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Abstract:  Stationary Phase Induction of RpoS in Enteric Bacteria

Matthew Louis Hirsch

In enteric bacteria, stress adaptation is mediated by the RpoS protein, one of several

sigma-factors that in association with RNA polymerase, collectively allow a tailored

transcriptional response to environmental cues.  Stress stimuli including low temperature,

osmotic shock, and starvation all result in a substantial increase in RpoS abundance.  Perhaps the

most pronounced affect is observed during growth to stationary phase (SP) in rich medium.  The

mechanism of regulation depends on the specific signal, but may occur at the level of

transcription, translation, protein activity or targeted proteolysis.  In both Escherichia coli and

Salmonella enterica cultured in rich undefined medium, the RpoS protein is barely detectable

during exponential growth and increases >30-fold as cells enter SP.  Under these conditions, SP

induction depends on transcriptional and translational control with proteolysis affecting basal

levels but not regulation per se.  The transiently expressed Fis protein, whose abundance

inversely correlates to that of RpoS, binds just upstream of the primary rpoS promoter and

represses transcription nearly 10-fold specifically during exponential growth.  SP induction at the

translational level relies on a novel form of genetic control dependent on the 24 nucleotides

preceding the rpoS initiation codon (ribosome-binding sequence, RBS).  The RNA secondary

structure of the rpoS RBS is necessary and sufficient for a nearly 10-fold translational increase

during SP.  Control at this level is not a result of differential transcript stability, nor does it

involve the known rpoS regulators ppGpp, DksA, HU, Hfq or the small regulatory RNAs, DsrA

and RprA.  The environmental stimuli that trigger RBS-mediated SP induction of rpoS

translation also remain unknown, but similar to transcriptional control, regulation is only seen in

rich undefined media.  Collectively, transcriptional repression by Fis and RBS-mediated



induction at the translational level account for approximately 95% of the overall SP induction of

RpoS.  
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Literature Review

σ-factors and Directed Transcription

The ability to sense unfavorable growth environments and coordinate appropriate gene

expression allows the survival of bacteria in nature.  External stimuli adjust the abundance of

global regulators that participate in signaling networks culminating in specific or general stress

adaptation.  Primary levels of regulatory input include transcription, translation, protein activity

and protein degradation.  

Transcriptional control is particularly important because the signal is amplified, each

RNA molecule can generate thousands of protein molecules.  In bacteria, RNA polymerase core

enzyme (RNAP) catalyzes the synthesis of RNA using DNA as the reaction template.  However,

RNAP by itself is without direction and initiates transcription at aberrant sites including nicked

or “open” regions of DNA (23).  In E. coli and S. enterica one of seven additional factors, termed

sigma (σ)-factors, bind RNAP (the complex is termed RNAP holoenzyme) and confer promoter

recognition of specific groups of genes (termed regulons; 116).  These σ-factors are listed in

Table 1 along with their abundance during exponential growth, their RNAP dissociation

constants, and the general function of the genes they regulate.  Of particular importance are the

two σ-factors that direct most gene expression under different growth conditions, RpoD and

RpoS.  RpoD is the most abundant σ-factor in dividing cells and directs RNAP to promoters of

genes necessary for optimal growth.  During this time, RpoS is barely detectable, but protein

abundance dramatically increases in response to unfavorable growth conditions (i.e. starvation,
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low pH, high osmolarity; reviewed in ref. 61).  Through transcriptional control of a large

regulon, RpoS orchestrates the general stress response in which there is a reversible transition

from exponential growth to a non-dividing stress-resistant state called stationary phase (SP). 

                                        Table 1.  The sigma factors of E. coli

σ-factor        Kd(nM)      Intracellular                      Genes
        (RNAP-σ)    Concentration                   Activated

    (molecules/cell)

σ70 (RpoD) 0.26 700 growth related/housekeeping
σ54 (RpoN) 1.55 110 nitrogen utilization
σ38 (RpoS) 4.26  <1 general stress
σ32 (RpoH) 1.24 <10 heat shock response
σ28 (RpoF) 0.74 370  flagellar synthesis; chemotaxis
σ24 (RpoE) 2.43 <10 extracytoplasmic/heat shock
σFecI 1.73 <1 ferric citrate transport

Regulation of σ-directed transcription has two primary components.  First, σ-factors

compete for a limited amount of RNAP, a process biased by their relative abundance and

individual binding affinities for RNAP (Table 1; reviewed in ref. 124).  Second, σ-factors must

display promoter specificity; an enigmatic process that requires sequence elements at targeted

promoters and often, additional transcriptional factors and physiological indicators (83, 99).

Directed transcription by RpoS and RpoD is discussed below. 

The sigma (σ)-factors of E. coli are listed with their RNAP dissociation constants (Kd)
determined by core enzyme binding in mixed reconstitution experiments (90).  The intracellular
concentration of each factor during exponential growth is also presented along with the general
function of each regulon (69, 70, 98, 99).
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The competition model of σ-selectivity

The competition model for RNAP states that σ-factors compete for a limited amount of

core RNAP and this in turn, contributes to targeted gene expression (42).  During SP, RpoS-

dependent expression of numerous genes occurs despite a 16-fold affinity deficit for RNAP

compared to that of the housekeeping factor, RpoD (98).  Experiments employing lacZ fusions to

promoters expressed during SP determined that a mild overproduction of RpoD during SP

eliminates RpoS-dependent gene expression; conversely, overproduction of RpoS reduces RpoD-

dependent gene expression (42). These results correlate with RpoS abundance during different

stages of growth; RpoS is low during expression of most RpoD-dependent promoters

(exponential growth) and high during SP (70).  Simplistically, the sizeable SP induction of RpoS

abundance overcomes its affinity deficit for RNAP, resulting in RpoS-dependent gene expression

(42).

Promoter Elements and σ-Selectivity

After a σ-factor successfully binds to core RNAP, it then confers promoter selectivity, a

process, mainly defined by promoter specific elements.  This is explicit in the conserved

sequences of promoters individually recognized by the alternative σ-factors RpoN, RpoH, RpoF,

RpoE or FecI (99).  For example, RpoF-RNAP only transcribes genes involved in chemotaxis

and the synthesis of flagella with promoter recognition defined by specific nucleotides (nt) of the

-10 and -35 hexamers exhibited by RpoF-dependent promoters (83).  
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The recognition of specific promoters by RpoD and RpoS, however, is complicated by

very similar consensus sequences and in general, is not completely understood (48).  In search of

a RpoS consensus sequence, regions preceding a core set of 140 RpoS-dependent genes induced

regardless of the stress challenge, were analyzed in silico (178).  The results identified

conservation of an 11 nt sequence (5’-TCTATACTTAA-3’) that strongly resembles an extended

-10 promoter hexamer (61, 178).  Additional RpoS-dependent promoters of genes expressed in

response to a specific challenge exhibited no sequence similarities (178).

Tanaka et al. investigated RpoS and RpoD transcription specificity in vitro and defined

three classes of promoters:  (i) promoters recognized by RpoD or RpoS at equal efficiencies (e.g.

lacUV5 and trp), (ii) RpoD-dependent promoters (e.g. ribosomal and tRNA genes) and (iii) a

promoter that prefers RpoS-RNAP holoenzyme (fic) (165).  Alignment of promoters from each

class did not identify any differences between class I and II promoters, while class III promoters

generally lacked a typical -35 sequence (165).  These results are consistent with the notion that

promoter selectivity by RpoS may be achieved by degenerate RpoD promoter elements in

conjunction with additional regulatory factors (48).

Intracellular ionic conditions and other physiological indicators also affect RpoD and

RpoS promoter recognition (38, 76, 85).  RpoS-dependent promoters expressed during SP were

transcribed in vitro by both RpoS and RpoD (76).  RpoD promiscuity was eliminated by the

addition of high concentrations of glutamate salts, a condition reported to mimic intracellular

ionic conditions under hyperosmotic stress (38, 76).  Physiological indicators of SP physiology,
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including trehalose, guanosine tetraphosphate (ppGpp), or a decrease in DNA superhelical

density, also favor RpoS over RpoD in promoter selection antagonism (29, 71, 85, 86).

Global transcription factors that influence σ-selectivity at target promoters include the

catabolite repressor protein (CRP), the integration host factor (IHF) and the leucine response

protein (Lrp; 32).  For example, both RpoD and RpoS initiate transcription at the osmY promoter

(PosmY) in vitro, but addition of the in vivo regulators CRP, IHF, and Lrp disproportionately

repressed RpoD-directed transcription (32).  Collectively, promoter recognition by RpoD and

RpoS is influenced by many factors including promoter sequence elements, ionic conditions,

trehalose concentrations, DNA topology, ppGpp, and protein regulators.

RpoS

Background 

During the 1980’s, the rpoS gene was identified by several labs for roles in sensitivity to

near UV radiation (nur), regulation of hydroperoxidase HPII (katF), control of acid phosphatase

activity (appR), and carbon starvation (csi-2; 61).  Similar phenotypes of the mutants as well as

genetic mapping confirmed that nur, appR, katF, csi-2 were in fact different names for the same

gene (90, 167).  Mulvey and Loewen reported the sequence of this gene, originally as katF (for

its role in catalase HPII synthesis), revealing an 1086 base pair (bp) open reading frame that

encodes a 362 amino acid protein (112).  The amino acid sequence demonstrates strong

similarity to the housekeeping σ-factor RpoD, including the region required for binding RNAP. 
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Therefore, in 1991 Lange and Hengge-Aronis renamed it RpoS, after the RpoD-related protein

family and its involvement in stress adaptation (90).  Two years later, Tanaka et al. confirmed

that RpoS is indeed a σ-factor for RNAP (165).  In that work, RpoS –RNAP holoenzyme

transcribed several RpoD-dependent promoters and one of them (fic) was favored by RpoS,

suggesting altered promoter recognition specificity (165).  

                                           Figure 1. Genetic organization of rpoS

The rpoS gene is highly conserved among the γ-branch of proteobacteria (Table 2) and its

genetic organization is depicted in Figure 1.  rpoS is located downstream of genes whose

products are also involved in aspects of stress resistance: SurE (a novel phosphatase), Pcm (L-

isoaspartyl methyltransferase), and NlpD (a lipoprotein with suggested hydrolytic functions in

cell wall maintenance; 47, 65, 88, 94).  Transcriptional induction of both surE and pcm occurs in

response to stress in a RpoS-independent manner (95).

The rpoS region of the E. coli chromosome (minute 61.8 to 61.7) is depicted
with straight arrows indicating transcriptional polarity.  Promoters
contributing to rpoS expression are shown with bent arrows (87, 126, 164).
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        Table 2.  Conservation of rpoS.

