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Abstract

In this thesis, I describe a new type of interactive display that supports both on-screen
multi-touch interactions and off-screen hover-based gestures. This BiDirectional (BiDi)
screen, capable of both image capture and display, is inspired by emerging LCDs that use
embedded optical sensors to detect multiple points of direct contact. The key contribution
of this thesis is to exploit the spatial light modulation capability of LCDs to allow dynamic
mask-based scene capture without interfering with display functionality. A large-format
image sensor is placed slightly behind the liquid crystal layer. By alternatly switching the
liquid crystal between a display mode showing traditional graphics and a capture mode in
which the backlight is disabled and a pinhole array or an equivalent tiled-broadband code is
displayed, the BiDi Screen can recover multi-view orthographic imagery while functioning
as a 2D display. The recovered imagery is used to passively estimate the depth of scene
points from focus. I discuss the design and construction of a prototype to demonstrate these
capabilities in two motivating applications: a hybrid touch plus gesture interaction and a
light-gun mode for interacting with external light-emitting widgets. The working prototype
simulates the large format light sensor with a camera and diffuser, supporting interaction
up to 50 cm in front of a modified 20.1 inch LCD.
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Chapter 1

Introduction

A novel method for using light sensors to detect multiple points of contact with the surface

of liquid crystal displays (LCDs) is emerging. Sharp Corporation [7] and Planar Systems,

Inc. [1] have demonstrated LCDs with arrays of optical sensors interlaced within the pixel

grid. The location of a finger or stylus can be determined from the spatial position of

occluded sensors that receive less light. For objects pressed directly against such screens,

photographic imaging should be possible, but objects moved further away quickly become

blurred as the light reflecting off any portion of the object is spread across many pixels.

In this thesis I describe how to modify traditional LCDs to allow both image capture

and display. By using the LCD to display a pinhole array, or an equivalent tiled-broadband

code [29], the angle and intensity of light entering a co-located sensor array may be captured.

By correlating data from multiple views, it is possible to image objects, such as fingers, that

are located beyond the display's surface and measure their distance from the display. This

thesis describes the construction of a prototype device, in which imaging is performed in

real-time, enabling the detection of off-screen gestures. When used with a light-emitting

wand, the prototype can determine not only where the wand is aimed, but also the incidence

angle of light cast on the display surface.



1.1 A BiDirectional Display

In this thesis I propose a BiDirectional (BiDi) screen, such that the entire surface of a thin,

LCD-like device functions both as a display and a image capture device. The key component

of a BiDi screen is a sensor array located slightly behind the spatial light modulating layer

of a conventional LCD. The BiDi screen alternately switches between two modes: a display

mode, where the backlight and liquid crystal spatial light modulator function as normal

to display the desired output on the screen, and a capture mode where the backlight is

disabled and the light modulator displays an array of pinholes or a tiled-broadband code.

I demonstrate a working prototype of a BiDi screen, substituting a diffuser and conventional

cameras for the sensor array. This prototype shows the BiDi screen in two motivating

applications to demonstrate its depth and lighting-aware abilities: a hybrid touch plus

gesture interaction, and a light-gun mode for interaction using a light-emitting widget.

1.1.1 New Interaction Modes

While earlier light-sensing display designs have focused on enabling touch interfaces, the

BiDi screen enhances the field by seamlessly transitioning from on-screen multi-touch to off-

screen hover and gesture-based interaction. Thus, the proposed device alternates between

forming the displayed image and capturing a modulated light field through a liquid crystal

spatial light modulator.

The interaction capabilities of the prototype BiDi Screen are presented in four demonstra-

tions. A model viewer application (Figure 5.1), a world viewer (Figure 5.1), light-emitting

widget interaction (Figure 5.2), and multi-touch demonstration (see Figure 5.1)

1.1.2 Video Chat and Appearance Capture

In this thesis I primarily explore the BiDi screen as an interaction device. However, the

ability of this device to produce video data from a source coincident with a display creates
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the opportunity for new applications in video chat. Current state-of-the-art systems for

video chat employ a camera that is necessarily offset from a display screen. This creates

an eye-gaze problem, whereby a user looking at the display screen (and not at the camera)

appears not to make eye contact with the other party in the conversation. At a basic

level, the collocated camera of the BiDi screen can be used to provide a realistic remote

interaction between two people, free from the eye-gaze problem previously described. The

BiDi screen is situated among other methods for addressing this problem in Chapter 2.

Further applications for a coincident camera and display include interactive virtual mirrors

and augmented reality displays.

Capturing a light-field in a wide-baseline sensor means that the BiDi screen could function

as a 3D appearance capture device. An object could be held up to the screen and rotated

in order to record a light-field map of its appearance.

1.2 Problem and Approach

The BiDi screen will enable a new dimension in interaction, allowing a seamless transition

from a traditional multi-touch display to a new hover-based interactive device (Section 5.1).

The BiDi screen is further capable of dynamically relighting virtual scenes with real-world

light sources (Section 5.2). This technique clears the way for novel mixed-reality rendering

applications. By collocating an image capture device with a display device, the BiDi screen

potentially solves the problem of establishing eye-contact during a video chat (Section 5.3).

This ability will also allow for novel dynamic mirror-world renderings, in which the BiDi

screen functions as a mirror, optionally altering the world before displaying it on the screen.

Mirror-world rendering will enable interesting games and information displays that use the

player's own body as a canvas. The BiDi screen further functions as a wide-baseline light-

field sensor. This means that the screen can function in an appearance-capture mode,

in which the 3D physical appearance of an object can be captured in a single shot (also

Section 5.3).

The BiDi screen solves these problems by building on a trend in multi-touch technology.



Some manufacturers [1] [7] are creating optical multi-touch displays, which place an optical

sensor in each pixel of an LCD device. Such displays can produce an image of objects

in contact with the surface of the screen, enabling a multi-touch interface. These devices

contain no optics or equivalent so they cannot bring objects at any distance from the screen

into sharp focus.

The BiDi screen modifies an optical multi-touch screen by translating the transparent sensor

plane a short distance behind the LCD display (Figure 3-2). If a tiled broadband mask is

displayed on the LCD, the sensor layer will record a modulated light-field, as described

by the spatial heterodyning technique [51]. In the BiDi screen the LCD is then put to

double duty, in that the display and modulation functions are time multiplexed. The LCD

alternately displays an image for the viewer while enabling the backlight, and displays a

tiled broadband mask for light-field modulation while disabling the backlight, and recording

from the sensor. When the display mode of the LCD is time multiplexed above the flicker

fusion frequency of the human visual system [56], users will perceive a steady image on the

screen.

In the prototype BiDi screen constructed for this thesis, a diffuser and camera system

was used in place of a transparent sparse photosensor array. While the array would be

preferable, practical constraints on time and budget required that the prototype be build

from commodity hardware.

1.3 Contributions

The emphasis of this work is on demonstrating novel techniques for optical sensing enabled

when an LCD and diffuse light-sensing grid are placed proximate to each other. As devices

combining display and capture elements in close proximity are currently being developed

commercially for multi-touch interaction, one goal is to influence the design of these displays

by exploring design choices and illustrating additional benefits and applications that can be

derived. This thesis only touches upon the interaction techniques enabled, leaving additional

assessment to future work.
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Earlier light sensing display designs have focused on promoting touch interfaces. The BiDi

screen design enhances the field by supporting both on-screen multi-touch interactions and

off-screen hover and gesture-based interfaces. A base contribution is that the LCD can be

put to double duty; it can alternate between its traditional role in forming the displayed

image and a new role in acting as an optical mask. It is shown that achieving per-pixel,

depth and light aware interactions requires a small displacement between the sensing plane

and the display plane. Furthermore, this work demonstrates a method that can maximize

the display and capture frame rates using optimally light-efficient mask patterns.

In this thesis I describe a thin, lensless light field camera composed of an optical sensor

array and a spatial light modulator. The performance of pinhole arrays and tiled-broadband

masks for light field capture from primarily reflective, rather than transmissive, scenes is

evaluated. I describe key design issues, including mask selection and the critical importance

of angle-limiting materials.

I demonstrate that a BiDi screen can recognize on-screen as well as off-screen gestures, and

its ability to detect light-emitting widgets, showing novel interactions between displayed

images and external lighting.

I describe how the system can be expanded to support object appearance capture and novel

video interactions with depth keying and eye contact between video chat participants.





Chapter 2

Background

The BiDi screen makes contributions in a diverse set of domains. In this chapter, I will

situate the contributions of this thesis in the fields of touch and gesture interaction, specif-

ically with respect to light sensing displays, depth sensing technology, collocated camera

and display, and mask-based light-field photography.

2.1 Multi-touch and Gesture

Touch screens capable of detecting a single point of touch first appeared in a product in

1983 with Hewlett Packard's introduction of the HP-150 computer, although touch and pen

systems existed earlier than this. Single-touch systems typically used transparent resistive

or capacitive grids overlaid on a screen to sense touch. The pressure of a finger on the screen

would induce a change in the resistance or capacitance of a few wires in the grid, allowing

accompanying electronics to determine the position, and possibly pressure, of the touch.

Recently, much emphasis has been placed on enabling the detection of multiple simultane-

ous touches on a screen, which has enabled new types of interaction. The Frustrated Total

Internal Reflection (FTIR) multi-touch wall [19], HoloWall [39], and Microsoft Surface use

a camera to detect infrared light reflected from fingers in contact with a screen. The Visual



Touchpad [38], uses a visible light camera to track hands. In Tactex's MTC Express [36] an

array of pressure sensors is used to locate the position at which a membrane is depressed.

