716 research outputs found

    Stationary phase induction of RpoS in enteric bacteria

    Get PDF
    In enteric bacteria, stress adaptation is mediated by the RpoS protein, one of several sigma-factors that, in association with RNA polymerase, collectively allow a tailored transcriptional response to environmental cues. Stress stimuli including low temperature, osmotic shock, and starvation all result in a substantial increase in RpoS abundance. Perhaps the most pronounced affect is observed during growth to stationary phase (SP) in rich medium. The mechanism of regulation depends on the specific signal, but may occur at the level of transcription, translation, protein activity or targeted proteolysis. In both Escherichia coli and Salmonella enterica cultured in rich undefined medium, the RpoS protein is barely detectable during exponential growth and increases \u3e30-fold as cells enter SP. Under these conditions, SP induction depends on transcriptional and translational control with proteolysis affecting basal levels but not regulation per se. The transiently expressed Fis protein, whose abundance inversely correlates to that of RpoS, binds just upstream of the primary rpoS promoter and represses transcription nearly 10-fold specifically during exponential growth. SP induction at the translational level relies on a novel form of genetic control dependent on the 24 nucleotides preceding the rpoS initiation codon (ribosome-binding sequence, RBS). The RNA secondary structure of the rpoS RBS is necessary and sufficient for a nearly 10-fold translational increase during SP. Control at this level is not a result of differential transcript stability, nor does it involve the known rpoS regulators ppGpp, DksA, HU, Hfq or the small regulatory RNAs, DsrA and RprA. The environmental stimuli that trigger RBS-mediated SP induction of rpoS translation also remain unknown, but similar to transcriptional control, regulation is only seen in rich undefined media. Collectively, transcriptional repression by Fis and RBS-mediated induction at the translational level account for approximately 95% of the overall SP induction of RpoS

    Extending Johnson's and Morita's homomorphisms to the mapping class group

    Full text link
    We extend certain homomorphisms defined on the higher Torelli subgroups of the mapping class group to crossed homomorphisms defined on the entire mapping class group. In particular, for every k≥2k\geq 2, we construct a crossed homomorphism ϵk\epsilon_k which extends Morita's homomorphism τ~k\tilde \tau_k to the entire mapping class group. From this crossed homomorphism we also obtain a crossed homomorphism extending the kkth Johnson homomorphism τk\tau_k to the mapping class group. D. Johnson and S. Morita obtained their respective homomorphisms by considering the action of the mapping class group on the nilpotent truncations of the surface group; our approach is to mimic Morita's construction topologically by using nilmanifolds associated to these truncations. This allows us to take the ranges of these crossed homomorphisms to be certain finite-dimensional real vector spaces associated to these nilmanifolds.Comment: 32 pages; cleaned up and minor corrections to proofs; updated to agree with version published by Alg. & Geom. Top at: http://msp.warwick.ac.uk/agt/2007/07/p050.xhtm

    A compressive light field projection system

    Get PDF
    For about a century, researchers and experimentalists have strived to bring glasses-free 3D experiences to the big screen. Much progress has been made and light field projection systems are now commercially available. Unfortunately, available display systems usually employ dozens of devices making such setups costly, energy inefficient, and bulky. We present a compressive approach to light field synthesis with projection devices. For this purpose, we propose a novel, passive screen design that is inspired by angle-expanding Keplerian telescopes. Combined with high-speed light field projection and nonnegative light field factorization, we demonstrate that compressive light field projection is possible with a single device. We build a prototype light field projector and angle-expanding screen from scratch, evaluate the system in simulation, present a variety of results, and demonstrate that the projector can alternatively achieve super-resolved and high dynamic range 2D image display when used with a conventional screen.MIT Media Lab ConsortiumNatural Sciences and Engineering Research Council of Canada (NSERC Postdoctoral Fellowship)National Science Foundation (U.S.) (Grant NSF grant 0831281

    Little Pal Of Long Ago

    Get PDF
    https://digitalcommons.library.umaine.edu/mmb-vp/4939/thumbnail.jp

    BiDi screen : depth and lighting aware interaction and display

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciences, 2009.Cataloged from PDF version of thesis.Includes bibliographical references (p. 75-79).In this thesis, I describe a new type of interactive display that supports both on-screen multi-touch interactions and off-screen hover-based gestures. This BiDirectional (BiDi) screen, capable of both image capture and display, is inspired by emerging LCDs that use embedded optical sensors to detect multiple points of direct contact. The key contribution of this thesis is to exploit the spatial light modulation capability of LCDs to allow dynamic mask-based scene capture without interfering with display functionality. A large-format image sensor is placed slightly behind the liquid crystal layer. By alternatly switching the liquid crystal between a display mode showing traditional graphics and a capture mode in which the backlight is disabled and a pinhole array or an equivalent tiled-broadband code is displayed, the BiDi Screen can recover multi-view orthographic imagery while functioning as a 2D display. The recovered imagery is used to passively estimate the depth of scene points from focus. I discuss the design and construction of a prototype to demonstrate these capabilities in two motivating applications: a hybrid touch plus gesture interaction and a light-gun mode for interacting with external light-emitting widgets. The working prototype simulates the large format light sensor with a camera and diffuser, supporting interaction up to 50 cm in front of a modified 20.1 inch LCD.by Matthew W. Hirsch.S.M

