane-supersaturated waters (CH4(aq)) from the ice-sheet bed during the melt season. Pulses of high CH4(aq) concentration coincide with supraglacially forced subglacial flushing events, confirming a subglacial source and highlighting the influence of melt on methane export. Sustained methane fluxes over the melt season are indicative of subglacial methane reserves that exceed methane export, with an estimated 6.3 tonnes (discharge-weighted mean; range from 2.4 to 11 tonnes) of CH4(aq) transported laterally from the ice-sheet bed. Stable-isotope analyses reveal a microbial origin for methane, probably from a mixture of inorganic and ancient organic carbon buried beneath the ice. We show that subglacial hydrology is crucial for controlling methane fluxes from the ice sheet, with efficient drainage limiting the extent of methane oxidation5 to about 17 per cent of methane exported. Atmospheric evasion is the main methane sink once runoff reaches the ice margin, with estimated diffusive fluxes (4.4 to 28 millimoles of CH4 per square metre per day) rivalling that of major world rivers6. Overall, our results indicate that ice sheets overlie extensive, biologically active methanogenic wetlands and that high rates of methane export to the atmosphere can occur via efficient subglacial drainage pathways. Our findings suggest that such environments have been previously underappreciated and should be considered in Earth’s methane budget

    Earthquakes drive large-scale submarine canyondevelopment and sediment supply to deep-ocean basins

    Get PDF
    Although the global flux of sediment and carbon from land to the coastal ocean is well known, the volume of material that reaches the deep ocean—the ultimate sink—and the mechanisms by which it is transferred are poorly documented. Using a globally unique data set of repeat seafloor measurements and samples, we show that the moment magnitude (Mw) 7.8 November 2016 Kaikōura earthquake (New Zealand) triggered widespread landslides in a submarine canyon, causing a powerful “canyon flushing” event and turbidity current that traveled >680 km along one of the world’s longest deep-sea channels. These observations provide the first quantification of seafloor landscape change and large-scale sediment transport associated with an earthquake-triggered full canyon flushing event. The calculated interevent time of ~140 years indicates a canyon incision rate of 40 mm year−1, substantially higher than that of most terrestrial rivers, while synchronously transferring large volumes of sediment [850 metric megatons (Mt)] and organic carbon (7 Mt) to the deep ocean. These observations demonstrate that earthquake-triggered canyon flushing is a primary driver of submarine canyon development and material transfer from active continental margins to the deep ocean.peer-reviewe

    Programmable Ligand Detection System in Plants through a Synthetic Signal Transduction Pathway

    Get PDF
    There is an unmet need to monitor human and natural environments for substances that are intentionally or unintentionally introduced. A long-sought goal is to adapt plants to sense and respond to specific substances for use as environmental monitors. Computationally re-designed periplasmic binding proteins (PBPs) provide a means to design highly sensitive and specific ligand sensing capabilities in receptors. Input from these proteins can be linked to gene expression through histidine kinase (HK) mediated signaling. Components of HK signaling systems are evolutionarily conserved between bacteria and plants. We previously reported that in response to cytokinin-mediated HK activation in plants, the bacterial response regulator PhoB translocates to the nucleus and activates transcription. Also, we previously described a plant visual response system, the de-greening circuit, a threshold sensitive reporter system that produces a visual response which is remotely detectable and quantifiable.We describe assembly and function of a complete synthetic signal transduction pathway in plants that links input from computationally re-designed PBPs to a visual response. To sense extracellular ligands, we targeted the computational re-designed PBPs to the apoplast. PBPs bind the ligand and develop affinity for the extracellular domain of a chemotactic protein, Trg. We experimentally developed Trg fusions proteins, which bind the ligand-PBP complex, and activate intracellular PhoR, the HK cognate of PhoB. We then adapted Trg-PhoR fusions for function in plants showing that in the presence of an external ligand PhoB translocates to the nucleus and activates transcription. We linked this input to the de-greening circuit creating a detector plant.Our system is modular and PBPs can theoretically be designed to bind most small molecules. Hence our system, with improvements, may allow plants to serve as a simple and inexpensive means to monitor human surroundings for substances such as pollutants, explosives, or chemical agents

    Plasmid-Cured Chlamydia caviae Activates TLR2-Dependent Signaling and Retains Virulence in the Guinea Pig Model of Genital Tract Infection

    Get PDF
    Loss of the conserved “cryptic” plasmid from C. trachomatis and C. muridarum is pleiotropic, resulting in reduced innate inflammatory activation via TLR2, glycogen accumulation and infectivity. The more genetically distant C. caviae GPIC is a natural pathogen of guinea pigs and induces upper genital tract pathology when inoculated intravaginally, modeling human disease. To examine the contribution of pCpGP1 to C. caviae pathogenesis, a cured derivative of GPIC, strain CC13, was derived and evaluated in vitro and in vivo. Transcriptional profiling of CC13 revealed only partial conservation of previously identified plasmid-responsive chromosomal loci (PRCL) in C. caviae. However, 2-deoxyglucose (2DG) treatment of GPIC and CC13 resulted in reduced transcription of all identified PRCL, including glgA, indicating the presence of a plasmid-independent glucose response in this species. In contrast to plasmid-cured C. muridarum and C. trachomatis, plasmid-cured C. caviae strain CC13 signaled via TLR2 in vitro and elicited cytokine production in vivo similar to wild-type C. caviae. Furthermore, inflammatory pathology induced by infection of guinea pigs with CC13 was similar to that induced by GPIC, although we observed more rapid resolution of CC13 infection in estrogen-treated guinea pigs. These data indicate that either the plasmid is not involved in expression or regulation of virulence in C. caviae or that redundant effectors prevent these phenotypic changes from being observed in C. caviae plasmid-cured strains
    corecore