Bacteria        Nucleotide
     Conservationa

S. typhimurium 100%
S. typhi 99%
E. coli MG1655 92%
E. coli 0157:H7 92%
Shigella flexneri 92%
Enterobacter cloacae 89%
Kluyvera cryocrescens 84%
Serratia entomophila 83%
Erwinia carotovora 83%
Yersinia pestis 80%

 

RpoS function and regulon 

RpoS has been deemed the “master regulator of the general stress response” due to its

transcriptional control of over 10% of the E. coli genome in response to different types of stress

(61, 67, 178).  The gene products of the RpoS regulon have diverse functions under the general

heading of stress survival (61, 178).  Of these, transcriptional profiling has identified a core set

of 140 genes activated in response to acid shock, osmotic shock, or growth to SP (178).  In

addition, hundreds of other RpoS-dependent genes are specifically expressed in response to a

particular type of stress, allowing a tailored response (178).  Stress stimuli that influence RpoS

abundance, along with their reported levels of regulatory input, are listed in Table 3. 

a The percent nucleotide conservation of the
rpoS coding sequence, relative to S. enterica
Typhimurium, is shown.
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Table 3. Stimuli that increase RpoS protein abundance.

Stimulus Level of Regulation Reference

Slow growth rate Transcription (61)
Translation (34)

Growth to SP Transcription (88)
Translation (88)

Low temperature Translation (158)
High osmolarity Translation (111)

Protein Stability (111)
Carbon starvation Protein Stability (88, 130)
Low pH Translation (61)

Protein Stability (12)
Heat Shock Protein Stability (110)

Bacteria containing a mutation in rpoS exhibit increased sensitivity to a variety of stress

conditions, most of which are encountered during mammalian infection (61).  These challenges

include single nutrient deprivation, outright starvation, oxidative stress, high osmolarity, acid

stress, and DNA damage - all of which normally stimulate RpoS induction conferring resistance

(41, 61, 106).  The characteristic changes in morphology during stress, cells become smaller and

spherical, are abolished in the rpoS mutant (89).  In addition, mutants do not accumulate

glycogen, the storage form of glucose, or the disaccharide trehalose, which normally

accumulates during SP and plays an undefined role in stress survival (62, 86, 104).

 

RpoS and Salmonella Infection models

RpoS plays an essential role in virulence.  Perhaps this is most explicit in a mouse model

wherein infection by Salmonella enterica serovar Typhimurium results in a typhoid-like disease
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that causes death within days (41).  In this case, mice infected by rpoS mutants survived (41).

This dramatic result is due to a combination of decreased colonization of the gut-associated

lymphoid tissue and decreased expression of the RpoS-dependent virulence plasmid, spv (30, 41,

118, 180).  In humans, rpoS mutants of S. enterica serovar Typhi do not cause disease.  In fact,

the live oral typhoid vaccine Ty21a is attenuated for virulence due primarily to a null mutation in

rpoS (137). 

In contrast, RpoS appears dispensable for Salmonella infection of either macrophages or

epithelial cell cultures (118, 180).  Infection of these cells by S. enterica Typhimurium causes a

five to 10-fold increase in RpoS expression and RpoS-dependent reporter activity, including

genes involved in virulence (31).  However, rpoS mutants show wild type levels of attachment,

invasion, and survival in the phagosomal compartment during infection of macrophages and

intestinal epithelial cells (118, 180).  Further investigations performed in mice demonstrate that

RpoS is necessary for bacterial adherence of the Peyer’s patches (118).  These results

demonstrate that current in vitro infection models do not reflect the importance of RpoS for

pathogenesis in vivo.

Transcriptional regulation of rpoS

Analysis of rpoS transcription in E. coli by primer extension, and in S. enterica serovar

Dublin by both primer extension and Northern blot, established that rpoS is transcribed from two

distinct promoter regions (87, 126, 164).  Two closely-spaced and relatively weak promoters
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(collectively termed PnlpD; Fig. 1) generate a bicistronic nlpD-rpoS message, while the major

promoter (PrpoS) is located approximately in the center of the nlpD coding sequence and

generates a monocistronic rpoS transcript with a 5’ untranslated leader region of 565 nt (87,

126).  E. coli and S. enterica share identical -35 and -10 hexamers at PrpoS with a 17 bp spacer,

and initiate transcription at the same nt (87, 126).

Regulation of transcription from PrpoS is a complex and poorly characterized phenomenon

that is dependent upon the growth medium [i.e. Luria-Bertani (LB) vs. minimal medium].  When

E. coli grows to SP in LB, rpoS transcriptional fusions demonstrate a five to10-fold increase in

activity (88, 90).  In contrast, no SP induction of transcription occurs when cells grow in minimal

medium containing glucose despite a dramatic increase in RpoS abundance (187).  The global

regulators that influence rpoS transcription, CRP, ppGpp, and inorganic polyphosphate (poly-P)

are discussed in the following sections.  However, other conditions may also influence rpoS

transcription, such as weak acids or homoserine lactone, although reports are often conflicting

(61, 64, 154). 

CRP-cAMP and rpoS transcription

Catabolite repression is a well established mechanism in most bacteria and some lower

eukaryotes to allow the preferential use of the most energetically favorable carbon source (35,

80, 115).  In E. coli and S. enterica, membrane-associated adenylate cyclase (encoded by the cya

gene) catalyzes the reaction: ATP → cyclic AMP (cAMP) in response to low cellular
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concentrations of catabolites (reviewed in ref. 115).  Increased levels of cAMP result in binding

to and activation of CRP, a homodimer that interacts with DNA near target promoters.  CRP

dually functions as a transcriptional activator and repressor, ensuring the timely expression of a

large regulon (>100 genes) which includes other global regulators such as the factor for inversion

stimulation, Fis (53). 

Surrounding PrpoS are two predicted CRP-cAMP binding sites (the consensus half-site is

TGTGAN3); one of these is centered at a classical upstream (with respect to the transcriptional

start site) activation position, while the downstream location of the other site suggests a role in

repression (24).  E. coli strains harboring mutations in either cya or crp demonstrate a modest

increase in rpoS transcription during exponential phase (88, 90).  The exogenous addition of

cAMP to the cya mutant culture restored PrpoS activity to wild type levels (88).  In addition, a crr-

encoded EIIA(Glc) mutant, which lacks the soluble part of the phosphtransferase solute uptake

system that activates adenylate cyclase, demonstrates elevated rpoS transcription (169).

Collectively, these reports suggest CRP-cAMP mediated repression of PrpoS during exponential

phase.  Additional unpublished results of Hengge-Aronis suggest that CRP-cAMP also activates

PrpoS expression during the transition to SP, possibly through binding to the downstream site

(61). 
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ppGpp and rpoS transcription

Amino acid limitation or, more specifically, the failure to aminoacylate tRNAs results in

pleiotropic physiological alterations that efficiently adjust gene expression to accommodate

survival in the limited nutrient state.  This cascade of events is generally termed the stringent

response and is mediated by the alarmone ppGpp (115).  As nutrients are depleted from the

growth medium, increased levels of ppGpp fine-tune cellular physiology at the transcriptional

level via interactions with RNAP holoenzyme (115).  Sensibly, ribosomal RNA operons are

among the genes inhibited by ppGpp, while genes necessary for amino acid biosynthesis and

uptake are examples of those activated during the stringent response (115, 127).

ppGpp is synthesized by the ribosome-associated RelA protein, and to a lesser extent, by

the cytosolic SpoT protein which also degrades ppGpp (27, 49).  The RelA protein senses amino

acid limitation by evaluating the ratio of charged / uncharged tRNA molecules at the acceptor

position of the ribosome (139).  If a threshold of uncharged tRNA molecules is achieved, RelA

converts GTP + ATP (through the unstable intermediate pppGpp) or GDP into ppGpp (115).

Consequently, the concentration of ppGpp indicates the cell’s nutritional status and its basal

levels vary inversely with growth rate (115).

A crystal structure of the RNAP-ppGpp complex shows that binding occurs near the

catalytic center of RNAP (5).  This interaction is thought to block incoming nucleoside

triphosphates and thereby decrease the half-life of open transcriptional complexes at DNA

promoters (9, 55).  Regulation at this level is especially effective at promoters that exhibit short-

lived open complexes including those of ribosomal RNA operons (9).  Stabilization of the
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ppGpp-RNAP interaction depends on DksA, a DNA-binding protein also implicated in post-

transcriptional regulation of RpoS synthesis (22, 128).  

ppGpp accumulation is often, if not always, accompanied by RpoS induction (22, 50, 87).

Western blot experiments and both rpoS transcriptional and translational fusions demonstrate a

dramatic reduction of RpoS expression in ppGpp deficient strains during both exponential

growth and SP (50, 87).  Consistently, artificial induction of ppGpp during exponential phase

increased RpoS abundance approximately 50-fold (22).  However, due to the pleiotropic nature

of altered ppGpp levels, it is possible that its control of RpoS expression is indirect, and

mediated via causal effects such as aberrant ribosomal RNA levels, decreased growth rate, or

altered levels of inorganic polyphosphate (poly-P; 152). 

Inorganic Phosphate and rpoS transcription

E. coli contain three types of inorganic phosphates, Pi, PPi and poly-P, the concentrations

of which independently vary in accordance with cellular physiology (reviewed in ref. 115).

During exponential growth their relative concentrations follow the scheme Pi >> PPi > poly-P

(115).  However during times of stress, polyphosphate kinase (encoded by ppk) utilizes the

terminal phosphate of ATP to synthesize a long polymer of orthophosphate residues linked by

high energy phosphoanhydride bonds (25).  The importance of poly-P is emphasized by its

ubiquitous nature in all forms of life examined (reviewed in ref. 182) and implicated functions
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include an ATP substitute for adenylate kinases (129), a phosphate reservoir (25), and a role in

the acquisition of competence (28).

E. coli and S. typhimurium mutants devoid of Ppk function are more susceptible to a

variety of stresses and do not survive long periods of SP (77, 133).  This is due, in part, to the

influence of poly-P on rpoS transcription.  E. coli cells lacking poly-P, due to gratuitous over

expression of a yeast exophosphatase, are deficient in SP accumulation of RpoS (152).  This

result was primarily attributed to decreased rpoS transcription, although the mechanism remains

largely unresolved (152).  To complicate matters, over expression of poly-P does not affect

ppGpp levels, although increased concentration of the latter results in a massive accumulation of

poly-P (up to 1000-fold; 84).  It is therefore possible that the influence of ppGpp on rpoS

expression is mediated via elevated levels of poly-P.