Hillis [22] forms a 2D pressure sensing grid using force-sensitive resistors. A popular ap-

proach to multi-touch sensing of fingers and hand positions is through the use of capacitive

arrays, described by Lee et al. [30] and made popular with the iPhone from Apple, Inc.,

following Fingerworks iGesturePad, both based on the work of Westerman and Elias [53].

The SmartSkin [44], DiamondTouch [12], and DTLens [16] also use capacitive arrays in

various configurations.

The development of more sophisticated cameras and improved computational power has

made real-time gestural interaction a possibility. Some of the most influential work in

free-space gestural interaction includes the TouchLight [55], which uses a specialized depth-

sensing IR camera to track gesture, and Oblong Industries g-speak, which uses a camera

array to track tags that may be affixed to hands and other objects.

In a work closely-related to my own, the ThinSight [25] places a compact IR emitter and

detector array behind a traditional LCD. This approach begins in the direction of combining

multi-touch and free-space gestural interaction. Benko and Ishak [3] use a DiamondTouch

system as well as 3D tracked gloves to achieve mixed multi-touch and gesture interaction.

In contrast to capacitive and direct-contact sensors, a variety of methods have emerged for

imaging through a display surface. Izadi et al. [26] introduced SecondLight as a modified

rear-projection display with an electronically-switchable diffuser. In their design, off-screen

gestures are imaged by one or more cameras when the diffuser is in the clear state. While

supporting high-resolution image capture, SecondLight significantly increases the thickness

of the display-placing several projectors and cameras far behind the diffuser. Similarly,

DepthTouch [4] places a depth-sensing camera behind a rear-projection screen. While pro-

ducing inferior image quality, the BiDi screen has several unique benefits and limitations

with respect to such direct-imaging designs. Foremost, with a suitable large-format sensor,

the proposed design eliminates the added thickness in current projection-vision systems, at

the cost of decreased image quality.



Figure 2-1: Towards a BiDirectional (BiDi) screen for walk-up 3D interaction with flat

screens. (Left) A conceptual sketch of public use with direct multi-touch plus non-contact

hover gestures. Embedding a large-format optical sensor backplane is becoming possible.

(Right, Top) Emerging LCDs [7] with co-located optical sensors (Right, Bottom) capable

of capturing sharp images of fingers in direct contact, but blurred for hovering parts.
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2.1.1 Light Sensitive Displays

In work that has deeply inspired the design of the BiDi screen, Sharp and Planar have

demonstrated LCD prototypes with integrated optical sensors co-located at each pixel for

inexpensive multi-touch interaction. These optical touch screens are the first example of a

thin, portable display technology that can measure incident light on a per-pixel basis.

Coarser lighting sensitive displays have been used for a range of purposes prior to this.

Some portable electronics, including laptops and mobile phones, use ambient light sensors to

adjust the brightness of the display depending on the lighting environment. Nayar et al. [41]

proposed creating spatially-selective lighting sensitive displays (LSD) by placing optical

sensors within the display bezel and altering the rendered imagery to accurately reflected

ambient lighting conditions. Cossairt et al. [10] implemented a light field transfer system,

capable of co-located capture and display, to facilitate real-time relighting of synthetic and

real-world scenes. Fuchs et al. [17] achieved a passive lighting sensitive display capable of

relighting pre-rendered scenes printed on static masks. Unlike their design, the BiDi screen

works with directional light sources located in front of the display surface and can support

relighting of dynamic computer-generated scenes.

2.1.2 Depth Sensitive and Light-field Cameras

Many depth sensing techniques exist which could be for the purpose of gestural inter-

action. Passive optical ranging methods include multi-view stereo [46] and depth from

focus [40]. Active optical ranging methods include laser striping [6], time-of-flight cameras

(e.g., Canesta's CANESTAVISION chip [23] and 3DV's Z-Cam [24]), depth from defo-

cus [52], and structured lighting [45].

A wide variety of passive and active techniques are available to estimate scene depth in

real-time. The BiDi screen records an incident light field [32] using a variety of attenuating

patterns equivalent to a pinhole array. A key benefit is that the image is formed without

refractive optics. Similar lensless systems with coded apertures are used in astronomical
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and medical imaging to capture X-rays and gamma rays. Zomet and Nayar [59] describe a

lensless imaging system composed of a bare sensor and several attenuating layers, including

a single LCD. This system does not capture a light-field, but rather explores the space

of modified apertures in camera systems. Liang et al. [34] use temporally-multiplexed

attenuation patterns, also displayed with an LCD, to capture light fields. They use a

translated pinhole to capture a light-field. In contrast to the broadband mask approach

used in the BiDi screen, this would not be capable of capturing images in realtime. Both

Liang et al [34]. and Zoment and Nayar [59] focus on building devices in traditional camera

bodies, which are not intended to be coupled with display or used for interaction. Zhang and

Chen [58] recover a light field by translating a bare sensor. Levin et al. [31] and Farid [13]

use coded apertures to estimate intensity and depth from defocused images. Vaish et al. [50]

discuss related methods for depth estimation from light fields. In a closely-related work,

Lanman et al. [29] demonstrated a large-format lensless light field camera using a family

of attenuation patterns, including pinhole arrays, conceptually similar to the heterodyne

camera of Veeraraghavan et al. [51]. I use the tiled-broadband codes introduced in those

works to reduce the required exposure time. Unlike Veeraraghavan et al. [51] and Lanman

et al. [29], the design presented here exploits a mask implemented with a modified LCD

panel. In addition, the BiDi screen uses reflected light with uncontrolled illumination.

Pinholes and masks can be used at other positions in an optical train to achieve different

results. For example, a pair of pinhole apertures are used in confocal microscopy to increase

contrast and scan a 3D target by eliminating rays that originate from points on the target

that are out of focus. Coded aperture imaging, also discussed by Veeraraghavan et al. [51],

places a coded mask in the aperture of a traditional camera system to enable deconvolution

of focus blur after an image has been captured, or measurement of scene depth, depending

on the type of code used.



2.2 Bi-directional Displays

Attempts to create a system with a coincident camera and display have aimed to solve

the gaze-direction problem in video chat, described in Section 5.3. One example of such a

system is patented by Apple Computer[21], and uses a spinning wheel with transparent and

mirrored sections to switch a screen between the optical path of a projector and a camera.

Systems that use beam splitters or mechanical time multiplexers typically extend the optical

path length of the system significantly. The system described by Apple Computer is not

able to measure depth. Another coaxial configuration comes from a second Apple Computer

patent [48], describing an LCD screen with an array of conventional cameras behind it, or

interleaved between rows of display pixels. This configuration has never been manufactured

on a wide scale, and no details have been publicly released by Apple about the performance

or other specifications of any actual prototypes that have been built. It should be noted

that this device should in theory be capable of capturing the incident light field, though it

will not sample it as uniformly as the BiDi screen. Since each of the sensors in the Apple

device requires a lens, the portion of the screen occupied by each small camera cannot be

used for display causing unpleasant visual artifacts in the displayed image.

Software attempts to simulate the effect of coaxial imaging and display devices for the

specific case of video-conference gaze correction[ 11] are fundamentally limited to correcting

the specific off-axis imaging problem for which they were designed. Software correction

approaches have limitations on the types of images they can correct, and the accuracy of

the correction, as there is information lost at the time of capture that cannot be recovered

in software.

2.3 Light-fields

One simplification that can often be applied to optical systems is to consider a ray-based

light transport system. In the realm of geometric optics, the propagation of light through a

system can be described by considering the plenoptic function [2], lumigraph [18], or light-



Figure 2-2: Single plane parametrization of the light-field. The position of intersection of

a ray with the x - y plane, defined above by the x-axis (green) and y-axis (blue), and the

angle in two dimensions Ox (orange), and ,y(purple), describes the set of rays in 3D space.

field[32]. These functions parametrize the radiance of light along rays. The contemporary

conception of the light-field was first described in 1996 in the papers by Levoy [32] and

Gortler [18]. Earlier references to the idea of capturing a full description of set of rays

crossing a plane date to 1908, when Lippmann [35] described a system consisting of an

array of pinhole cameras which was able to make measurements of a light-field similar to

those recorded by the BiDi screen.

In 3D-space, when occluders are neglected, the light-field can be parametrized with four

variables. It is useful to consider two such parametrization. In the case of a single plane

parametrization, a ray can be uniquely identified by its point of intersection with a 2D

plane, (x, y), and by its angle of intersection with the plane in two directions, Ox and Oy,

shown in Figure 2-2.

A second method of parametrize the light-field in 3D-space employs two parallel, two-

dimensional, planes. The ray is uniquely identified in space by its point of intersection with

the first plane, (u, v), and its point of intersection with the second plane, (s, t). This also

results in a four dimensional function of radiance, as shown in Figure 2-3.
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Figure 2-3: Two plane parametrization of the light-field. The position of intersection of a
ray with the u - v plane, defined above by the u-axis (green) and v-axis (blue), and the
s - t plane, defined above by the s-axis (orange) and t-axis (purple), describes the set of
rays in 3D space.
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The concept of a light-field is used for many computer graphics rendering applications,

as described by Levoy [33]. In the field of computational photography, there have arisen

numerous methods for sampling the light-field generated by real-world objects. For example,

Wilburn [54], and others [57], describe arrays of cameras capable of sampling a light-field,

and Vaish [49] describes a computer system capable of refocusing the captured light-field

in real-time. Ng [42] describes a single, hand-held camera which uses an array of lenses, or

lenslets, on top of a sensor to enable a range of light-field sampling patterns. Lenslet arrays

have now become a popular way to sample the light-field. Methods that do not employ

additional lenses have also been described. Zomet uses an LCD in front of a camera sensor

to capture a light field [60]. This design can scan a single transparent pixel across the LCD,

effectively time-multiplexing an array of pinhole cameras. A class of light-field sampling

devices exists which does not employ lenses and does not rely on time-multiplexing: mask-

based light-field photography.

