56 research outputs found

    Escaping Saddle Points with Adaptive Gradient Methods

    Full text link
    Adaptive methods such as Adam and RMSProp are widely used in deep learning but are not well understood. In this paper, we seek a crisp, clean and precise characterization of their behavior in nonconvex settings. To this end, we first provide a novel view of adaptive methods as preconditioned SGD, where the preconditioner is estimated in an online manner. By studying the preconditioner on its own, we elucidate its purpose: it rescales the stochastic gradient noise to be isotropic near stationary points, which helps escape saddle points. Furthermore, we show that adaptive methods can efficiently estimate the aforementioned preconditioner. By gluing together these two components, we provide the first (to our knowledge) second-order convergence result for any adaptive method. The key insight from our analysis is that, compared to SGD, adaptive methods escape saddle points faster, and can converge faster overall to second-order stationary points.Comment: Update Theorem 4.1 and proof to use martingale concentration bounds, i.e. matrix Freedma

    Balancing near-field enhancement, absorption, and scattering for effective antenna-reactor plasmonic photocatalysis

    Get PDF
    Efficient photocatalysis requires multifunctional materials that absorb photons and generate energetic charge carriers at catalytic active sites to facilitate a desired chemical reaction. Antenna–reactor complexes are an emerging multifunctional photocatalytic structure where the strong, localized near field of the plasmonic metal nanoparticle (e.g., Ag) is coupled to the catalytic properties of the nonplasmonic metal nanoparticle (e.g., Pt) to enable chemical transformations. With an eye toward sustainable solar driven photocatalysis, we investigate how the structure of antenna–reactor complexes governs their photocatalytic activity in the light-limited regime, where all photons need to be effectively utilized. By synthesizing core@shell/satellite (Ag@SiO_2/Pt) antenna–reactor complexes with varying Ag nanoparticle diameters and performing photocatalytic CO oxidation, we observed plasmon-enhanced photocatalysis only for antenna–reactor complexes with antenna components of intermediate sizes (25 and 50 nm). Optimal photocatalytic performance was shown to be determined by a balance between maximized local field enhancements at the catalytically active Pt surface, minimized collective scattering of photons out of the catalyst bed by the complexes, and minimal light absorption in the Ag nanoparticle antenna. These results elucidate the critical aspects of local field enhancement, light scattering, and absorption in plasmonic photocatalyst design, especially under light-limited illumination conditions

    Associations between dog breed and clinical features of mammary epithelial neoplasia in bitches: an epidemiological study of submissions to a single diagnostic pathology centre between 2008-2021

    Get PDF
    Mammary cancer is one of the most common neoplasms of dogs, primarily bitches. While studies have been carried out identifying differing risk of mammary neoplasia in different dog breeds, few studies have reported associations between dog breeds and clinical features such as number of neoplastic lesions found in an individual case or the likelihood of lesions being benign or malignant. Such epidemiological studies are essential as a foundation for exploring potential genetic drivers of mammary tumour behaviour. Here, we have examined associations between breed, age and neuter status and the odds of a diagnosis of a mammary epithelial-origin neoplastic lesion (as opposed to any other histopathological diagnosis from a biopsied lesion) as well as the odds of a bitch presenting with either a single mammary lesion or multiple lesions, and the odds that those lesions are benign or malignant. The study population consisted of 129,258 samples from bitches, including 13,401 mammary epithelial neoplasms, submitted for histological assessment to a single histopathology laboratory between 2008 and 2021