Translational regulation of RpoS 

Transcripts originating from PrpoS carry a 565 nt 5’ untranslated region (leader region)

preceding the rpoS initiation codon whose sequence is conserved among enteric bacteria.  In

particular, 110 nt preceding the rpoS initiation codon, which includes a cis-acting antisense

element that sequesters the rpoS ribosome-binding sequence (RBS), transiently act to decrease

translation (61).  The timely disruption of the inhibitory structure in response to particular stress

stimuli induces rpoS synthesis (61).  Genetic evidence and in silico structure predictions agree on

a secondary structure for this region of the rpoS leader (Fig. 2, nt 454-565; 33, 101, 193). 
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             Figure 2. RNA Secondary Structure Prediction of the rpoS leader region.

The physical structure(s) of the rpoS leader is not established conclusively, although a

deletion analysis and site-directed mutations employing rpoS-lacZ translational fusions are

consistent with an inhibitory role of the leading prediction (Fig. 2; 33, 101).  A rpoS translational

fusion containing both stems II and III (Fig. 2) demonstrated low basal activity (33).  Elimination

of these putative stems by a modest 5’ deletion of only 23 nt significantly increased fusion

activity (33).  A more precise genetic approach showed that a mutation in either the top or

bottom strand of stem II resulted in a similar five-fold increase in translational activity (Fig. 2,

G469C or C549G; 21).  Compensatory mutations at these positions, predicted to maintain stem II

A secondary structure prediction of 112 nucleotides of the rpoS leader region
(21, 101).  The numbering refers the nucleotide position of the rpoS
transcript originating from PrpoS.  The rpoS initiation codon is outlined by a
black box and the Shine-Dalgarno sequence is labeled S.D..  Three stems of
the antisense element are designated I-III.
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pairing (Fig. 2, G469C and C549G), restored fusion activity to wild type levels (21).  Mutations

in either the top or bottom strands of stem III (Fig.2, G461C and C561G) increased rpoS

translation although the compensatory mutations remained elevated in fusion activity compared

to the wild type construct (21).  The elevation in rpoS-lac activity in the presence of the

individual stem mutations was comparable throughout the growth curve suggesting a similar role

for the antisense element during exponential growth and SP.  

Regulatory RNAs and RpoS synthesis

Genetic control mediated via small untranslated RNAs (sRNAs) is a rapidly expanding

research area initially sparked by the anomaly of rpoS translation (54).  This process is unique in

that over expression of eight sRNAs are reported to influence RpoS translation, while no more

than two sRNAs are reported to affect any other bacterial gene (54, 176).  Two of the

characterized sRNAs that affect RpoS translation, the thermoregulator DsrA and the membrane

stress-induced RprA, are discussed in detail below.  A list of the known sRNAs that influence

RpoS translation are listed in Table 4 along with their inducing stimuli and affects on rpoS

translation.
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      Table 4. Regulatory RNA that effect rpoS translation in E. coli

sRNAa size Effect      Stimuli Reference
       (nucleotides) on rpoS

DsrA 85    + low temperature (158)
RprA 105    + membrane stress (100)
OxyS 109    - hydrogen peroxide (3)
RhyB 90    - iron limitation (105)
RhyA 45    + ? (176)
RyhB 90    + ? (176)
RydB 60    - ? (176)
RyeE 86    - ? (176)

Additional evidence supporting the suggested structure of the rpoS leader region (Fig. 2)

is the elegantly described interaction of the rpoS antisense element and non-translated regulatory

RNA, DsrA (54, 91, 101).  DsrA is an 85 nt sRNA predicted to form a structure with three stem-

loops (157).  Interestingly, two of the stem-loops activate different targets including rpoS

translation and transcription of the capsular polysaccharide synthesis regulator, RcsA (157, 158).

The DsrA molecule contains 21 nt of complementarity to the rpoS leader, including bases in the

top strand of stems II and III (Fig. 2), and has been designated a thermoregulator of rpoS

translation (134, 158).  DsrA transcription is de-repressed at low temperatures (≤30° C) and the

transcript is also stabilized six-fold (134).  DsrA regulates rpoS by intermolecular RNA

interactions with the antisense element of the leader region, a process mediated by the RNA-

binding protein Hfq (92, 101).  At low temperatures, rpoS translation increases in a DsrA-

dependent manner while at higher temperatures a mutation in dsrA does not affect translational

a The regulatory RNAs (sRNAs) that influence rpoS translation are listed, along
with their size and effect on rpoS translation.  Stimuli that increase abundance of
these sRNAs are also shown.
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activity (158).  The DsrA-rpoS interaction is thought to alter the secondary structure of the rpoS

antisense element in a manner that promotes ribosome access and subsequent translation (101,

158, 159).

Remarkably, another sRNA activates rpoS translation by targeting the same region of the

rpoS leader as DsrA, stems II and III (Fig. 2; 100, 102).  RprA is a 105 nt structured RNA which

exhibits non-contiguous sequence complementarity to the antisense element of the rpoS

transcript.  RprA was identified in E. coli as a multi-copy suppressor of decreased rpoS-lacZ

activity in a dsrA mutant background (100).  In a wild type background, ectopic over expression

of RprA increased rpoS-lacZ [pr] activity about six-fold (100).

Transcription of rprA is controlled by the phosphorelay system that regulates capsular

polysaccharide synthesis genes, RcsB / RcsC, in which RcsC is a transmembrane sensor and

RcsB is the response regulator (102).  A mutation in rcsB eliminates the basal transcription of

rprA while a mutation in rcsC increases expression 10-fold (102).  This relatively large increase

in RprA was not enough to increase the activity of a rpoS translational fusion (102).  However, a

50-fold increase in rprA transcription, caused by a constituitive rcsC allele (rcsC 137), increased

rpoS translation and RpoS abundance (102).  A physiologically relevant role for activation of

rpoS translation by RprA is awaiting description.

In addition to DsrA and RprA, at least six other sRNAs reportedly influence rpoS

translation (3, 176).  OxyS is a 109 nt sRNA that activates and represses translation of numerous

proteins, including RpoS (3).  OxyS expression is stimulated by hydrogen peroxide although the
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mechanism by which it represses rpoS translation is unknown (188).  A genome wide search for

additional regulatory RNAs in E. coli suggested two candidates that increased rpoS-lac

translational activity, ryhA and rybB, when expressed from a multi-copy plasmid (176).

Particular foldings of these RNA molecules show complementarity to rpoS stems II and III (Fig.

2).  Three modest repressors of rpoS translation were also suggested by this search rydB, ryeE

and the iron responsive ryhB (105, 176).  All of these predicted sRNAs (except for rydB which

was not tested) bind Hfq and require further investigations to confirm physiologically relevant

roles in the regulation of RpoS synthesis (176).

Hfq and RpoS synthesis

Hfq (also referred to as HF-1) is a 11.2 kDa protein and a pleiotropic regulator of diverse

cellular functions.  Hfq was first identified as a subunit of the RNA phage Qβ replicase (46) and

subsequently found to associate with 30S ribosomal subunits (39).  Over the past 25 years, the

known roles of Hfq have expanded to include activities as a RNA chaperone (108), a modulator

of RNA sensitivity to cellular ribonucleases (45, 168, 171), a stimulator of poly(A) tail

elongation (58), and a post-transcriptional regulator of several RNAs including the rpoS

transcript (20). 

Hfq functions as a homo-hexameric ring (collectively termed Hfq) homologous to

eukaryotic Sm proteins which are involved in pre-mRNA splicing and RNA degradation

complexes (109, 143, 146, 190).  Hfq has at least two RNA binding domains that prefer AU rich
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sequences, positioned close to structured regions (19, 171, 190).  It is thought that Hfq facilitates

intermolecular RNA interactions through simultaneous binding of multiple transcripts (19). 

 

Hfq mutants display a four to seven-fold reduction in RpoS synthesis during both

exponential growth and SP, while SP induction of RpoS is not significantly altered (20).  Co-

immunoprecipitation studies using anti-Hfq recovered rpoS RNA from cell lysates and Hfq binds

the rpoS leader region in vitro (93, 188).  A 347 nt 5’ deletion of the rpoS leader region

abrogated Hfq control in vivo (33).  In addition a point mutation within stem III also conferred

Hfq independence (Fig. 2; 33).  Together these results suggest that Hfq binds to an upstream

region of the rpoS leader and contributes to basal translation.  However, in conjunction with

sRNAs, Hfq can also activate this process (21). 

The exact mechanism by which Hfq influences rpoS synthesis is unknown.  The nearly

seven-fold reduction of rpoS translation in the hfq mutant background cannot be rationalized by

the loss of function of the known Hfq-dependent sRNAs.  It is possible that Hfq binding

destabilizes an inhibitory leader conformation or occludes a RNase E cleavage site.  Other

theories suggest that Hfq facilitates the interaction of unidentified activating sRNA(s) or it

recruits ribosomes to the rpoS message.
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H-NS and RpoS synthesis

H-NS is a histone-like protein that primarily functions as a transcriptional repressor of

>100 genes involved in environmental adaptation (63).  As a homodimer H-NS binds specifically

to curved regions of DNA, and is speculated to block transcription initiation at particular

promoters (189).  Several groups have demonstrated that H-NS also acts as a negative regulator

of RpoS albeit by a post-transcriptional mechanism (10, 18, 34, 184).  RpoS abundance is

elevated in a hns mutant, an effect attributed to increased transcription and protein stabilization

(18, 184).  Despite the elevated level of RpoS in a hns mutant, SP induction of RpoS occurs

normally (10).

DksA and RpoS synthesis

The DksA protein was first identified in E. coli as a multi-copy suppressor of the

temperature sensitive growth and filamentation of a dnaK mutant (73).  Since then, it has been

implicated in a variety of cellular activities including cell division, the stringent response and

Salmonella virulence (11, 22, 177).  In 1999, it was demonstrated that dksA mutants failed to

accumulate RpoS during SP (177).  Analysis of rpoS-lacZ fusions in a dksA mutant attributed the

deficit mainly to defective translation (15-fold) with only a minor two-fold decrease in

transcription (177).  Four years later, DksA was reported as a critical factor for activation of rpoS
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translation by ppGpp (22).  The mechanism by which DksA influences RpoS translation is

unknown and intriguing given the role for DksA in transcriptional modulation of RNAP through

its secondary channel (117). 

RpoS stability

Another regulatory pathway limiting RpoS abundance in growing cells is proteolytic degradation

involving the ATP-dependent ClpXP protease and a response regulator called MviA (in S. enterica) or

SprE / RssB in E. coli (130, 147).  In this pathway MviA is activated by poorly characterized stimuli,

including carbon starvation, through phosphorylation on D58, which substantially increases its ability to

bind to RpoS.  The relevant kinase has not yet been found (34, 61).  The binding event (dependent on

K173 of RpoS) results in a sequestered non-functional RpoS molecule and thus modulates RpoS activity

in itself (13, 192).  The MviA-RpoS complex also interacts with the ClpXP protease, which then

actively degrades RpoS, recycling MviA (111, 130).  RpoS elevates transcription of the response

regulator during SP, thus constituting an auto-regulatory loop in which the concentration of MviA is a

limiting factor for the rate of RpoS degradation in vivo (132, 142).