2.3.1 Mask-Based Light-field Photography

Mask-based light-field capture uses a tiled broadband mask offset from the sensor plane to

create shifted copies of the light-field frequency spectrum. The principle exploited by this

technique is the same one used by AM radio to shift audio-frequency signals (20kHz) to

broadcast frequency signals (eg. 1000kHz). For this reason, Veeraraghavan, first to describe

the technique, refers to this work as Spatial Heterodyning [51]. The flatland case is depicted

in Figure A-2.

Though Veeraraghavan used a lens in their mask-based imaging system, it can be shown

that a sensor and mask alone can capture a light-field that is sufficiently band limited.

Lanman demonstrates a system that captures a light-field-like quantity without the use

of lenses [29]. Lanman et. at. also show the optimality of the tiled-Modified Uniform

Redundant Array (MURA) code, for light efficiency.

The BiDi screen builds on the work of Veeraraghavan and Lanman to create a wide-baseline

lensless light-field sensor, capable of sampling the light-field generated by reflected light from



an arbitrary scene. The BiDi screen is the first to use a dynamic mask (an LCD screen, in

this case) to perform mask-based light-field photography.
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Chapter 3

Bidirectional Display Design

It is increasingly common for consumer electronics devices that have the ability to display

images to also be able to capture them. Four basic goals motivated the design of the BiDi

screen:

1. Capture 3-D to enable depth and light aware interaction.

2. Prevent image capture from interfering with image display.

3. Support walk-up interaction (i.e., no implements or markers).

4. Allow for mobility and portability.

3.1 Design Parameters

After careful consideration of the related work and possible image capture options, I believe

that the approach taken toward the BiDi screen is uniquely positioned to satisfy the above

goals. In this section I contrast the chosen approach to other possible methods.

A core design decision was to use optical sensing rather than capacitive, resistive, or acoustic

modalities. While such technologies have been effectively used for multi-touch input, they

do not allow for 3-D capture and off-screen gestures. Some capacitive solutions permit the



detection of an approaching off-screen finger or hand, but they can not accurately or repeat-

ably determine the distance of the approaching object. Nor do any of these technologies

support lighting aware interactions.

Optical sensing can be achieved in various ways. In many of the cases of previous work,

cameras image the space in front of the display. The result is either a specially crafted

environment, similar to g-speak, where multiple infrared cameras are positioned around the

user and special gloves with high contrast markers must be worn; or, the display housing

becomes large to accommodate the cameras, such as with Microsoft's Surface.

Another issue with using standard cameras is the trade-off between placing them behind, to

the side, or in front of the display. If the camera is behind the display, then it will interfere

with the backlighting, casting shadows and causing noticeable variations in the display

brightness. Han's FTIR sensor, SecondLight, and DepthTouch all avoid this problem by

using rear projection onto a diffuser rather than an LCD display, at the cost of increased

display thickness. If the camera is located in front of the display or to the side, then it risks

being occluded by users. Placing a camera in front of the display is also problematic as it

demands a fixed installation-violating the design goals. Cameras could be placed in the

bezel, looking sideways across the display, but that would also increase the display thickness

and still suffer from user self-occlusion events. A half-silvered beam-splitting mirror, placed

at a 45 degree angle to the display surface, could be used to give a side-mounted camera a

clear view of the interaction space, but this would both greatly increase the depth of the

display and also prevent the user from directly touching the screen.

In contrast, the approach described here is to use a sparse array of photodetectors, located

behind the individual display pixels. Because the array is sparse, it will not block much

of the light from the backlight and any attenuation will be evenly distributed across the

screen. Being behind the display, it does not suffer from occlusions caused by the users. The

detector layer can be extremely thin and potentially optically transparent (using thin film

manufacturing processes), supporting the goal of portability. These are all design attributes

we share with the multi-touch displays being contemplated by Sharp and Planar. However,

the display additionally requires a small gap between the spatial light modulating and light

~' "--ii;;;--i~----; -;I i ~;l:;---~ --~::~l-i -(l--Xi-i--I-i-~~;;;;i-r__l-;;.;;c-~ ;;~ -



detecting planes. This gap, combined with the techniques described in Section 3.3, allows

for the measurement of the angle of incident light, as well as its intensity, and thereby the

capture of 3-D data.

It should be noted that for the purpose of the prototype, I sacrificed the goal of portability

in exchange for ease of fabrication with commodity hardware. In particular, I simulated the

sparse array of photo detectors by using a diffuser screen imaged by standard CCD cameras

from behind.

3.2 LCD Overview

An LCD is composed of two primary components: a backlight and a spatial light modula-

tor. A typical backlight consists of a cold cathode fluorescent lamp (CCFL), a light guide,

a diffuser, and several brightness enhancing films (BEF). The overall function of these lay-

ers is to condition the light produced by the CCFL such that it is spatially uniform and

collimated [28]. A key role is played by the backlight diffuser; by randomizing both the po-

larization state and angular variation of transmitted and reflected rays, the diffuser greatly

increases the efficiency of the backlight, allowing light rays to be "recycled" by reflecting

between the various layers until they satisfy the necessary collimation and polarization

conditions.

The spatial light modulator of an LCD is composed of three primary components: a pair

of crossed linear polarizers and a layer of liquid crystal molecules sandwiched between glass

substrates with embedded electrode arrays [56]. The polarizer closest to the backlight

functions to select a single polarization state. When a variable electric field is applied

to an individual electrode (i.e., a single display pixel), the liquid crystal molecules are

reconfigured so that the incident polarization state is rotated. The polarizer closest to the

viewer attenuates all but a single polarization state, allowing the pixel to appear various

shades of gray depending on the degree of rotation induced within the liquid crystal layer.

Color display is achieved by embedding a spatially-varying set of color filters within the glass

substrate. To achieve wide-angle viewing in ambient lighting, a final diffuser, augmented



with possible anti-reflection and anti-glare films, is placed between the last polarizer and

the viewer.

3.3 Hardware Design

As shown in Figure 3-2, the BiDi screen is formed by repurposing typical LCD components

such that image capture is achieved without hindering display functionality. The first

step is to exclude certain non-essential layers, including the CCFL/light guide/reflector

components, the various brightness enhancing films, and the final diffuser between the LCD

and the user. In a manner similar to [29], a large-aperture, multi-view image capture device

is created by using the spatial light modulator to display a pinhole array or tiled-broadband

mask. The key insight is that, for simultaneous image capture and display using an LCD,

the remaining backlight diffuser must be moved away from the liquid crystal. In doing so,

a coded image equivalent to an array of pinhole images is formed on the diffuser, which can

be photographed by one or more cameras placed behind the diffuser. The backlight display

functionality is restored by including an additional array of LEDs behind the diffuser.

One important consideration is that an angle-limiting material or other source of vignetting

is critical to achieving image capture using the BiDi screen. In practice, the reflected

light from objects in front of the screen will vary continuously over the full hemisphere

of incidence angles. However, as I describe in the following sections, the proposed image

capture scheme assumes light varies only over a limited range of angles-although this range

can be arbitrarily large. An angular-limiting film could be placed in front of the BiDi screen,

however such a film would also limit the field of view of the display. In the prototype design,

the cameras are placed about one meter behind the diffuser. Since the diffuser disperses

light into a narrow cone, the diffuser and cameras act together to create a vignetting effect

equivalent to an angle-limiting film.



Figure 3-1: Typical LCD components. An LCD is disassembled to display the arrange-

ment of the individual optical components. From left to right: (a) rear reflector, (b) the

CCFL/light guide illumination source, (c) strong diffuser, (d) brightness enhancing prism

film, (e) weak diffuser, (f) reflective rear polarizer (attached with adhesive to liquid crystal

layer) (g) the liquid crystal spatial light modulator, and (h) the front polarizer/diffuser

(attached with adhesive to liquid crystal layer). While not identical, most modern LCDs

have a similar set of layered components.
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Figure 3-2: This figure depicts two possible BiDi screen configurations. In both configura-
tions an LCD spatial light modulator is placed at the front plane (black). In the configu-
ration used in the BiDi screen prototype described in Chapter 4, the back plane (blue) is a
diffuser, imaged by a camera (gray). In an alternate configuration, the back plane (blue) is
a wide-area sensor, and the camera is not required.
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Figure 3-3: Design of a pinhole camera. (Left) The PSF width b is given by Equation 3.1

as a function of sensor-pinhole separation di, object distance do, and the aperture a. The

PSF width is magnified by M = di/do in the plane at do. (Right, Top) A single pinhole

comprises an opaque set of 19 x 19 cells, with a central transparent cell. (Right, Bottom) We

increase the light transmission by replacing the pinhole with a MURA pattern composed of

a 50% duty cycle arrangement of opaque and transparent cells. As described by Lanman

et al. [29] and earlier by Fenimore and Cannon [14], this pattern yields an equivalent image

as a pinhole.

3.4 Optical Design

The above design goals require sufficient image resolution to estimate the 3-D position of

points located in front of the screen, as well as the variation in position and angle of incident

illumination. As described by [51], the trade-off between spatial and angular resolution is

governed by the pinhole spacing (or the equivalent size of a broadband tile) and by the

separation between the spatial light modulator and the image plane (i.e., the diffuser). As

with any imaging system, the ultimate spatial and angular resolution will be limited by

the optical point spread function (PSF). In this section I analyze the optimization of a

BiDi screen for both on-screen and off-screen interaction modes under these constraints for

the case of a pinhole array mask. In Section 3.4.2 I extend this analysis to the case of

tiled-broadband masks.