    Exfoliation of Quasi-Two-Dimensional Nanosheets of Metal Diborides

    Get PDF
    Metal diborides are a class of ceramic materials with crystal structures consisting of hexagonal sheets of boron atoms alternating with planes of metal atoms held together with mixed character ionic/covalent bonds. Many of the metal diborides are ultrahigh-temperature ceramics such as HfB2, TaB2, and ZrB2, which have melting points above 3000 °C, high mechanical hardness and strength at high temperatures, and high chemical resistance, while MgB2 is a superconductor with a transition temperature of 39 K. Here, we demonstrate that this diverse family of non-van der Waals (vdW) materials can be processed into stable dispersions of quasi-two-dimensional (2D) nanosheets using ultrasonication-assisted exfoliation. We generate quasi-2D nanosheets of the metal diborides AlB2, CrB2, HfB2, MgB2, NbB2, TaB2, TiB2, and ZrB2 and use electron and scanning probe microscopy techniques to characterize their structures, morphologies, and compositions. The exfoliated layers have a distribution of lateral dimensions from tens of nanometers up to several micrometers and a distribution of thicknesses from as low as 2-3 nm up to tens of nanometers, all while retaining their hexagonal atomic structure and chemical composition. We exploit the convenient solution-phase dispersions of exfoliated CrB2 nanosheets to incorporate them directly into polymer composites. In contrast to the hard and brittle bulk CrB2, we find that CrB2 nanocomposites remain very flexible and simultaneously provide increases in the elastic modulus and the ultimate tensile strength of the polymer. The successful liquid-phase production of quasi-2D metal diborides enables their processing using scalable low-temperature solution-phase methods, extending their use to previously unexplored applications, and reveals a new family of non-vdW materials that can be efficiently exfoliated into quasi-2D forms

    Monitoring Chemical Reactions with Terahertz Rotational Spectroscopy

    Get PDF
    Rotational spectroscopy is introduced as a new in situ method for monitoring gas-phase reactants and products during chemical reactions. Exploiting its unambiguous molecular recognition specificity and extraordinary detection sensitivity, rotational spectroscopy at terahertz frequencies was used to monitor the decomposition of carbonyl sulfide (OCS) over an aluminum nanocrystal (AlNC) plasmonic photocatalyst. The intrinsic surface oxide on AlNCs is discovered to have a large number of strongly basic sites that are effective for mediating OCS decomposition. Spectroscopic monitoring revealed two different photothermal decomposition pathways for OCS, depending on the absence or presence of H_2O. The strength of rotational spectroscopy is witnessed through its ability to detect and distinguish isotopologues of the same mass from an unlabeled OCS precursor at concentrations of <1 nanomolar or partial pressures of <10 μTorr. These attributes recommend rotational spectroscopy as a compelling alternative for monitoring gas-phase chemical reactants and products in real time

    Paths Explored, Paths Omitted, Paths Obscured: Decision Points & Selective Reporting in End-to-End Data Analysis

    Full text link
    Drawing reliable inferences from data involves many, sometimes arbitrary, decisions across phases of data collection, wrangling, and modeling. As different choices can lead to diverging conclusions, understanding how researchers make analytic decisions is important for supporting robust and replicable analysis. In this study, we pore over nine published research studies and conduct semi-structured interviews with their authors. We observe that researchers often base their decisions on methodological or theoretical concerns, but subject to constraints arising from the data, expertise, or perceived interpretability. We confirm that researchers may experiment with choices in search of desirable results, but also identify other reasons why researchers explore alternatives yet omit findings. In concert with our interviews, we also contribute visualizations for communicating decision processes throughout an analysis. Based on our results, we identify design opportunities for strengthening end-to-end analysis, for instance via tracking and meta-analysis of multiple decision paths

    A conservation roadmap for the subterranean biome

    Get PDF
    The 15th UN Convention on Biological Diversity (CBD) (COP15) will be held in Kunming, China in October 2021. Historically, CBDs and other multilateral treaties have either alluded to or entirely overlooked the subterranean biome. A multilateral effort to robustly examine, monitor, and incorporate the subterranean biome into future conservation targets will enable the CBD to further improve the ecological effectiveness of protected areas by including groundwater resources, subterranean ecosystem services, and the profoundly endemic subsurface biodiversity. To this end, we proffer a conservation roadmap that embodies five conceptual areas: (1) science gaps and data management needs; (2) anthropogenic stressors; (3) socioeconomic analysis and conflict resolution; (4) environmental education; and (5) national policies and multilateral agreements.Peer reviewe

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
    corecore