Fis

Fis is a transiently expressed DNA binding and bending protein involved in diverse

cellular functions including transcriptional activation and repression of a large regulon (44).

Additionally, Fis plays integral roles in site-specific DNA recombination, stimulation of excision

/ integration of λ (6, 7), DNA-replication (43, 51), and transposition (179).  In general, Fis
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regulates cellular processes, including the expression of rRNA and tRNA, necessary for the

transition to optimal growth, a time when Fis abundance peaks (119, 140). 

The crystal structure of the 98 amino acid Fis protein displays 4 α-helical domains: A

(residues 27-42), B (50-70), C (74-81), and D [85-94; (82)].  The N-terminal residues and both A

helices of the homodimer are involved in stimulating site-specific DNA inversion (186).  A

truncated Fis protein, which is deleted for the N-terminal region, is defective in DNA inversion

but maintains its ability to bind DNA and regulate gene expression as well as stimulate λ

excision (79).  Helices C and D of each Fis monomer constitute helix-turn-helix (H-T-H) binding

motifs that are required for recognition of the Fis consensus sequence

ATTGNTCAAAATTTGANCANT (60, 186).  Due to the spacing of these H-T-H elements,

binding to opposite DNA strands is accompanied by bending of the DNA molecule.  Fis-induced

alterations in global topology, in accordance with fluctuating physiological conditions, indirectly

influences transcriptional regulation (113).

 

Regulation of Fis

Fis is under strict genetic control and protein abundance fluctuates dramatically in

response to growth environment.  Fis levels peak (60,000 dimers / cell) 90 minutes after dilution

into fresh medium and decline throughout exponential phase to very low levels, that remain low

during SP (2, 8).  Regulation of Fis occurs at the transcriptional level and is not mediated by

changes in mRNA stability (8, 125, 131).  Activation of Fis transcription, which depends on the

availability of particular nutrients (discussed below), occurs from a highly conserved promoter,
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Pfis.  Increased Fis abundance results in a feedback loop in which Fis represses its own

transcription (121).  In E. coli and S. enterica, a single Fis binding site just upstream of Pfis is

necessary for the majority of the six-fold transcriptional increase in a fis mutant background (8,

174).

Activation of Pfis expression is dependent on the availability of the initiating nt of the fis

transcript (174, 175).  An investigation into growth phase regulation of Pfis revealed that a

promoter sequence of 43 bp was sufficient for Fis activation (174).  Specifically, growth phase

dependent regulation at Pfis was attributed to a less preferred initiating nt, CTP, of the fis

transcript (174).  At this position, nt replacement with either ATP or GTP, resulted in high levels

of fis mRNA during early SP, a time when Pfis transcription is normally shut-off (174).  The

sensitivity of Pfis to the concentration of CTP was clearly demonstrated by a 20-fold increase in

activity upon the addition of excess CTP in vitro (175).  It was also determined that the level of

CTP in the growth medium directly correlates with Pfis expression (175).  This form of

transcriptional control is independent of ppGpp (8, 174).  However, the fis promoter is also

subject to repression by the stringent response, an effect dependent upon seven consecutive G-C

bp immediately preceding the transcriptional start site (121). 

Nucleoprotein complexes involving the global regulators CRP, Fis and IHF also control

Pfis activity.  In a crp mutant background, fis mRNA levels are abnormally elevated during late

exponential phase (114).  The effect of CRP on Pfis transcription is not well understood and

complicated by coordinate control with the Fis protein (114).  In the absence of Fis, CRP

activates Pfis while CRP in conjunction with Fis, synergistically represses activity (114).  Another
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transiently expressed global transcription factor, IHF, whose abundance increases during

exponential growth, is required for normal fis transcription (2).  A mutation in ihf decreases Pfis

activity nearly four-fold by an unknown mechanism (131).  The crosstalk between the global

regulators CRP, Fis, and IHF at Pfis awaits further characterization.  However, it is possible that

alterations in DNA topology, induced by these regulators upon binding, indirectly influences Pfis

activity (145).

Functions of Fis 

Inversion and Excision 

The Fis protein was first identified as a host factor required for site-specific DNA

inversion (72, 78).  The G-segment of phage Mu encodes tail fiber genes, the orientation of

which determines host specificity, flanked by inverted repeats.  During replicative transposition,

phage with both orientations of the G-segment are produced by an inversion event dependent

upon Fis and the phage-encoded invertase, Gin (72).  Fis serves a similar function in the

invertasome during flagellar phase variation in which binding of Fis to an enhancer element is

necessary for Hin-mediated recombination (72, 96).  Fis also plays a crucial role in the Cin-

mediated DNA inversion system of bacteriophage P1 (57).

The role of Fis was expanded to include partial regulation of the lysis versus lysogeny

decision of phage λ (166).  DNA excision is stimulated 20-fold in vitro by Fis binding to a
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region of λ attP that overlaps a Xis binding site, a process that also requires the phage-encoded

Xis protein.  In the absence of Xis, Fis induces λ integration and lysogeny (7).  Consistent with

roles in chromosomal rearrangements, Fis also stimulates both Tn5 and IS50 transposition events

in E. coli (179).

Transcriptional regulation by Fis

Over the last decade, Fis has been defined as a global regulator of transcription in both S.

enterica and E. coli.  Fis activates genes necessary for competitive replication, an effect that

coincides with Fis abundance (Fis abundance peaks during initiation of exponential growth; 75).

For instance, Fis binds several sites near the oriC promoter and is required for DNA replication

of oriC minichromosomes (43, 51).  Fis also strongly activates transcription of tRNA rRNA

operons (17, 120).  In the case of activation at rrnB P1, the relatively short-lived open

transcriptional complex is stabilized by Fis (191).  In this process, Fis binds to a site centered

upstream of the transcriptional start site and interacts with the αCTD of RNAP (1).  A similar

mechanism of activation occurs at the proP2 promoter and although at least four binding sites

occur near this promoter only one, centered at -42, is necessary for most of the effect (107).

Recently, DNA microarrays comparing wild type and fis mutant backgrounds of S. enterica

serovar Typhimurium demonstrated a major role for Fis in virulence gene expression, including

type III secretion factors (75).  This is consistent with a 100-fold attenuation of virulence of a fis

mutant in a mouse infection model (181).
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Fis also acts as a transcriptional repressor of several global regulators including gyrA, and

gyrB, which code for subunits of DNA gyrase, a topoisomerase that induces negative DNA

supercoiling (74, 144).  In this process, Fis binds near the -10 hexamers of the gyrA and gyrB

promoters and blocks transcription initiation (144).  A mutation in fis increases gyrase activity

and in general, Fis abundance inversely correlates with the concentrations of GyrA and GyrB

(144).  The influence of Fis on DNA topology both directly and indirectly, via DNA gyrase,

control, probably regulates gene expression in accordance with cellular physiology.

Regulation of Translational initiation

Translational regulation is a common genetic strategy that allows the timely induction /

repression of protein synthesis or maintains the appropriate constitutive levels.  Some authors

speculate that control at this level allows a quicker response to a particular stress because it

eliminates the time needed for transcription (61).  In most cases, translational regulation depends

on mRNA leader sequences either for sequence specific elements or structures that interact with

trans-acting regulatory factors (protein or sRNAs; 16, 54).

Translation is divided into three stages; initiation, elongation and termination.

Translation initiation is the process by which ribosomal subunits recognize a particular region of

a RNA molecule, referred to as the Shine-Dalgarno sequence (SD), followed by ribosome

assembly preceding initial peptide bond formation (56).  The primary contact is thought to be

specific intermolecular RNA interactions between the mRNA and the 16S rRNA in conjunction

with non-specific protein-RNA interactions (36).  The ribosome initiation complex is composed
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of the ribosome, three initiating factors (IF1, IF2, and IF3), fMet-tRNAf
Met, and of course, the

template mRNA.  Assembly of the ribosome initiation complex is reportedly stochastic (56).

Subsequently, the ribosome moves along the RNA molecule and elongates the amino acid chain

using residues of successive aminoacyl-tRNAs bound to the acceptor position of the ribosome

via peptide-bonds.  The polypeptide chain at the peptidyl site of the ribosome continues to grow

until a stop codon is encountered and the polypeptide is released, followed by dissociation of the

ribosomal subunits. 

The composition, and at least partial function, of the ribosome changes as dividing cells

enter SP.  This transition is concomitant with a peak in the abundance of the ribosome

modulation factor, RMF (173).  RMF binds to the 50S subunit of the 70S ribosome and mediates

70S-70S ribosomal dimerization (172, 173).  The resulting 100S dimer reportedly represents a

storage form of the ribosome that is translationally inactive, possibly due to obstruction of the

peptidyl-tRNA binding site (185).  Upon subsequent culture in fresh medium, the 100S

ribosomes dissociate back to the translationally active 70S ribosomes by an uncharacterized

process (103, 173).  Another protein transiently associated with the ribosome is the SP-induced

ribosome-associated, SRA (68).  During SP, there is a RpoS-dependent increase in SRA

abundance and the ratio of SRA bound specifically to the 30S ribosomal subunit increases (68).

The function of SRA is unknown.  Due to the uncharacterized role of ribosomal composition in

translational regulation, this review will focus specifically on the known factors that influence

translation initiation:  (i) the SD sequence and the spacer region between the SD sequence and

the initiation codon, (ii) the initiation codon, (iii). RNA secondary structure and, (iv). the

ribosomal protein S1. 
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Shine-Dalgarno sequence and Translational Regulation

The SD sequence is a short stretch of nt preceding the coding sequence of most genes that

indicates the site of translation initiation (153).  In this process, the canonical SD sequence

AGGA, or a variant, base pairs with the anti-SD sequence, UCCU, of the 3’ end of 16S rRNA (a

component of the 30S ribosome along with 21 different proteins; 153).  The free energy of this

interaction reflects the efficiency of initiation; i.e. longer regions of complementarity are

considered more attractive to ribosomes (97).  For example, the SD sequence UAAGGAGG is

four times more efficient in translation than AAGGA as measured using lacZ reporter fusions

(136).  However, it was also reported that extended SD / anti-SD interactions, beyond eight nt,

actually decreased the activity of a reporter fusion possibly due to ribosome stalling at the

clearance of the initiation stage (81).  A study that examined the RBS of 124 mRNAs determined

the average length of complementarity to be five nt and the minimum length was three nt. (161).

Few reports have indicated that the presence of a SD sequence is not necessary for translation

(151, 170, 183).  Another study demonstrated translation of an unleadered RNA, a process

dependent upon a SD-like sequence downstream of the initiating codon (151).