3.4.1 Pinhole Arrays

Multi-View Orthographic Imagery: As shown in Figure 3-4, a uniform array of pinhole

images can be decoded to produce a set of multi-view orthographic images. Consider the

1 6



orthographic image formed by the set of optical rays perpendicular to the display surface.

This image can be generated by concatenating the samples directly below each pinhole on

the diffuser plane. Similar orthographic views, sampling along different angular directions

from the surface normal of the display, can be obtained by sampling a translated array of

points of the diffuser-plane image offset from the center pixel under each pinhole.

On-screen Interaction: For multi-touch applications, only the spatial resolution of the

imaging device in the plane of the display is of interest. For a pinhole mask, this is simply

the total number of displayed pinholes. Thus, to optimize on-screen interactions the pinhole

spacing should be reduced as much as possible (in the limit displaying a fully transparent

pattern) and the diffuser brought as close as possible to the spatial light modulator. This is

precisely the configuration utilized by the existing optical touch sensing displays by Brown

et al. [7] and Abileah et al. [1].

Off-screen Interaction: To allow depth and lighting aware off-screen interactions, addi-

tional angular views are necessary. First, in order to passively estimate the depth of scene

points, angular diversity is needed to provide a sufficient baseline for triangulation. Sec-

ond, in order to facilitate interactions with an off-screen light-emitting widget the captured

imagery must sample a wide range of incident lighting directions. As a result, spatial and

angular resolution must be traded to optimize the performance for a given application. Off-

screen rather than on-screen interaction is the driving factor behind the decision to separate

the diffuser from the spatial light modulator, allowing increased angular resolution at the

cost of decreased spatial resolution with a pinhole array mask.

Spatio-Angular Resolution Trade-off: Consider the design of a single pinhole camera

shown in Figure 3-3, optimized for imaging at wavelength A, with circular aperture diameter

a, and sensor-pinhole separation di. The total width b of the optical point spread function,

for a point located a distance do from the pinhole, can be approximated as

2.44Adi a(do + di)
b(di, do, a, A) = + (3.1)

a do

Note that the first and second terms correspond to the approximate blur due to diffraction
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Figure 3-4: Multi-view orthographic imagery from pinhole arrays. A uniform array of
pinhole images (each field of view shaded gray) is resampled to produce a set of orthographic
images, each with a different viewing angle 0 with respect to the surface normal of the
display. The set of optical rays perpendicular to the display surface (shown in blue) is
sampled underneath the center of each pinhole. A second set of parallel rays (shown in red)
is imaged at a uniform grid of points offset from the center pixels under each pinhole.

and the geometric projection of the pinhole aperture onto the sensor plane, respectively [20].

If it is assumed that each pinhole camera has a limited field of view, given by a, then the

minimum pinhole spacing dp is

dp(di, do, a, A, a) = 2di tan (-) + b(di, do, a, A). (3.2)

Note that a smaller spacing would cause neighboring pinhole images to overlap. As pre-

viously described, such limited fields of view could be due to vignetting or achieved by

the inclusion of an angle-limiting film. Since, in the proposed design, the number of or-

thographic views Nanguar is determined by the resolution of each pinhole image, one can

conclude that the angular resolution of the system is limited to the width of an individual

pinhole image (equal to the minimum pinhole spacing dp) divided by the PSF width b as

follows.

dp(d, do, a, A, a)
Nangular (di, do, a, A, a) = (d, do, a, (3.3)

b(di, do, a, A)

Now consider an array of pinhole cameras uniformly distributed across a screen of width

s and separated by a distance dp (see Figure 3-4). Note that a limiting field of view is

necessary to prevent overlapping of neighboring images. As described in Section 3.5.1, the

BiDi screen uses a depth from focus method to estimate the separation of objects from the
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Figure 3-5: Effective spatial resolution as a function of distance do from the display. The
effective spatial resolution in a plane at do (given in dots per cm) is evaluated using Equa-
tion 3.4. System parameters correspond with the prototype. Orange error bars denote
the experimentally-estimated spatial resolution described in Section 4.3. Note that, using
either dynamically-shifted masks or a higher-quality image sensor, the spatial resolution
could significantly increase near the display (approaching the higher limit imposed by the
optical PSF).

display surface. As a result, the system components should be placed in order to maximize

the effective spatial resolution in a plane located a distance do from the camera. The total

number of independent spatial samples Nspatial in this plane is determined by the total

number of pinholes and by the effective PSF for objects appearing in this plane, and given

by

Nspatial (di, do, a, A, a; dp, b) = min d ) d (3.4)

where the first argument is the total number of pinholes and the second argument is the

screen width divided by the magnified PSF evaluated in the plane at do. Thus, the effective

spatial resolution is given by Nspatial/s. Note that, since the BiDi screen is orthographic,

it is assumed the object plane at do is also of width s.

As shown in Figure 3-5, the effective spatial resolution in a plane at do varies as a func-

tion of the object distance from the pinhole array. For small values of do, the resolution

monotonically increases as the object moves away from pinholes; within this range, the

spatial resolution is approximately equal to the total number of pinholes divided by the

screen width. For larger values of do, the resolution monotonically decreases; intuitively,

when objects are located far from the display surface, neighboring pinholes produce nearly

identical images. As described in Appendix A, the sensor-mask (or diffuser-mask) sepa-
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Figure 3-6: (Left) The number of spatial samples measured and (Right) the number of

angular samples per pixel measured by varying di and a, with do = 250mm , a = 256 tm,

and s = 487.2mm. In the above plots, the mask spacing dp was maximized for a given a.

The parameter space in this problem is large, with tradeoffs existing between screen (mask)

resolution, sensor resolution, mask pattern size (pinhole spacing), sensor-mask separation,

and spatial and angular resolution (ability to resolve depth) and field of view. Note that

regions of parameter space above that maximize spatial samples reduce angular samples

and vice-versa.

ration is selected to maximize the effective spatial resolution located within 50 cm of the

display surface. Note that, in Figure 3-5, the resolution close to the pinhole array drops

dramatically according to theory. However, in practice the resolution close to the display

remains proportional to the number of pinholes. This is due to that fact that, in the pro-

totype, the pinhole separation dp is held constant (as opposed to the variable spacing given

in Equation 3.4). Practically, the vignetting introduced by the diffuser and camera's field

of view prevents overlapping views even when an object is close to the screen-allowing for

a fixed pinhole spacing.

3.4.2 Broadband Masks

The primary limitation of a pinhole array is severe attenuation of light. For example, in

the proposed system a pinhole array is created by separating each pinhole by 18 LCD

pixels, both horizontally and vertically. As a result, only approximately 0.2% of incident

light reaches the diffuser (or sensor array in an ideal design). To overcome this attenuation,
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extremely bright external lighting would be required for real-time interaction. Such lighting

would significantly impair image display, due to strong glare and reflections. Fortunately,

the LCD can be used to display arbitrary 24-bit RGB mask patterns. As a result, the

generalized tiled-broadband masks described by Lanman et al. [29] are used. Specifically,

the code used is a tiled-MURA code, as shown in Figure 3-3. Each pinhole is replaced

by a single MURA tile of size 19x 19 LCD pixels. Because the MURA pattern is binary

(i.e., each pixel is either completely transparent or opaque) with a 50% duty cycle, the

tiled-MURA mask transmits 50% of incident light. Assuming the cameras have a linear

radiometric response, a tiled-MURA mask allows the external lighting to be dimmed by a

factor of 180 (in comparison to pinhole array masks).

The heterodyne decoding method of Veeraraghavan et al. [51] is used to decode the diffuser-

plane image, yielding orthographic multi-view imagery equivalent to that provided by a

pinhole array mask. The use of tiled-broadband codes, however, does require additional

computation to decode the diffuser-plane image and introduces additional noise from the

decoding process. Note that the spatio-angular resolution trade-off for such tiled-broadband

codes are similar to those described in the previous section for pinhole arrays-yielding

a multi-view orthographic image array with similar spatial and angular sampling rates.

Addition details on such design issues are provided in Appendix A.

3.5 Gesture Detection

3.5.1 Depth Extraction

As described in Chapter 2, there are a wide variety of methods to passively estimate depth

from multi-view imagery. The BiDi screen employs a depth from focus method inspired

by [40]. In their approach, a focal stack is collected by focusing at multiple depths within

the scene. Afterwards, a per-pixel focus measure operator is applied to each image in the

focal stack, with the assumption that each image patch will appear with highest contrast

when the camera is focused at the depth of the patch. In the implementation described



in Chapter 4 a simple smoothed gradient magnitude focus measure was used. Finally, a

coarse depth map can be obtained by evaluating the maximum value of the focus measure

for each pixel. While modern depth from focus/defocus methods include more sophisticated

focus operators, the approach used here can easily be evaluated in real-time on commodity

hardware (see Chapter 4).

In order to obtain the set of refocused images (i.e., the focal stack), I apply methods

from synthetic aperture photography [50]. As shown in Figure 3-4, when considering the

intersection of the optical rays with a plane at distance do, each orthographic view, whether

captured using pinhole arrays or tiled-broadband codes, is translated from the central view

by a fixed amount. For an orthographic view rotated by an angle 0 from the display's

surface normal, the translation t(0) will be given by

t(do, 0) = do tan(0). (3.5)

In order to synthetically focus at a display do, I follow the computationally-efficient ap-

proach of Ng [43]; rather than directly accumulating each orthographic view, shifted by

-t(do, 0), the Fourier Projection-Slice Theorem is applied to evaluate refocused images as

2D slices of the 4D Fourier transform of the captured light field. Typical refocusing results

are shown in Figure 3-7. Because the refocusing operation is performed on a two-times

unsampled grid, the process achieves a small degree of super-resolution through refocusing.