    Tensor displays: compressive light field synthesis using multilayer displays with directional backlighting

    Get PDF
    We introduce tensor displays: a family of compressive light field displays comprising all architectures employing a stack of time-multiplexed, light-attenuating layers illuminated by uniform or directional backlighting (i.e., any low-resolution light field emitter). We show that the light field emitted by an N-layer, M-frame tensor display can be represented by an Nth-order, rank-M tensor. Using this representation we introduce a unified optimization framework, based on nonnegative tensor factorization (NTF), encompassing all tensor display architectures. This framework is the first to allow joint multilayer, multiframe light field decompositions, significantly reducing artifacts observed with prior multilayer-only and multiframe-only decompositions; it is also the first optimization method for designs combining multiple layers with directional backlighting. We verify the benefits and limitations of tensor displays by constructing a prototype using modified LCD panels and a custom integral imaging backlight. Our efficient, GPU-based NTF implementation enables interactive applications. Through simulations and experiments we show that tensor displays reveal practical architectures with greater depths of field, wider fields of view, and thinner form factors, compared to prior automultiscopic displays.United States. Defense Advanced Research Projects Agency (DARPA SCENICC program)National Science Foundation (U.S.) (NSF Grant IIS-1116452)United States. Defense Advanced Research Projects Agency (DARPA MOSAIC program)United States. Defense Advanced Research Projects Agency (DARPA Young Faculty Award)Alfred P. Sloan Foundation (Fellowship

    BiDi screen: a thin, depth-sensing LCD for 3D interaction using light fields

    Get PDF
    We transform an LCD into a display that supports both 2D multi-touch and unencumbered 3D gestures. Our BiDirectional (BiDi) screen, capable of both image capture and display, is inspired by emerging LCDs that use embedded optical sensors to detect multiple points of contact. Our key contribution is to exploit the spatial light modulation capability of LCDs to allow lensless imaging without interfering with display functionality. We switch between a display mode showing traditional graphics and a capture mode in which the backlight is disabled and the LCD displays a pinhole array or an equivalent tiled-broadband code. A large-format image sensor is placed slightly behind the liquid crystal layer. Together, the image sensor and LCD form a mask-based light field camera, capturing an array of images equivalent to that produced by a camera array spanning the display surface. The recovered multi-view orthographic imagery is used to passively estimate the depth of scene points. Two motivating applications are described: a hybrid touch plus gesture interaction and a light-gun mode for interacting with external light-emitting widgets. We show a working prototype that simulates the image sensor with a camera and diffuser, allowing interaction up to 50 cm in front of a modified 20.1 inch LCD.National Science Foundation (U.S.) (Grant CCF-0729126)Alfred P. Sloan Foundatio

    Content-adaptive parallax barriers: optimizing dual-layer 3D displays using low-rank light field factorization

    Get PDF
    We optimize automultiscopic displays built by stacking a pair of modified LCD panels. To date, such dual-stacked LCDs have used heuristic parallax barriers for view-dependent imagery: the front LCD shows a fixed array of slits or pinholes, independent of the multi-view content. While prior works adapt the spacing between slits or pinholes, depending on viewer position, we show both layers can also be adapted to the multi-view content, increasing brightness and refresh rate. Unlike conventional barriers, both masks are allowed to exhibit non-binary opacities. It is shown that any 4D light field emitted by a dual-stacked LCD is the tensor product of two 2D masks. Thus, any pair of 1D masks only achieves a rank-1 approximation of a 2D light field. Temporal multiplexing of masks is shown to achieve higher-rank approximations. Non-negative matrix factorization (NMF) minimizes the weighted Euclidean distance between a target light field and that emitted by the display. Simulations and experiments characterize the resulting content-adaptive parallax barriers for low-rank light field approximation.National Science Foundation (U.S.) (grant CCF-0729126)National Research Foundation of Korea (grant 2009-352-D00232

    Polarization fields: dynamic light field display using multi-layer LCDs

    Get PDF
    We introduce polarization field displays as an optically-efficient design for dynamic light field display using multi-layered LCDs. Such displays consist of a stacked set of liquid crystal panels with a single pair of crossed linear polarizers. Each layer is modeled as a spatially-controllable polarization rotator, as opposed to a conventional spatial light modulator that directly attenuates light. Color display is achieved using field sequential color illumination with monochromatic LCDs, mitigating severe attenuation and moiré occurring with layered color filter arrays. We demonstrate such displays can be controlled, at interactive refresh rates, by adopting the SART algorithm to tomographically solve for the optimal spatially-varying polarization state rotations applied by each layer. We validate our design by constructing a prototype using modified off-the-shelf panels. We demonstrate interactive display using a GPU-based SART implementation supporting both polarization-based and attenuation-based architectures. Experiments characterize the accuracy of our image formation model, verifying polarization field displays achieve increased brightness, higher resolution, and extended depth of field, as compared to existing automultiscopic display methods for dual-layer and multi-layer LCDs.National Science Foundation (U.S.) (Grant IIS-1116452)United States. Defense Advanced Research Projects Agency (Grant HR0011-10-C-0073)Alfred P. Sloan Foundation (Research Fellowship)United States. Defense Advanced Research Projects Agency (Young Faculty Award
    • …
    corecore