Due to the size and correct positioning of the ribosome at the initiation codon, the spacer

region between the SD sequence and the initiation codon also determines translational efficiency

(52).  In vivo experiments indicate that the efficacy of translation does not vary much when the

spacer is between the range of five to 13 nt and a spacing of nine nt is optimal (161).  However,
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in these experiments other variables exist, including altered primary sequences and RNA

secondary structures, which complicate result interpretation. 

Role of the initiation codon

Translation initiation also involves base-pairing between the start codon and the

anticodon of the initiator tRNA, fMet-tRNAf
Met.  The preferred initiating codon, AUG, indicates

the translational start of most translated RNAs, and is complementary to the anticodon of fMet-

tRNAf
Met, UAC.  Less frequently, GUG, UUG and CUG serve as start codons in which case

weaker base pairing leads to less ternary complex (mRNA, the 30S subunit and fMet-tRNAf
Met)

formation due to a decrease in overall complex stability (136).  This is supported by in vivo

analyses of reporter fusions that demonstrate decreased activity when GUG, UUG or CUG is

substituted for AUG (59, 136, 170).  However, the decrease in activity compared to that of AUG

containing reporters varied substantially among different initiation codons and is naturally

exploited to control gene expression (59, 136).  In general, the activity of initiation codons

follows the scheme: AUG > GUG > UUG > CUG (59, 136).  The second codon has also been

shown to affect the rate of translation initiation and highly expressed genes often display GCU at

this position (40, 136).
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Structured Ribosome Binding Regions

Translation initiation regions are often folded into complex secondary structures (e.g.

rpoS; Fig. 2).  An equilibrium exists such that at any given time a particular mRNA molecule

may be partitioned between structured and non-structured conformations (37).  This ratio is

dependent upon the free energy of the different foldings (37).  The theory that ribosomes are

blocked by mRNA secondary structure predicts that stable foldings positively influence the

folded:unfolded ratio and thus result in decreased initiation (37).  This idea is at odds with a

report suggesting that the 30S ribosomal subunit recognizes a particular folded mRNA structure

(66).  Either way, the secondary structures of the ribosome-binding region (which can include far

upstream and downstream interactions; Fig. 2) have been reported to both enhance and inhibit

translation initiation (discussed below). 

Phage T4 gene 38 encodes a protein required for long tail fiber assembly whose synthesis

is enhanced by its ribosome-binding region (52).  In this case, a 20 nt stem-loop positions a

distant SD sequence within five nt of the initiating codon facilitating translation initiation (52,

122).  Mutations predicted to destabilize the structure resulted in decreased translation (52, 122).

A similar mechanism of translational activation is reported for T4 gene 25 (122, 123).  

Alternatively, structured regions that involve pairing of the SD sequence or the initiation

codon result in decreased protein synthesis.  Such is the case for the translation initiation region
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of the coat gene of the bacteriophage MS2 (37).  The mRNA structure of this region pairs the SD

sequence with nt downstream of the initiation codon (in this case AUG; 156).  Mutations

predicted to stabilize this inhibitory structure resulted in decreased protein expression, while

disruption of base pairing at the SD sequence had the opposite effect (37).  An important

conclusion of that study is that a strict correlation exists between translation efficiency and the

stability of the structured ribosome-binding region (37).  Based on the effects of nt substitutions

on both protein expression and predicted secondary structure stability it was also suggested that

ribosomes bind only single-stranded regions of RNA molecules (37).  This model contradicts the

notion that local single-stranded regions, for example the SD sequence or the initiation codon,

facilitates translation initiation (148).  In these experiments it is difficult to attribute the changes

in protein expression solely to changes in the folding energies considering that the primary

sequence and the predicted RNA structures are also altered. 

Trans-acting Factors and Translational Regulation

The ribosomal protein S1 (encoded by rpsA) is the largest ribosomal protein and essential

for viability (162).  S1 interacts with the head, platform and body of the 30S subunit via

intermolecular protein interactions late in assembly and its length is comparable to the longest

dimension of the 30S subunit (149).  The N-terminal domain is responsible for protein-protein

interactions while the C-terminus contains four homologous repeats, the S1-motif, that constitute

a RNA-binding domain (26, 162, 163).  S1 plays an essential role in translation using

promiscuous RNA interactions (with a preference for polyU, polyA and polyC nt sequences) to
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promote binding of the ribosome to mRNA (16, 138, 160, 162, 163).  Ribosomal associated S1-

mRNA interactions occur anywhere from 22-145 nt upstream of the initiation codon, and

purified S1 binds RNA in vitro (14-16, 135, 150).

Reports of actual translational regulation by S1 are scarce and the best described system

is autogenous repression (14, 15, 141).  Despite the absence of a canonical SD sequence, rpsA is

actively translated and S1 repression occurs at this level (155).  The proposed model relies on

S1-mediated recognition and disruption of a phylogenetically conserved secondary structure of

the rpsA mRNA leader (-90 to +20 with respect to the first nt of the initiation codon) that forms a

non-contiguous SD sequence (15).  

A recent report demonstrates that S1 binds to another leader region, the rpoS message in

Pseudomonas aeruginosa (150).  This interaction occurs specifically during exponential phase

and depends on 78 nt upstream of the initiation codon however, the translational consequence of

S1 binding to rpoS was not determined (150).  These results suggest a possible role in regulation

of rpoS translation, although the model is counterintuitive; S1 recruits ribosomes to the rpoS

message during a time when translation is minimal.  
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Abstract

The bacterial sigma factor RpoS is strongly induced under a variety of stress conditions and

during growth into stationary phase.  Here, we use rpoS-lac fusions in E. coli to investigate control

acting at the level of RpoS synthesis, which is especially evident when cells approach stationary phase

in rich medium.  Previous work has shown that the small molecule ppGpp is required for normal levels

of RpoS in stationary phase.  Despite the attraction of a model in which the ppGpp level controls

stationary phase induction of RpoS, careful measurement of rpoS-lac expression in a mutant lacking

ppGpp shows similar effects during both exponential growth and stationary phase:  the main effect of

ppGpp is on basal expression.  In addition, a modest regulatory defect was associated with the mutant

lacking ppGpp, delaying the time at which full expression is achieved by 2 to 3 hours.  Deletion analysis

showed that the defect in basal expression was distributed over several sequence elements, while the

regulatory defect mapped to the region upstream of the rpoS ribosome-binding site (RBS) that contains a

cis-acting antisense element.  A number of other genes that have been suggested as regulators of rpoS

were tested, including dksA, dsrA, barA, ppkx, and hfq.  With the exception of the dksA mutant, which

had a modest defect in Luria-Bertani medium, none of these mutants was defective for rpoS stationary-

phase induction.  Even a short rpoS segment starting at 24 nt upstream of the AUG initiation codon was

sufficient to confer substantial stationary phase regulation, which was mainly posttranscriptional.  The

effect of RBS-proximal sequence was independent of all known trans-acting factors, including ppGpp.
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Introduction

The rpoS gene encodes a sigma factor, σS or RpoS, which is required for expression of a large

number of genes in response to various stresses, including nutrient limitation and osmotic challenge, and

during growth into stationary phase (see references 15 and 21 for reviews).  The rpoS gene has been

found in a variety of Gram-negative bacteria and its function and regulation have been studied

extensively in the enteric species Escherichia coli and Salmonella enterica serovar Typhimurium (here

referred to as S. enterica).  RpoS is also a virulence factor for S. enterica (13) and its expression is

induced when these bacteria enter mammalian host cells (9).  It is not clear how information about

stress, nutrient limitation and host environment is used to control RpoS.  Increased RpoS abundance has

been reported to be regulated at many levels including transcription initiation and elongation

(17,18,30,34), translation (19,22,24), and protein stability (19,31,35).  RpoS protein activity is also

regulated (32).  No in vitro system that mimics any aspect of in vivo control of RpoS synthesis has been

described.

Genetic analysis has led to the idea that some, perhaps most, regulation of RpoS synthesis occurs

at the posttranscriptional level via an inhibitory mRNA secondary structure (7,20,23).  An upstream

antisense element has been localized through computer analysis of RNA folding and identification of

compensatory mutations (7, our unpublished data); the antisense element can pair with the ribosome-

binding site (RBS) region and inhibit rpoS translation.  This proposed RNA structure is not yet

supported by physical evidence.  It is, however, strongly supported by genetic analysis of the DsrA

RNA, a small untranslated RNA which acts as an anti-antisense RNA, increasing rpoS expression (23).

DsrA RNA is important for expression of rpoS in E. coli at growth temperatures at or below 30°C
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(33,39), but is not required in S. enterica (unpublished data).  It is not yet clear whether the antisense

element functions in other regulatory inputs to RpoS.

Mutations in more than 20 genes have been identified as affecting RpoS synthesis alone.  Many

of these "regulators" exhibit highly pleiotropic phenotypes, and it seems unlikely that most act directly

on rpoS expression.  Often, such mutants show changes in the shape of the growth curve even in rich

medium.  Thus, their effects on RpoS may be a secondary consequence of altered growth rates and early

or prolonged entry into stationary phase.  There are clearly strong selective forces both for RpoS activity

(in early stationary phase) and against it (in both late stationary and exponential phase).  Given these

forces, it is more than a formal possibility that uncharacterized strain differences may influence the

observed regulation.  Known examples include the wild type S. enterica strain LT2, which is defective

in the RpoS protein turnover mechanism 3,11);  and the widely-used E. coli strain MC4100, which is a

relA mutant, and is often used despite the reported role for ppGpp in RpoS regulation (14).  Thus, even

more than for most regulatory systems, the results observed may depend on which strain was used and

how the cells were grown. 

Here, we investigate the induction of RpoS that occurs in the wild type E. coli strain MG1655 as

cells are grown to stationary phase in LB medium, usually at 37°C.  This medium was chosen because

the induction ratio (stationary phase expression / exponential phase expression) is particularly high

under these conditions:  ca. 35-fold as measured using an rpoS-lac protein fusion.  Previous work

showed that RpoS abundance is greatly reduced in a MG1655 ∆relA ∆spoT mutant which lacks ppGpp

(14).  (This genetic background is referred to below as ppGppo for convenience).  Artificially increasing
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ppGpp levels by synthesis of a truncated RelA protein also leads to a very large and rapid increase in

RpoS abundance, while substantially increased RpoS abundance can also be observed in certain spoT

mutants that have modestly elevated ppGpp (14).

Another study concluded that the main effect of ppGpp is on transcription elongation across the

rpoS leader (17).  This conclusion was based on apparently normal stationary phase and ppGpp-

regulation of plasmid-borne rpoS-lac fusions (to codon 23 of rpoS) which had been deleted for the

known rpoS promoters.  However, the source of this low-level residual transcription was not identified.