The results shown indicate that web-cam quality images are possible from a device matching

the specifications of the prototype constructed (See Chapter 4).

3.5.2 Hand Tracking

Hand tracking is performed using the depth map described in the previous section as input.

The OpenCV blob-tracking librariy is used to segment regions of low distance values in the

depth map corresponding to hands from the rest of the depth map. The Mean Shift method

[9], combined with an automatically updated foreground mask was found to give the best

results. The OpenCV library referes to this as the MSFG method. A Kallman filter, provided



Figure 3-7: Synthetic aperture refocusing with orthographic imagery. (Left) A scene com-

posed of three textured cards (center card has a printed resolution test chart shown facing

camera on the left). (Right) Synthetically refocused images at a distance do of 10 cm and

15 cm shown on the top and bottom, respectively.

by the OpenCV blob-tracking library, was used to filter the resulting position data.

The method described here has some disadvantages over other types of gesture tracking.

It cannot determine the pose or orientation of the hand, only the position over the screen.

This method would likely be used as the first step in a more sophisticaed gesture tracking

pipeline. The method has the advantage that it easily runs in realtime, and was already

impleneted in free software. The method works sufficiently well in the prototype described

in Chapter 4 to drive the demonstrations described in Chapter 5.

3.5.3 Touch Estimation

There exist a wide variety of methods for extracting touch events from a device like the

BiDi screen. It would certainly be possible to cover the surface of the BiDi screen with a

resistive or capacitive touch screen. However, this would lead to increased complexity and

cost. To reduce cost and complexity, it will be most efficient to use the optical sensor of the

BiDi screen to locate touch events. A rudimentary method of touch estimation is to find

the average depth value of each blob used in hand tracking (Section 3.5.2), and determine

touch events when this average value falls below a threshold.

For a detected blob with mean position (x, y) in the depth map, ROI R, and number of
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non-zero elements, d, contained in R, NR, the mean depth value, D, is given by

D= di (3.6)
icR

A touch is detected when D < Dthr, where Dthr is a depth threshold that can be tuned. It

should be noted that a gap exists between the front of the LCD and the transparent acryllic

sheet used to protect the surface of the LCD from direct touches. This gap prevents fingers

that touch the screen from occluding all ambient lighting.

The above approach is useful in its extreme simplicity, and worked sufficiently well for the

prototype discussed in Chapter 4. However, it has significant disadvantages. The center

of a detected blob is rarely aligned with the extended finger performing the actual touch,

meaning that this method further reduces the resolution of the depth map, allowing for only

very course touch detection. Also, using this method, touch events are dependant not only

on the distance of the tip of a finger to the surface of the screen, but also on the distance

of the rest of the hand. This is undesireable, since it is an unexpected result for users (see

the discussion of user experience in Section 4.4).

A plausibile extension to the method described here would resolve the above issues without

incurring significantly more processing cost. Once candidate blobs have been selected for

touch detection using the threshold applied to Equation 3.6, the raw modulated light field

data can be used as input to a touch detection algorithm inspired by touchlib (a library

for creating multi-touch interaction surfaces by tracking blobs of reflected light) or similar

libraries. Without the influence of the mask function, which can be removed with a low-pass

filter, the user's hand is effectively viewed through a diffuser. This is consistent with many

of the optical touch detection approaches described in Chatper 2. The depth map blob

could provide an ROI into the raw data to further reduce computation time and spurious

results.





Chapter 4

Prototype: Construction and

Performance

4.1 Implementation

4.1.1 Hardware

As shown in Figure 3-2, the prototype BiDi screen was constructed by modifying a Sceptre

X20WG-NagaII 20.1 inch LCD with a 2 ms response time. The spatial light modulator

was separated from the backlight, and the front diffuser/polarizer was removed. The weak

diffuser was retained from the backlight and placed at di=2.5 cm from the liquid crystal

layer on the side opposite the user. The front polarizer of the LCD was replaced with

a linear polarizing polyvinyl alcohol-iodine (PVA) filter placed in direct contact with the

diffuser. Commercial LCD screens typically combine the front polarizer with a diffusing

layer, as was done on the X20WG. A diffuser in the plane of the spatial light modulator

would interfere with the image capture mechanism. In order to easily mount the replacement

polarizer on the correct side of the screen, the LCD was mounted backwards, so that the

side typically facing the user was instead facing inward towards the backlight. The backlight

functionality was restored by replacing the CCFL/light guide/reflector component with a



set of 16 Luxeon Endor Rebel cool white LEDs, each producing 540 lumens at 700 mA,

arranged evenly behind the LCD. The LEDs were strobed via the parallel port to allow

them to be shut off during the capture frame.

A pair of Point Grey Flea2 video cameras were placed 1 m behind the diffuser, each imaging

approximately half of the diffuser while recording a 1280x960 16-bit grayscale image at 7

fps. For some interaction sessions, the cameras were operated in 8-bit grayscale mode.

The camera shutters were triggered from the parallel port in order to correctly synchronize

image capture with the LCD frame updates and LED strobing. Image capture and display

was performed on an Intel Xeon 8 Core 2.66 GHz processor with 4 GB of system RAM and

an NVIDIA Quadro FX 570 graphics card. The refocusing, depth estimation, and lighting

direction estimation pipeline was capable of processing raw imagery at up to 7.5 fps.

The prototype was constructed on a standard optical bench, which provided a surface to

precisely mount each of the elements of the optical stack described above. A custom frame

was constructed to hold the naked LCD screen. The frame consists of two wooden beams

bolted vertically to the optical bench. Slits were cut into the inner faces of the beams,

allowing the screen to be slid in between them. Bolts were run through the beams in the

direction into the plane of the LCD screen. These bolts were used to suspend the remainder

of the optical stack at the desired distance from the LCD. A protective clear acrylic sheet

was suspended between the user and the LCD screen to protect the delicate rear-polarizer

from touches. This protective layer serves a double purpose, also preventing the LCD from

being fully shaded from external lighting when a user is in contact with the screen.

External lighting was provided by overhead halogen lamps when the MURA code was used.

Capturing images with a pinhole mask required an additional halogen stage lamp placed

above the region in front of the LCD. This lighting was sufficient for imaging gestures and

objects placed far from the display (e.g., the textured cards in Figure 3-7).

Both pinhole arrays and tiled-MURA codes were displayed on the LCD, with the latter

used for real-time interaction and the former for static scene capture. Both the pinholes

and MURA tiles repeated every 19 x 19 LCD pixels, such that dp = 4.92 mm with a square
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pinhole aperture of a = 256 pm. Following the derivation in Section 3.4, the acquired

light field had a maximum spatial resolution of 88 x 55 samples (in the plane of the LCD)

and an angular resolution of 19x 19 samples spanning ±5.6 degrees perpendicular to the

display surface. The actual spatial resolution recorded was 73 x 55 samples, due to redundant

measurements in the area of the screen viewed by both cameras. While narrow, this field

of view and the limited spatial resolution was sufficient to provide robust refocusing and

depth estimation (see Figures 3-7 and 4-5).

During interactive operation, three frames were sequentially displayed: a MURA code, and

two display frames. The screen was refreshed at an average rate of 21 Hz and images were

captured by the cameras each time a MURA frame was displayed. This results in the 7 fps

capture rate described above. For static scene capture a sequence of two frames, a pinhole

mask, and a "black" background frame were captured. Because timing was unimportant in a

static scene, the frame rate of the pinhole capture sequence was adjusted according to scene

lighting to allow for a sufficiently long camera exposure time. Background subtraction was

used to mitigate the effects of the limited contrast achieved by the spatial light modulator

for large incidence angles [56].

4.1.2 Software

As described above, the BiDi screen is controlled by a desktop computer running Windows

XP 64-bit. The software controlling the BiDi screen, known as bidicam, was written in

C++ and compiled with Microsoft Visual C++. The rendering and image capture from

the cameras are controlled from a single class called Video. The graphics generated by the

BiDi screen are rendered in OpenGL [47]. The Glut toolkit [27], provided by NVIDIA,

is used to provide the rendering context for OpenGL, and the main loop for the bidicam

application. Images are read from the cameras using the Point Grey flycapture library,

version 2.

A Glut timer callback function orchestrates the backlight, camera triggering, and screen

updates. The cameras and lights are both triggered by a signal sent from the parallel port



Figure 4-1: 3D interaction with thin displays. Using the methods presented in this thesis

I describe a novel modification of an LCD to allow collocated image capture and display.

(Left) An example of a mixed on-screen touch and off-screen hover interaction. Virtual

models are controlled by the user's hand movement. Touching a model brings it forward

from the menu, or puts it away if already selected. Once selected, free space gestures control

model rotation and scale. (Middle) Multi-view orthographic imagery recorded in real-time

using a mask displayed by the LCD. (Right, Top) Image refocused at the depth of the hand

on the right side. Note that the other hand, which is closer to the screen, is defocused.

(Right, Bottom) Real-time depth map, with near and far objects shaded green and blue,

respectively.

of the computer. When a MURA mask is required, it is generated on the fly using NVIDIA's

Cg shader language [15]. The basic structure of the software is shown in Figure 4-2.

The OpenCV and FFTW libraries are used to perform the image processing required in

decoding the modulated light field, extracting a depth map, and tracking gesture. These

calculations take place in a processing thread, which is launched as the application starts.