There is also an  apparent conflict between this conclusion and experiments using ppGpp overproduction

(8) which found that rpoS mRNA abundance is not elevated by ppGpp overproduction during

exponential phase, pointing to translation control of rpoS by ppGpp.

To further investigate these questions, we employed a set of lacUV5 promoter substitution and

deletion derivatives of rpoS-lac, which allow sensitive, quantitative measurement of rpoS expression in

LB medium in different mutant backgrounds.

Materials and Methods.

Bacterial strains and construction.  Strains used in this study for physiological experiments

are derived from the wild type E. coli K-12 strain MG1655.  The parental strain was CF7968, which is

MG1655 that has been corrected to rph+ (16) and deleted for lacIZ, obtained from M. Cashel.  This lac

deletion extends between MluI sites in lacI and lacZ and was constructed by D. Vinella.  Many of the
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lac fusions used in this work have been described previously (6, 7, 10).  These fusions are placed in the

E. coli trp operon as described (12).  Phage P1 vir was used for transduction; P1 growth and

transduction were carried out by standard methods (37).

Media and growth conditions.  Bacteria were grown at 37°C (with one exception as noted

below) in Luria-Bertani (LB) medium (37) and on nutrient agar plates containing 5 g of NaCl per liter,

except where indicated.  Minimal agar was prepared with NCE medium containing 0.2% glucose (4).

Antibiotics were added to final concentrations in selective plates as follows:  20 µg of tetracycline

hydrochloride/ml (10 µg / ml for minimal medium), 20 µg of chloramphenicol / ml, 50 µg of kanamycin

sulfate / ml (except for hfq crosses, as noted below) and 30 µg of sodium ampicillin / ml (100 µg / ml

when selecting for plasmids).

New mutations affecting putative trans-acting factors.  New insertion mutations were

made by the method of Yu et al (43) employing host strain DY330 (E. coli W3110 ∆lacU169 gal490

[∆cI857ts ∆(cro-bioA)].  Primers containing 20 nt of tet homology at the 3' end were used to amplify the

tetAR genes from plasmid pWM7 (25).  PCR was performed using Taq polymerase (Qiagen) as

suggested by the manufacturer.  Amplified DNA was purified by a QIAquik PCR purification kit

(Qiagen); residual template DNA was then removed by digestion with DpnI, which cuts specifically at

methylated GATC sites, followed by repurification of the PCR product and elution in a volume equal to

the original PCR reaction.  Heat-induction and transformation of DY330 was as described (43) using 5

µl of DNA; transformants were selected at 30°C.
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Primers for tet amplification were as follows (tet homology in upper case):

dksA atgcaagaagggcaaaaccgtaaaacatcgtccctgagtattctcgccatCTCTTGGGTTATCAAGAGGG,

ttagccagccatctgtttttcgcgaatttcagccagcgttttgcagtcgaACTCGACATCTTGGTTACCG;

barA ctttctcaatttaacagtgtgaccttaattgtcccataacgCTCTTGGGTTATCAAGAGGG,

ccagcgtcataaaaagccgattgctactcgacaagacatccattaACTCGACATCTTGGTTACCG;

ppkx ggtcaggaaaagctatacatcgaaaaagagctcagttggtCTCTTGGGTTATCAAGAGGG,

tcgtcggcccgcaaagtattaagcggcgatttctggtgtaACTCGACATCTTGGTTACCG.

The resulting deletion/insertion mutations result in loss of target gene sequence as follows:  dksA

(codons 18 through 136); barA (7 bp upstream of codon 1 through the termination codon); ppkx (codon

15 of ppk through codon 507 of ppx).  Strains were checked for the insertion/deletion by PCR with

flanking primers.  Sequences of these primers are available on request.  Only a small number of

candidate insertions was checked for each gene knockout experiment; in every case, a PCR product of

the predicted size was observed.

The same general method was used to substitute the bla (AmpR) gene for KanR of certain lac

fusions. The primers used have bla homology at their 3' ends (upper case) and the template was

pBR322:

tcatgaacaataaaactgtctgcttacataaacagtaataTGAAGACGAAAGGGCCTCGTGATAC,

gcgtaatgctctgccagtgttacaaccaattaaccaattcTTACCAATGCTTAATCAGTGAGGCAC.

In contrast to the transformations used to construct tet insertions, for the bla substitutions it was

found that only a minority of AmpR transformants had lost the KanR marker as predicted for events of
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the desired type (the frequency of the correct event ranged from 1-25%).  However, the AmpR marker of

the desired class (KanS) showed 100% linkage to Lac+ upon backcross.

Other mutations affecting trans-acting factors.  The relA deletion used was from strain

CF3032 (∆relA252::kan argA::Tn10; 26).  Since most of the lac fusions used here are marked with

KanR, the ∆relA marker was introduced by co-transduction with argA::Tn10, selecting TetR.

Transductants were screened for the Rel- phenotype by testing sensitivity to SMGL (serine, methionine,

glycine and leucine) on minimal glucose plates with tetracycline.  When comparing wild type with

ppGppo (∆relA ∆spoT) strains, the relA+ spoT+ control strains also carry the argA::Tn10 (with one

exception noted below).  The spoT deletion used was from strain CF1693 (∆relA251::kan

∆spoT207::cat; 42).  The dsrA deletion used was from strain DDS724 (∆dsrA5 with linked Tn10),

obtained from D. Sledjeski.  This deletion is described in reference 39.  The dsrA deletion was

introduced by co-transduction with the linked Tn10.  For comparison with ∆dsrA strains, wild type

dsrA+ strains also carry this linked Tn10.  To construct strains for the epistasis test of dsrA and relA

spoT, the ∆relA252::kan marker from CF3032 was introduced by linkage to argA::Tn10 and then the

Tn10 was removed by subsequent transduction to Arg+.

The hfq insertion used was from strain TX2822 (hfq-1::Ω-Km), obtained from M. Winkler (40).

This insertion is at codon 41 of the 102 codon hfq gene.  We encountered difficulty using KanR to select

for transfer of hfq-1::Ω-Km.  In fact, all the strains we obtained carrying hfq-1::Ω-Km grew very poorly

when streaked out on either LB or NB agar containing 50 µg / ml kanamycin, showing a typical pattern
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of colonies in the streak (suggesting suppression).  This behavior is not understood.  Growth was normal

in the absence of kanamycin.  To construct the needed strains, selection for transductants carrying hfq-

1::Ω-Km was carried out on LB agar with kanamycin at 25 µg / ml at room temperature, and

transductants were then purified on LB agar without kanamycin at 37°C.  Successful introduction of the

hfq insertion (and all other deletions) was confirmed by PCR.

rpoS-lac fusion.  We have previously described the detailed method used to make the rpoS-lac

constructs employed for most of the experiments in the present work (6, 10).  They use the general

system originally designed by Simons et al. (38), as modified (12).  The relevant gene segments include

(in order) an upstream Kanr element, tandem transcriptional terminators, and the promoter or regulatory

sequence under investigation, followed by the lac operon.  This assembly is placed in single copy in the

bacterial chromosome (at trp); therefore all strains carry a wild-copy of rpoS.  Most lac fusions used in

this study have lacZ placed to form either an operon or protein fusion at the EagI site at codon 73 of

rpoS.  A different set of fusions, to codon 8 of rpoS, was used for the last set of experiments as described

below.

Some constructs carried the native rpoS promoter (6).  In the others, including the KpnI construct

as well as the numbered deletions, rpoS-lac is expressed from the lacUV5 promoter (lacUV5p) with a

constant lac-derived leader of 36 nt plus several restriction sites, followed by different amounts of rpoS

sequence; these constructs vary only in the extent of the deletion that removes rpoS sequence from the

upstream side.  The lacUV5p is derived from pRS476 (38); it includes only one of the cyclic AMP

receptor protein (CRP) half-sites on the upstream side and the lac operator on the downstream side.
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The reference KpnI site construct (construct K), as well as the ∆1 and ∆2 constructs, were all

previously described (10).  The ∆3 and ∆4 deletions were made by PCR in exactly the same way as ∆1

and ∆2; the PCR amplified segments were re-sequenced to ensure that no unwanted changes had been

introduced.  These deletion endpoints for ∆2 through ∆4 are illustrated with respect to the sequence in

Fig. 1.  All deletion endpoints are numbered starting from the first transcribed nucleotide for transcripts

initiated from the rpoS promoter.  We have taken this transcript sequence to begin with

GGGUGAACAG (the first G is nt 1; 17).  The coordinates of the first base pair that is still present in

each construct are as follows:  construct K, nt 73; ∆1, nt 344; ∆2, nt 454; ∆3 nt 477; ∆4 nt 541.  The

rpoS ATG initiation codon is at nt 565.  

Another construct in which lacUV5 drives rpoS expression starting from “+1” of rpoS (nt 1) was

constructed by PCR on a rpoS-lac template with a lac-specific oligonucleotide together with the

following oligonucleotide (the lacUV5 mutation in the promoter’s -10 region is shown in bold; rpoS

homology is shown by italics):

CGCGAATTCAGGCTTTACACTTTATGCTTCCGGCTCGTATAATGTGTGGAATTGGGTGAACAGAGTGCTAACAAAA

TG. 

Transcripts originating from lacUV5p in this construct are predicted to contain the 5' sequence

AAUUGGGUGAACAGAGTGCTAACAAAATG, where the underlined nucleotides are derived from

rpoS sequence.  This construct does not include the lac operator.  The PCR product was substituted as an

EcoRI-KpnI fragment in several steps, and this segment was sequenced to make sure that no unwanted

mutations had been introduced by the PCR step.  The strain with this fusion carried in the bacterial

chromosome is TE8378.
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Second method for making promoter fusions.  We subsequently developed a convenient

method for making constructs in which rpoS (or any gene) can be expressed from lacUV5p, by

employing the lambda lysogenic strain background and technique of Yu et al (43).  The general

transformation method is the same as described in the section above on tet insertions.