As captured frames become available for processing, the processing thread is activated and

performs heterodyne decoding. Depending on the interaction mode, the processing thread

can be configured to perform image refocusing, and depth from focus using a maximum

contrast operator, in order to create a depth map. For gestural interaction, the processing

thread can be configured to additionally perform blob tracking, using the OpenCV library's

Mean Shift with Foreground (MSFG) method [9]. The processed results, such as spatial

coordinates of detected hands, are stored to be used as an input to the OpenGL rendering.

The processing thread for the pinhole decoding has an analogous structure. However,

instead of performing a frequency domain heterodyne reconstruction, the pinhole pipeline

performs a simple re-binning operation, driven by a calibration file.
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Figure 4-2: This schematic drawing closely depicts the structure of the software that controls
the operation of the BiDi Screen. The main GLUT loop coordinates the elements on the
right of the diagram. An processing thread runs in parallel to support the calculations
shown on the left.
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Figure 4-3: (Left) The Hough transform of the lightbox imaged by a pinhole array. Maxi-

mums occur along at points representing rows and columns of lightbox images. (Right) An

annotated lightbox image from a pinhole array. The centers of the pinholes are located at

the intersections of the row and column maximums in the Hough transform.

Calibration

Calibration for both the pinhole and heterodyne decoding pipelines is achieved using a semi-

automatic scripted MATLAB procedure. When calibrating the system, a light box is placed

very near the front of the BiDi screen, and an image is captured from the cameras. In the

case of the pinhole array mask, a series of dots are produced, due to per-pinhole vignetting.

The maximum intensity of each dot will appear under the location of each pinhole in the

pinhole array mask.

The pinhole calibration MATLAB script performs a linear Hough transform to extract

the most likely positions of vertical and horizontal lines of pinholes (Figure 4-3). The

intersections of these lines are assumed to be the locations of the pinholes in the array. This

method automatically orders the located pinholes. The coordinates obtained from this

MATLAB script are saved into a MATLAB .mat file, which is read directly by the bidicam

application. This calibration method can correct for rotation and linear scale distortions,

but cannot correct for radial (pincushion or barrel) distortion. In the constructed prototype

a high quality, 16mm lens is used, which results in negligible radial distortion. This method

is robust to small deviations in lightbox angle, as the lightbox is a wide-angle uniform

source.



The heterodyne calibration MATLAB script operates on the transformed modulated light-

box image. The measured signal will be a convolution of the broadband lightbox signal with

the tiled broadband MURA mask. By the duality property of the Fourier transform, the

transformed image will contain a tiled delta function. The calibration script requires the

user to hand tune rotation and scale parameters in order to visually match a point cloud

to the tiled delta function. The calibration additionally requires the user to choose a phase

shift which creates a centered vignetting function in the reconstructed image of the light

box. This method is also robust to small changes in lightbox orientation. The lightbox is a

broadband signal which is insensitive to a phase shift.

Heterodyne Decoding

The heterodyne decoding section of the processing thread follows directly from the tech-

nique described by Lanman [29], and is shown in Figure A-2. The raw input image is

transformed using a 2D forward FFT. The heterodyne technique produces a constellation

of slices of shifted copies of the light field spectrum. In the frequency domain, tiles are

chosen surrounding each shifted spectral copy slice. The location of the tile center is chosen

based on the calibration described in Section 4.1.2. The tiles are rearranged into a 4D

function, representing the transform of the light-field spectrum. The tiles are phase cor-

rected to remove the influence of the MURA mask and produce the calibrated vignetting

function. This 4D function is then inverse transformed using a backward 4D FFT to obtain

the light-field.

Parallelism

In order to obtain results in real-time, it was necessary to exploit the parallelism available in

modern multi-core processors. This was achieved in various ways throughout the processing

pipeline. The pinhole path was not used for realtime interaction, as it required long cam-

era exposures. Therefore, the optimizations described here only apply to the heterodyne



Figure 4-4: (Left) Jobs that process an entire image at a time are submitted such that each
image in the focal stack is processed in parallel. (Right) Jobs that compare pixels through
the focal stack are submitted such that the pixel columns through the stack are processed
in parallel.

pipeline. The structure of the code that implements the parallelism described here is shown

in Figure 4-2.

The simplest place to take advantage of parallelism was in the FFT and IFFT required by

the heterodyne decoding procedure. The FFTW library used to perform these transforms

natively supports multiple threads with proper configuration. The FFTW library can be

configured to test many permutations of the division of labor between different threads to

solve the transform requested to find the most efficient permutation for a particular piece

of hardware.

Thread queues were used to take advantage of parallelism in the depth from focus estimation

routine. A thread queue creates a pool of worker threads which may be assigned jobs from a

pool of work items. The first pool of work items calls an OpenCV function for each refocused

image to find the gradient magnitude of the image. These can be called in parallel, as the

results do not depend on one another (ordering depicted in Figure 4-4, left). The same

process is repeated to smooth the gradient magnitude image with a local averaging box

filter. Once these jobs have completed, the job queue is loaded with jobs which travel

through the stack of smoothed gradient magnitude images (ordering depicted in Figure 4-4,

right), determining first the focus confidence (standard deviation) and then assembling a

depth map.

I
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4.2 Limitations

The proposed system is currently constrained to operate within the range of specifications

for available consumer off-the-shelf technology, which places a lower limit on the size of

the pixels used in the LCD and the sensor. In turn these components limit the maximum

angular and spatial resolutions of the device, as described in Section 4.1. Experimentally,

the diffuser PSF did not significantly limit the effective sensor resolution. Note, however,

that the diffraction term in Equation 3.1 was a significant factor. The 256 Am pixels in the

display, each color sub-pixel being a third of this width, resulted in a diffraction width of

about 400 pm in the diffuser plane.

The BiDi Screen is optimized for real-time interaction, rather than single-shot image cap-

ture. The current implementation uses a pair of synchronized video cameras and a diffuser

to simulate the performance of an embedded optical sensor array. The frame rate of the cur-

rent apparatus is limited to 7.5 fps by the performance of currently available video cameras

and the maximum transfer rate allowed by the 1394b firewire bus.

External lighting was required to provide sufficient object light during image capture. Effi-

cient mask patterns, such as the tiled-MURA pattern, allow external lighting to be reduced.

The intensity of external lighting required by the system reduces contrast during image dis-

play due to glare and reflections. Objects imaged close to the display can be shadowed from

ambient lighting sources, causing less accurate measurements. In contrast to transmission-

mode light field capture, such as in [29], the design requires the inclusion of an angle-limiting

element (either a thin film or other source of vignetting), further reducing the light reach-

ing the optical sensors. The LCD spatial light modulator has limited contrast, which is

further reduced at large incidence angles. When capturing data with a tiled-MURA mask,

this contrast reduction can be compensated for algorithmically. However to compensate for

low contrast when using a pinhole mask, a background image must be captured with the

LCD set to fully opaque, and subtracted from the image recorded as the mask is displayed.

Capturing the background image further reduces the frame rate possible when using the

pinhole mask. Additionally the layered components of the design introduce some artifacts



from reflections and scattering.

4.3 Validation
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Figure 4-5: Experimental analysis of depth and spatial resolution. (Top, Left) A linear

sinusoidal chirp, over the interval [0.5, 1.5] cycles/cm with marks on the left margin indicat-

ing 0.1 cycles/cm increments in the instantaneous frequency. Similar to Figure 3-7, three

copies of the test pattern were placed parallel to the screen, at distances of do={18, 26, 34}
cm (from right to left). (Top, Middle) All-in-focus image obtained by refocusing up to 55
cm from the display. As predicted by Equation 3-5, the spatial resolution is approximately

2 cycles/cm near the display, and falls off beyond 30 cm. Note that the colored arrows indi-
cate the spatial cut-off frequencies predicted by Equation 3.4. (Top, Right) The recovered
depth map, with near and far objects shaded green and blue, respectively. (Bottom) Focus
measure operator response, for the inset regions in the depth map. Note that each peak

corresponds to the depth of the corresponding test pattern (true depth shown with dashed
lines).

4.3.1 Resolution

A test pattern consisting of a linear sinusoidal chirp, over the interval [0.5, 1.5] cycles/cm,

wacopies used to quantify the spatial resolution (in a plane parallel to the display) as a function

of distance do. In the first experiment, three test patterns were placed at various depths
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throughout the interaction volume (see Figure 4-5). Each chart was assessed by plotting the

intensity variation from the top to the bottom. The spatial cut-off frequency was measured

by locating the point at which fringes lost contrast. As predicted by Equation 3-5, the

measured spatial resolution was 2 cycles/cm near the display; for do<30 cm, the pattern

lost contrast halfway through (where fringes were spaced at the Nyquist rate of 1 cycle/cm).

In a second experiment, the test pattern was moved through a series of depths do using a

linear translation stage (see Figure 4-6). The experimentally-measured spatial resolution

confirms the theoretically-predicted trend in Figure 3-5. In a third experiment, a point

light source was translated parallel to the display surface at a fixed separation of 33 cm.

The image under a single pinhole (or equivalently a single MURA tile) was used to estimate

the lighting angle, confirming a field of view of 11 degrees. In a fourth experiment, an

oscilloscope connected to the GPIO camera trigger recorded an image capture rate of 6 Hz

and a display update rate of 20 Hz.

4.3.2 Depth Resolution

The depth resolution was quantified by plotting the focus measure operator response as

a function of object distance do. For each image pixel this response corresponds to the

smoothed gradient magnitude evaluated over the set of images refocused at the correspond-

ing depths. As shown in Figure 4-5, the response is compared at three different image points

(each located on a different test pattern). Note that the peak response corresponds closely

with the true depth. As described by Nayar and Nakagawa [40], an accurate depth map

can be obtained by fitting a parametric model to the response curves. However, for com-

putational efficiency the per-pixel depths are assigned at the per-pixel maximum, leading

to more outliers than a parametric model would produce.

4.3.3 Touch and Hover Discrimination

The prototype can discriminate touch events from non-contact gesture motions. Each object

in front of the scene is considered to be touching if the median depth is less than 3 cm. In



Figure 4-6: The depth and spatial resolution validation was performed as shown here.
(Top,Left) Resolution targets were placed at various depths, creating the images shown
in Figure 4-5. (Top,Right) a resolution target is translated towards the screen using a
translation stage. These tests allow us to validate the spatial resolution obtained as a
function of distance from the screen, also shown in Figure 4-5. (Bottom) Angular resolution
and field of view is validated by moving a point light along a translation stage.
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the following section, I report the experience of several users with the system.

4.4 User Experience

A user experience evaluation was conducted to identify the strengths and weaknesses of the

BiDi screen. Four different users were presented with two of the demonstrations seen in the

supplementary video. The world viewer demo, and the model viewer demo, described in

Section 4.3 were used in all cases, presented in varying order. Three of the four users were

able to use both applications successfully, after an initial learning curve. Only one of the

users was able to figure out how to control both demos without explanation. Each of the

four users experienced two common problems with the depth tracking: moving outside the

range of measurement, and moving too rapidly, such that the system lost track of the user's

hand. A common problem was also encountered when attempting to use the touch interface.

Users typically touch the screen such that the palm of the hand is placed below the point

where the fingers touch. The system would register the touch below the point where the

fingers were placed due to the palm measurement. One user complained about the flicker

rate, one complained about the intensity of the lighting, and two users commented that the

world viewer demo was unintuitive. During the course of the model viewer demonstration

it was found that the depth threshold used for distinguishing touch had to be adjusted on

a per user basis, indicating that a calibration may be required. Despite the problems, three

of the four users commented positively about their experience.

The demonstrations used in this evaluation were coded primarily to display the measurement

capabilities of the BiDi Screen, rather than to present an intuitive use of those capabilities.

The results of this evaluation support the assertion that this method can support a new

class of interactive display devices, as the problems encountered did not prevent the users

from accomplishing their goals, and are specific to the prototype, such as low frame rate

and simplistic interpretation of measurements in the demonstrations.





Chapter 5

Interaction Modes

In this section I describe three proof-of-concept interaction modes supported by the BiDi

screen. The first two examples, gestural interaction (multi-touch and hover), and lighting

sensitive interaction, are supported by the constructed prototype described in Chapter 4.

5.1 Multi-Touch and Hover

The BiDi screen supports on-screen multi-touch and off-screen hover gestures by providing

a real-time depth map, allowing 3D tracking of objects in front of the display. There are few

devices that can support both multi-touch interaction and free-space gesture. The multitude

of touch devices and gesture devices are described in Chapter 2. Figure 5.1 shows a sample

multi-touch to hover interaction.

5.1.1 Demonstrated

As shown in Figure 5.1, a model viewer application is controlled using the 3D position of

a user's hand. Several models are presented along the top of the screen. When the user

touches a model, it is brought to the center of the display. Once selected, the model can



Figure 5-1: Multi-touch demonstration, showing an image being manipulated by two fingers.
In this demonstration the image can be scaled and rotated. If a hand is lifted, the image
can be tilted up, demonstrating the hover capabilities of the BiDi screen.

be manipulated with touch-free hover gestures. The model can be rotated along two axes

by moving the hand left to right and up and down. Scaling is controlled by the distance

between the hand and the screen. Touching the model again puts it away. As shown

in Figure 5.1, a world navigator application controls an avatar in a virtual environment.

Moving the hand left and right turns, whereas moving the hand up and down changes gaze.

Reaching towards or away from the screen affects movement of the avatar. More than one

hand can be tracked by the BiDi screen, allowing multi-touch gestures to be implemented

as well.

5.1.2 Future Work

The technology behind the BiDi screen is promising for use in mobile devices in that with

an area sensor, the screen can be made with approximately the thickness of a typical LCD

screen. In the world of mobile computing, where small screens and small keyboards or

button pads are a necessity, enabling interaction in a volume in front of the device could be

a liberating advancement. On-screen touches easily obscure a large portion of the display

on a small device. Hover interaction will solve this problem. Free space gesture offers a

greater degree of flexibility for articulating a vocabulary of meaningful gestures than gesture

~;;;;;;;;~



Figure 5-2: A virtual world navigated by tracking a users hand. Moving the hand left,

right, up, and down changes the users heading. Reaching towards or away from the screen

moves. The figure shows a the world view changing as the hand moves from the center of

the screen (Top) to the left (Bottom).
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Figure 5-3: (Top) Model viewer demonstration, showing a ship model being manipulated by
free space gesture, an example of a mixed on-screen touch and off-screen hover interaction.
Virtual models are controlled by the user's hand movement. Touching a model brings it
forward from the menu, or puts it away if already selected. Once selected, free space gestures
control model rotation and scale.

constrained to the surface of a screen.

The ability of the BiDi screen to create a depth map means that, in addition to tracking

the user's hands, it will be possible to track the user's face. This means that a BiDi screen

enabled mobile device could take full advantage of its display by providing virtual parallax,

whereby the user's shifting his head from side to side would reveal different views of a

virtual canvas. This approach treats the screen of the device like a window that the user

looks through, rather than as a drawing surface.

5.2 Lighting Sensitive Interaction

Another mode for interacting with the BiDi screen is to intentionally alter the light striking

it to alter the rendering of a virtual scene. The BiDi screen creates a window into a virtual

world through which users can interact by altering lighting conditions.



Figure 5-4: A relighting application controlled with a real flashlight. The light field esti-

mates the flashlight position. A similar virtual light is createdas if the real flashlight was

shining into the virtual world.

5.2.1 Demonstrated

A model lighting application was implemented to allow interactive relighting of virtual

scenes (see Figure 5.2). In this interaction mode, the user translates a flashlight in front of

the display. For a narrow beam of light, a single pinhole (or MURA tile) may be illuminated.

Below this region, a subset of the light sensors will be activated by the beam. The position

of the pinhole, in combination with the position of the sensors that are illuminated, can be

used to determine the direction along which light entered the screen. A virtual light source

is then used to light the simulated scene-as if the viewer was shining light directly into the

virtual world.

5.2.2 Future Work

With a sufficiently sensitive screen, it would be possible to transfer real-world lighting

conditions into a rendered scene. More exotic applications, such as shining a real projector

into a virtual world, are also theoretically possible.
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mates the flashlight position. A similar virtual light is createdas if the real flashlight was

shining into the virtual world.

5.2.1 Demonstrated

A model lighting application was implemented to allow interactive relighting of virtual

scenes (see Figure 5.2). In this interaction mode, the user translates a flashlight in front of

the display. For a narrow beam of light, a single pinhole (or MURA tile) may be illuminated.

Below this region, a subset of the light sensors will be activated by the beam. The position

of the pinhole, in combination with the position of the sensors that are illuminated, can be

used to determine the direction along which light entered the screen. A virtual light source

is then used to light the simulated scene-as if the viewer was shining light directly into the

virtual world.

5.2.2 Future Work

With a sufficiently sensitive screen, it would be possible to transfer real-world lighting

conditions into a rendered scene. More exotic applications, such as shining a real projector

into a virtual world, are also theoretically possible.



5.3.1 Demonstrated

Although the prototype constructed does not have sufficient spatial resolution to support the

video interaction described here, design modifications such as screen and sensor resolution

improvements, angle limiter changes and screen-sensor separation changes will enable them.

It is possible to increase the spatial resolution of the images captured by the BiDi screen

through a simple super-resolution technique. By creating, on an upsampled grid, a refocused

spatial image from a captured light-field (see Chapter 3), I show in Figure 5.3 that web-cam

quality images may be obtained.

5.3.2 Future Work

One common problem in video chat applications is that the users of the system are unable

to make eye contact. Many users find this an unpleasant or unnerving experience. The

eye contact, or eye gaze problem, is a result of the fact that video chat applications record

the participants with a camera which is spatially separated from the display upon which

the participants are imaged. When a participant is looking at the display (at the other

participant in the video chat) he or she is not looking at the camera recording him or

her. The BiDi screen solves this problem by collocating the display and camera spatially.

In order to use this feature, the prototype I constructed would need to be enhanced to

perform at higher spatial resolution, and to capture a light-field in color. The current

prototype captures only in monochrome.

In a video chat scenario, background segmentation can be performed even in dynamic scenes

because scene depth can be extracted from a captured light-field image (See Chapter 3).

The video-rate depth map available from the BiDi screen would also make it possible to

render virtual objects into the real captured scene. This ability opens up the possibility

of novel virtual mirrors built using BiDi screens. A virtual mirror might show the user an

image of himself, but render additional objects such as clothing or animated creatures into

the scene. The rendered objects could be lit with real-world lighting, as described earlier

in this chapter.



i __~_ _ _i---------- -- --------- 1_



Chapter 6

Conclusions

Displays containing arrays of light sensors are already surfacing as research prototypes and

poised to enter the market. This work demonstrates a new geometry and technique which

add a long list of new features to optically sensitive devices. As this transition occurs, the

BiDi screen may inspire the inclusion of some of the features described in this thesis into

these devices. In particular, many of the works discussed in Chapter 2 enabled either only

multi-touch or pure relighting applications. The contribution of a potentially-thin device

for multi-touch and gesture detection is unique. For such interactions, it is not enough to

have an embedded array of omnidirectional sensors; instead, by including a sparse array

of low-resolution virtual cameras (e.g., through the multi-view orthographic imagery in the

design shown here), the increased angular resolution directly facilitates depth and lighting

aware interaction.