  For this purpose, we first placed tetAR upstream of lacUV5p, replacing KanR (38) in the

standard ∆1 fusion by using the following two oligonucleotides:

ATAAAGTGTAAAGCCTGGGGTGCCTAATGAGTGAGAATTCACTCGACATCTTGGTTACCG (tetR

homology in italic, lacUV5p homology elsewhere) and 

TCATGAACAATAAAACTGTCTGCTTACATAAACAGTAATACTCTTGGGTTATCAAGAGGG (tetA

homology in italic, kan homology elewhere):

In the second step, the marked lacUV5 promoter was joined to each of the desired target sites by

PCR amplifying ther tetAR-lacUV5p segment with an oligonucleotide which included appropriate rpoS

homology attached 5’ to the lacUV5-specific sequence:  AATTCCACACATTAATACGAG.  As in the

first step, on the upstream side the oligonucleotide for PCR was chosen so that the tetAR-lacUV5p

substitution will replace the kan gene of the standard fusion.  The resulting constructs are marked with

Tetr, join to lacUV5p directly to the desired target sequence, and do not include the lac operator.  With

this method, we made a new set of deletions extending to various positions directly upstream of the rpoS

ATG initiation codon as described above in the text.  Depending on the strain used for lambda red-

mediated transcformation, the resulting constructs are lac [op] or [pr] fusions at codon 8 of rpoS.  The

full lacUV5p sequence is

GAATTCTCACTCATTAGGCACCCCAGGCTTTACACTTTATGCTTCCGGCTCGTATAATGTGTGGAATT.
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Constructs made by this method were confirmed genetically as Kans and physically by PCR with

primers specific to tetR and lac, followed by DNA sequencing across the lacUV5p and the first 200 to

300 nt at the joint to rpoS.  After verification, the fusion constructs were transduced into the CF7968

background by selecting Tetr.

The lac fusions marked with Kanr, as designed by Simons et al. (38), carry tandem insertions of

a terminator between the drug resistance cassette and the site where test segments are joined to lac;

terminators were not explicitly included in the fusions marked with Tetr made by the new method.  This

was considered unlikely to be necessary because of the weak activity of the tetR promoter and its more

than 20-fold dependence on tetracycline for induction.  Indeed, assays of constructs grown in the

presence or absence of tetracycline showed that induced transcription from tetR accounts for ≈10% of

lac transcription from exponential phase cells; the contribution from uninduced transcription (i.e. our

standard growth condition) is therefore negligible.

Assay of β-galactosidase.  Cells were centrifuged and resuspended in Z-buffer (100 mM

NaPO4, pH 7.0, 10 mM KCl, 1 mM MgSO4), then permeabilized by treatment with SDS and chloroform

(27).  The samples from exponential phase time points were concentrated before assay, to be

approximately equal in density to samples from later times.  Assays were performed in Z-buffer

containing 50 mM β-mercaptoethanol by a kinetic method using a plate reader (Molecular Dynamics).

Activities (OD420 per min) are normalized to actual cell density (OD650) and were always compared to

appropriate controls assayed at the same time.  All β-galactosidase assays were performed within 3 hr of

the time of sampling.  The values shown are averages of at least three experiments with standard
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deviations of less than 20%, except for the very low values from exponential phase for the ppGppo

mutant, where the standard deviations were less than 30%.  But we should point out that comparisons of

the relative defect in stationary phase induction involve ratios of experimental values, with a

corresponding increase in the uncertainty.

Figure 3. Partial Restriction map of  the nlpD and rpoS open reading frames.

.  Panel A shows a partial restriction map of the DNA
encompassing the nlpD and rpoS open reading frames of E. coli,
which consist of 321 and 330 codons, respectively.  The function
of nlpD (encoding a lipoprotein) is not related to that of rpoS.
Arrows indicate the orientation of the two ORFs and the known
promoters.  The upstream promoter cluster (PnlpD), which is not
thought to be regulated, serves both nlpD and rpoS.  The
downstream promoter (PrpoS), is regulated and serves only rpoS;
its transcript includes an untranslated leader of 564 nt.  The first
nucleotide of the transcript from PrpoS, (as specified in the text)
is taken as the basis for numbering used here (nt 1).  The
numbers used previously by us (7,10) can be converted to this
system by adding an offset of 341 nt  Most lac fusions used in
this study have lacZ placed to form either an operon or protein
fusion at the EagI site within rpoS (codon 73).  Other fusions, to
codon 8 of rpoS, are so indicated in the text.  Panel B shows two
possible secondary structures for RNA including the end of the
nlpD coding sequence and the short intergenic region up to the
AUG start codon of rpoS.  The UAA stop codon terminating
nlpD lies at nt 500-502.  The top structure is that proposed
previously by us (7), and includes an upstream antisense element
with three stems that can pair with a complementary sequence

within the RBS, directly upstream of the rpoS AUG start codon.  The Shine-Dalgarno (S.D.) sequence
complementary to 16S rRNA is also indicated.  The lac UV5 promoter was used to drive expression of
various constructs of two general types, as detailed in the text.  The end-points of sequence derived from
nlpD-rpoS included in these fusions can be described with reference to this figure as follows.  Fusions
for which the promoter is shown as "rpoS" include DNA starting from the ClaI site (panel A).  Other
fusions contain substitutions of the lacUV5 promoter followed by DNA starting from:  nt 1 of the PrpoS

transcript, the KpnI site, ∆1 (nt 344), ∆2 (nt 454),∆3 (nt 477), or ∆4 (nt 541).  For ∆2 through ∆4
included leader DNA sequences are shown in panel B.
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Results

Expression of rpoS-lac along the growth curve.  Growth of cells for β-galactosidase assay

was at 37°C (with one exception noted below) in LB medium.  Cultures were started by a 1:500 dilution

starting from overnight cultures grown under the same conditions.  In LB medium at 37°C the

generation time of the wild type (relA+ spoT+) strain was 24 minutes, while the generation time of the

otherwise isogenic ppGppo mutant (∆relA ∆spoT) was 33 minutes (Fig. 4A).  For each culture, the time

at which stationary phase begins (designated S below and in data tables) was arbitrarily defined as 1

hour after the time at which the OD600 reached 0.5.  This definition compensates for the slower growth

rate of the ppGppo mutant; it also allows the times for stationary phase sampling to be fixed while the

culture is still in exponential phase.  The point on the growth curve at S is very close to the inflection

point between lines for exponential and stationary phases.

In a preliminary experiment we found that wild type cells carrying the rpoS-lac [pr] fusion, taken

at densities between OD600 = 0.01 and OD600 = 0.25, showed nearly the same activity for β-galactosidase

(data not shown).  So as to maximize recovery, OD600 = 0.25 was chosen as the reference density for

exponential phase, before the increase characterizing the transition into stationary phase.  Plots of β-

galactosidase activity determined as cells achieved stationary phase are shown in Fig 4B.  The times

shown in this panel are slightly different than shown in panel A:  the x-axis of the plot of the ppGppo

mutant has been shifted to align it with wild type at OD600 = 0.5 (as well as S and subsequent points).   
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      Figure 4.  Expression of rpoS-lac [pr] as a function of growth phase.

Our data are consistent with results reported in previous studies (14,17).  The wild type strain

with rpoS-lac [pr] shows low but significant activity during exponential phase (Table 5), which then

rapidly increases during the approach to and in early stationary phase.  Maximum activity is achieved by

S+2 hr and is not increased by overnight growth (data not shown).  The overall induction ratio is 35- to

40-fold.  In contrast to wild type, the ppGppo mutant has much lower expression of rpoS-lac at all times.

The mutant shows about a 6-fold decrease compared to wild type even during exponential phase (Table

5), and the ratio of activity in the mutant compared to that in wild type is approximately the same during

exponential phase and late stationary phase.  It is only during early stationary phase that the ppGppo

mutant seems to be delayed in comparison to the increase seen in rpoS-lac expression for wild type.  For

A.  Growth curve of the wild type strain carrying rpoS-lac [pr] (TE8197, filled squares) and its ppGppo

mutant derivative (TE8199, open squares) in LB medium at 37°C.  As described in the text, stationary
phase (S) was defined as one hour past the time at which the OD600 reached 0.5.  In this experiment,
for the wild type strain S = 3 hr 42 min, and for the ppGppo strain S = 3 hr 54 min.
B.  Cultures were grown as in panel A, and sampled at various times for assay of β-galactosidase.  The
first point for each curve corresponds to the time at which OD600 = 0.25.  The x-axes of the plots have
been shifted slightly to align the points corresponding to OD600 = 0.5 at the 4 hr mark.  Each
subsequent sample was taken at one hour intervals.
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the mutant, there is a gradual three-fold increase in β-galactosidase activity seen at late times, between

S+2 hr and S+5 hr (Fig. 4B).  
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Table 5. Effect of ppGpp on rpoS-lac and lac expression in vivo a.
                         .  

β-galactosidase activity (U)
lac fusion                  Activity ratio, 

              Wild type         Mutant (ppGppo) mutant/wild type

Promoter reporter type E S+3 S+3/E b E S+3 S+3/E E S+3 S+3/E

rpoS rpoS-lac Protein 3.4 120 35 0.54 5.1 9.4 0.16 0.04 0.27

rpoS rpoS-lac Operon 35 510 15 11 50 4.5 0.31 0.10 0.31

lacUV5 rpoS-lac Protein 5.3 71 13 2.1 7.6 3.6 0.40 0.11 0.27

lacUV5 rpoS-lac Operon 100 330 3.3 64 130 2.0 0.64 0.39 0.61

lacUV5 rpoS-lac (+1) Protein 10 130 13 3.2 25 7.8 0.32 0.19 0.60

rpoS rpoS-lac (codon 8)b Protein 4 130 32 0.62 13 21 0.15 0.10 0.64
 
lacUV5 lac Operon 120 160 1.3 81 80 0.99 0.67 0.50 0.74

a Exponential-phase (E) and stationary-phase (S + 3) samples are defined in text.  Values are averages with a variation of <20%, with one exception noted in the
text.  The S + 3/E induction ratio was calculated as the activity of the S + 3 sample divided by that of the E sample.
b all other fusions were to codon 73 of rpoS. 
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Table 6.  Role of the antisense element in stationary phase induction and ppGpp effects on rpoS-laca.

β-galactosidase activity (U)
lac fusion              Activity ratio,

wild type mutant (ppGppo)       mutant / wild type

Promoter Reporter                   E S+3         S+3/E                  E S+3         S+3/E                E S+3 S+3/E

lacUV5 rpoS-laca 5.7 82 14 2.1 6.7 3.2 0.37 0.08 0.22
rpoS-lac, ∆1 4.7 65 14 1.8 7.5 4.2 0.38 0.12 0.30
rpoS-lac, ∆2 3.1 34 11 1.6 5.7 3.6 0.52 0.17 0.32
rpoS-lac, ∆3 13 73 5.6 8.4 62 7.4 0.65 0.85 1.3
rpoS-lac, ∆4 8.3 40 4.8 5.2 30 5.8 0.63 0.75 1.2

rpoS rpoS-lac 3.1 120 39 0.66 8.8 13 0.21 0.07 0.34
rpoS rpoS-lac C469G 7.7 210 27 1.4 47 34 0.18 0.22 1.23
rpoS rpoS-lac G549C 14 360 26 3.3 29 8.8 0.24 0.08 0.34
rpoS rpoS-lac C469G G549C 6.5 170 26 1.4 7.9 5.6 0.22 0.05 0.22
a All fusions listed in this table are protein fusions.  See Table 5, footnote a, for definitions.
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The defect in stationary phase rpoS-lac expression seen for the ppGppo mutant was previously

reported by others (17).  However, we also find a quantitatively similar exponential phase defect of

rpoS-lac expression in the same mutant.  We would distinguish between the defect in basal (or

constitutive, non-regulated) expression and a true regulatory defect.  The basal defect of the ppGppo

mutant is about six-fold; while the regulatory defect for stationary phase induction seen at S+3 hr is

approximately three-fold.  These results indicate that stationary phase induction of rpoS is not simply

due to increased ppGpp during stationary phase because it still occurs normally even in the complete

absence of ppGpp.  Accumulation of RpoS in the ppGppo mutant after overnight incubation in stationary

phase is consistent with previous studies (14, 17).  Of course, these experiments do not exclude the

possibility that ppGpp might play a quantitatively larger regulatory role under other conditions.