6.1 Future Work

6.1.1 Hardware

The prototype described in this thesis uses a diffuser and camera pair to simulate an area

sensor that will be available in future optically sensitive displays. A camera-diffuser pair is



not the ideal hardware for the BiDi screen, as it creates an unnecessarily large device. In the

future it will be interesting to use an area sensor to create a truly thin BiDi screen. There

are many options for this sensor, such as thin-film transistors (TFT) as are transparent

and used in LCD screens, printed transistors on a diffuse substrate, or traditional CMOS

or CCD sensors, to name a few. Note that using TFT sensors is compatible with existing

LCD manufacturing techniques.

6.1.2 Variable Masks

One of the key benefits of the LCD-based design presented here is that it transforms a

liquid crystal spatial light modulator to allow both image capture and display. Unlike

many existing mask-based imaging devices, the system is capable of dynamically updating

the mask. Promising directions of future work include reconfiguring the mask based on the

properties of the scene (e.g., locally optimizing the spatial vs. angular resolution trade-

off), and temporally multiplexing masks to gain higher resolution (See Section 6.1.4 on

Scanning).

6.1.3 Video

As higher-resolution video cameras and LCD screens become available, the presented design

should scale to provide photographic-quality images - enabling demanding videoconferenc-

ing, gaze tracking, and foreground/background matting applications. The prototype simu-

lated a two megapixel sensor and used a one megapixel display. The prototype produced an

image with approximately 150x100 resolution (See Figure 5.3). A factor of two improvement

would produce web-cam-quality video. Higher frame rates should allow flicker-free viewing

and more accurate tracking. In order to achieve higher-resolution imagery for these applica-

tions, recent advances [5, 37] in light field super-resolution could be applied to orthographic

multi-view imagery captured by my prototype.
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6.1.4 Scanning

The use of dynamic lensless imaging systems in the consumer market is another potential

direction of future work. A promising direction of future work is to apply the BiDi screen for

high-resolution photography of still objects by using translated pinhole arrays; however, such

dynamic masks would be difficult to extend to moving scenes. The display could additionally

be used in a feedback loop with the capture mode to directly illuminate gesturing body parts

or enhance the appearance of nearby objects [10], as currently achieved by SecondLight [26].

6.1.5 Handheld

The space of handheld and other portable devices can derive substantial benefits from in-

corporating BiDi screens as their displays. The interfaces of small portable devices are

constrained by their size. Expanding the interactive region from the area of the device's

screen to a volume in front of the screen using gestural interaction will afford users greater

input bandwidth to control this class of device. Technologies to allow robust depth dis-

crimination in a form factor suitable for handheld devices have not been available or cost

effective until now. Beyond providing mixed reality mirrors and seamless videoconferencing

on handheld devices, the ability to track the head will allow more efficient use of limited

display area by allowing the device to simulate parallax with a 2D display.

6.2 Synopsis

In this thesis I have described a method for extending a typical LCD screen to support

multi-touch and free-space gestural interaction. The LCD accomplishes this by using the

liquid crystal layer as a spatial light modulator, coupled with a wide-area sensor. Spatial

heterodyning is performed to enable real-time light-field capture. From a captured light-

field, scene depth may be extracted, and scene lighting may be used to render virtual scenes.

Finally, the approach presented enables a new class of applications that take advantage of



a collocated camera and display. These applications include video chat that enables eye-

contact between participants, and mixed reality virtual mirrors.

I have presented a prototype device, capable of supporting real-time gestural and touch

interaction with bare hands and light emitting widgets. The prototype substitutes a diffuser

and camera combination for the proposed large-area sensor layer. This substitution allows

the prototype to be constructed entirely from consumer, off-the-shelf parts.
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Appendix A

Optimizing Heterodyne Mask

Properties

A.1 Forward

This appendix is taken directly from the BiDi Screen paper submitted by myself, Douglas

Lanman, Ramesh Raskar, and Henry Holtzman to SIGGRAPH Asia 2009. I include it here

as an appendix because the analysis performed herein was contributed by Lanman, but is

important to have on hand in order to fully explain the work done for this thesis.

In this paper we propose a lensless light field capture device composed of a single attenuating

mask placed slightly in front of an optical sensor array. As in our prototype, a diffuser and

one or more cameras can be substituted for the sensor array and an LCD can be used for

the mask. A user will be primarily concerned with maximizing the spatial and angular

resolution of the acquired multi-view imagery. In this appendix we describe how to choose

the sensor-mask (or diffuser-mask) separation and specific mask patterns to optimize image

capture, first for pinhole arrays and then for tiled-broadband codes.

As with other mask-based and lenslet-based light field cameras, the total number of light

field samples, given by the product of the spatial and angular samples, can be no greater



than the number of camera pixels [43]. In our system the discretization due to the LCD

further limits the mask resolution, restricting the total number of light field samples to

be approximately equal to the total number of pixels in the display (i.e., 1680x1050 =

1.764x 106 pixels). Thus, as described in Section 4.1, we achieve a spatial resolution of

88 x 55 samples and an angular resolution of 19 x 19 samples with a pinhole or MURA tile

spacing of dp = 4.92 mm and a mask separation of di = 2.5 cm. However, by adjusting the

spacing and separation, the spatio-angular resolution trade-off can be adjusted.

A.2 Pinhole Array Mask Configuration

As shown in Figure 3-4, each pinhole must be separated by a distance dp = 2di tan(a/2) if

diffraction is negligible (otherwise Equation 3.2 must be used). Thus, the necessary pinhole

array separation di is given by

d= .(A.1)
2tan(a/2)

The field of view a, shown in Figure 3-3, is either determined by the vignetting of each sensor

pixel (e.g., that due to the diffuser and camera's field of view in our system) or by a user-

selected angle-limiting film. Wider fields of view may be desirable for some applications.

However, for a fixed field of view, the user must still choose the mask separation di to

optimize the effective spatial resolution within the region in front of the display. Thus,

Equation 3.4 can be used to maximize Nspatiai as a function of di. In our design we choose

a fixed object distance of do = 25 cm (centered within our working distance 0 cm < do <

50 cm). As an alternative to Figure 3-5, we can plot the effective spatial resolution as a

function of the mask separation di (see Figure A-i). Note that the selected distance di = 2.5

cm is close to the maximum, allowing slightly higher angular resolution (via Equation 3.3)

without a significant reduction in spatial resolution.



A.3 Tiled-Broadband Mask Configuration

The placement and design of tiled-broadband masks was described in [29]. However, their

design was for a transmission-mode system with a uniform array of LEDs placed a fixed

distance in front of the sensor. Our reflection-mode system requires the mask be placed

at a different distance from the sensor to allow light field capture. In this section, the

notation and derivation mirrors that paper. We describe 2D light fields and 1D sensor

arrays, however the extension to 4D light fields and 2D sensor arrays arrives at a similar

mask separation din.

As shown in Figure A-2, consider the two-plane parameterization [8], where u denotes the

horizontal coordinate (along the sensor or diffuser) and s denotes the horizontal position

of intersection (in the local frame of u) of an incident ray with a plane that is a fixed

distance dref = 1 cm away from, and parallel to, the first plane. A mask separated by dm

from the sensor creates a shield field that acts as a volumetric occlusion function o(u, s) =

m(u + (dm/dref)s). Thus, each ray parameterized by coordinates (u, s) is attenuated by the

mask's attenuation function m(() evaluated at ( = u + (dm/def)s. Taking the 2D Fourier

transform, with respect to u and s, we conclude the that mask's shield field spectrum

O(fu, fs) is given by

O(fu, fs) = M(fu)6(fs - (dm/dref)fu), (A.2)

where M(f ) is the 1D Fourier transform of m( ). As described in [51], the optical action

of the mask can be modeled by convolving the incident light field spectrum Lincident(fu, fs)

E
oL --- Pinhole Limit

3 PSF Limit
S* -Combined Limit

u 0 1 2 3 4 5
Diffuser-Mask Separation (cm)

Figure A-1: Effective spatial resolution as a function of diffuser-mask separation di for a

pinhole array, given by Equation 3.4. System parameters correspond with the prototype in

Chapter 4.
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=u+(dm/dref)s fs

dm fso
4- fu

SU

Figure A-2: Geometric derivation of tiled-broadband mask separation. (Left) The two-plane
parameterization (u, s) of the optical ray shown in blue. The ray intersects the mask at
( = u + (dm/dref)s. (Right) The received light field spectrum contains multiple spectral
replicas shown in shades of red. The shield field spectrum must lie along the dashed line
(i.e., fsf = (dm/dref) = fsR/(2fuo)).

with the shield field spectrum O(fu, f). As they show, this implies that the mask spectrum

must be composed of a uniform series of impulses, with the tiled-MURA mask being one

such valid pattern when the tile dimensions are equal to the pinhole spacing dp.

At this point the mask separation dm must be determined such that the received image can

be decoded to recover the incident light field. Assume that Lincidentfu, fs) is bandlimited

to f,, and f i, as shown in Figure A-2. Since Equation A.2 implies that the mask spectrum

lies along the line f, = (dm/dref)fu, then we conclude that

dm = dref fsR dp (A.3)
2fuo 2 tan(a/2) '

where fs, = 1/(2dref tan(a/2)) and fu 0 = 1/(2dp). Note that Equations A.1 and A.3 imply

that the pinhole array and tiled-broadband codes are placed the same distance away from

the sensor.
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