Promoter substitution.  Expression of rpoS-lac was measured from constructs in which the

lacUV5 promoter was substituted for the native rpoS promoters (10).  The lacUV5 promoter was chosen

because its activity was previously reported to be completely independent of ppGpp (1, 2); also, its

activity is only slightly increased during stationary phase (see the last entry of Table 5).  When

expression of rpoS-lac [pr] was driven by lacUV5p, a strong stationary phase induction still occurred

(induction ratio of 13-fold; Table 5).  The stationary phase induction was smaller by a factor of 3 than

that seen with the native promoters, suggesting that the native promoters contribute to stationary phase

induction to this extent.  We also compared the effect of stationary phase on expression of rpoS-lac

protein and operon fusions driven by either native or lacUV5 promoters.  Combined, the results support

the idea that stationary phase controls multiple stages in rpoS expression.  (i)  a role for translational
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regulation is suggested by the larger induction ratio when [pr] fusions are compared with [op] fusions,

whether driven by the native promoters or by lacUV5p;  (ii) a role for the native rpoS promoters is

suggested by the smaller induction ratio when lacUV5p is substituted in either [op] or [pr] fusion

contexts;  and (iii) a role for post-initiation transcriptional control is suggested by the residual stationary

phase induction seen in the lacUV5p-rpoS-lac [op] construct.

Expression of rpoS-lac [pr] from the lacUV5 promoter was decreased significantly in the

ppGppo mutant background (Table 5).  The time course for both mutant and wild type (data not shown)

was similar to that seen when the construct was driven by the native promoters (Fig 4B).  Expression

was lower for the mutant at all times, but with a gradual increase in expression in the mutant until S+5

hr.  To detect the regulatory defect of the mutant, we chose S+3 hr as the time of sampling for stationary

phase (Table 5).  Selected stationary phase induction ratios calculated in Table 5 are plotted in Fig 5.  It

can be seen that the regulatory defect of the ppGppo mutant is similar for rpoS-lac protein and operon

fusions, as well as for protein fusions whether driven by the native promoters or lacUV5p.  This

suggests that neither the promoter nor translation-level control are significant targets for the regulatory

effect of ppGpp.  

In contrast to its regulatory effects, the defect in basal expression of the ppGppo mutant seems to

be distributed over several elements.  For example, whether comparing exponential or stationary phase

values, the biggest defect is shown by rpoS-lac [pr] driven by the native promoters.  The relative defect

is less for either a lacUV5 promoter substitution or an operon fusion.  The former result is consistent

with direct measurement of rpoS mRNA 5’ ends (17).  We also found that lacUV5 promoter activity
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was somewhat lower in a ppGppo strain---as much as 2-fold lower in stationary phase (Table 5).  This

effect of ppGpp in the control, while small, makes the significance of other small effects uncertain (in

particular, the effect of ppGpp in the lacUV5p-rpoS-lac [op] construct).

                                    Figure 5.  Nature of the ppGppo regulatory defect.

The reference lacUV5p constructs were made using a convenient KpnI site (10); this strategy

removed 72 nt of rpoS leader sequence.  Therefore an additional lacUV5p construct was made which

includes all nucleotides of the native transcript (denoted +1); it is regulated identically to the reference

construct in stationary phase, although it seems to be somewhat less sensitive to ppGpp during stationary

phase.  The significance of this difference is not understood at present.  Finally, one fusion was tested in

which lac is joined to rpoS at codon 8 (rather than to codon 73 as in all other rpoS fusions used to this

Various rpoS-lac fusion strains were grown and assayed for β-galactosidase as reported in
Table 5.  The stationary phase induction ratio (expression at S+3 divided by that at E1) is
plotted in bar format for both mutant and ppGppo versions of each fusion.  The ratio (value
in wild type divided by that in ppGppo mutant) of the stationary phase induction ratios is
shown above the bar for each wild type strain.  The strains used are listed in Table 8.
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point).  The codon 8 fusion (driven by the native rpoS promoters) was regulated normally by stationary

phase and was highly responsive to ppGpp.

Deletion mutants.  Deletion analysis was used to define the region(s) of the rpoS leader which

are required for stationary phase induction and the response to wild type ppGpp levels (Table 6).  Cell

samples from wild type and ppGppo backgrounds were collected in both exponential and stationary

phase, and stationary phase induction ratios calculated.  For each construct, the promoter was lacUV5p.

All constructs share a common transcribed leader of 60 nt (partially derived from lac); the only

difference between constructs is the amount of rpoS sequence that is retained.  The first entry in Table 6

shows the reference construct (substitution at the KpnI site, construct K from reference 10).  The

deletions (∆1 through ∆4) extend progressively closer to the rpoS ATG initiation codon, as shown in Fig

3.  The ∆4 construct retains only 24 nt of rpoS sequence upstream of the rpoS ATG initiation codon.

There is no significant difference in either induction ratio or ppGpp response between the K

construct and ∆1, and there is only a slight decrease in induction ratio as the deletion is extended in ∆2.

However, a clear breakpoint can be seen between ∆2 and ∆3.  It is striking that the two deletions that

extend farther downstream (∆3 and ∆4) lack the ppGpp-dependence shown by the reference construct

and upstream deletions.  Selected data from Table 6 highlighting the effect of ppGpp on induction ratio

are shown in a bar plot in Fig. 6, panel A.  The plot clearly shows that the ∆3 and ∆4 deletions retain

substantial stationary phase induction but have lost the ppGpp response.  The region between the ∆2 and

∆3 deletion endpoints required for this facet of the ppGpp response includes the upstream antisense

element.  There is also approximately a two-fold decrease in the stationary phase induction ratio
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between ∆2 and ∆3.  However, a substantial (five-fold) stationary phase induction is retained in both the

∆3 and ∆4 deletions, despite the fact that they do not respond to ppGpp.

Figure 6.  Deletion mapping of sequences required for ppGppo (A) and dksA (B) mutation   

                 effects on rpoS expression.

In a previous study we described a number of mutations which affect the upstream antisense

element or its complementary sequence within the RBS of rpoS mRNA, immediately upstream of the

Various rpoS-lac fusion strains, all driven by the lacUV5 promoter but with varying amounts of the
upstream rpoS leader, were assayed for β-galactosidase during exponential phase and stationary
phase.  Stationary phase induction ratios were calculated and plotted here.  The underlying data for
the ppGppo strain are from Table 6.  The strains used are listed in Table 8.
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rpoS ATG initiation codon (7).  Two of these mutations were examined here:  C469G and G549C,

which alter the antisense (top) and sense (bottom) components of stem II respectively (see the legend to

Fig. 3 for details).  We chose these two mutations because, as tested in S. enterica, in the double mutant

the resulting rpoS-lac expression phenotype is indistinguishable from wild type and very different from

each single mutant, providing strong genetic support for the proposed inhibitory mRNA secondary

structure.  Furthermore, mutations at adjacent positions share these properties (unpublished data).

Here, it is striking that the C469G mutation allows high stationary phase expression and restores

a normal induction ratio of rpoS in the ppGppo background (Table 6).  This lesion clearly relieves most

of the ppGpp requirement of rpoS.  Furthermore, the C469G/G549C double mutant restores ppGpp

dependence, which is consistent with the model that ppGpp-dependence can be counteracted by

blocking interaction of the antisense element with the RBS.  However, since the G549C single mutant

should loosen the secondary structure as effectively as C469G, the model predicts that G549C should

relieve the ppGpp requirement of rpoS, yet this prediction is not fulfilled.

Additionally, when comparing E. coli with S. enterica, the phenotype of the compensatory

double mutant is not always as clear-cut in E. coli.  Particularly in a wild type (relA+ spoT+) strain

background, the C469G/G549C double mutant does not exhibit a fully wild type phenotype but rather is

intermediate between C469G and wild type (Table 6):  compare 120 units (wild type), 170 units (double

mutant) with 210 units (C469G).  On the other hand, at stationary phase in the ppGppo background, the

phenotype of the double mutant is more convincingly like that of wild type:  compare 8.8 units (wild

type), 7.9 units (double mutant) with 47 units (C469G) and 29 units (G549C).  The partial suppression
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observed in the double mutant in a wild type background leaves some question whether the observed

phenotypes result simply from a failure of antisense element interaction with the RBS.  They might

reflect an additional sequence-specific interaction.  Nevertheless it is clear that C469G eliminates a

requirement for ppGpp to observe normal stationary phase induction and the requirement for ppGpp is

restored in the C469G/G549C double mutant. 

Effect of dksA.  A dksA insertion in S. enterica was reported to decrease stationary phase

induction of an rpoS-lac protein fusion in supplemented minimal medium (41).  In other work, we have

found that a dksA deletion in E. coli almost completely blocks induction of rpoS by elevated ppGpp

during exponential growth in LB medium (8).  Therefore, we tested whether the effect of dksA on rpoS-

lac [pr] expression exhibits the same sequence requirements as observed for the regulatory defect of

ppGppo. 

Expression of rpoS-lac[pr] in the ∆dksA::tet mutant was not detectably different from that in the

wild type during exponential phase but was one-third to two-thirds of the wild type level in stationary

phase,, measured either with the wild type fusion or with lacUV5p constructs (data not shown).  The

regulatory defect of dksA, as reflected in the stationary phase induction ratio, was larger for fusions

carrying more upstream sequence (the KpnI fusion in Fig. 6B).  Only a small regulatory effect of dksA

was seen for ∆1, and this was nearly completely lost for ∆2 and with reporters deleted for the antisense

element (∆3 and ∆4).  This pattern is similar to that for hfq, where its effect on rpoS expression requires

upstream sequences (10; see below), and differs from the requirements for ppGpp effects as described

above.
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We have found similar results for dksA in S. enterica in LB medium (unpublished data).  A more

substantial effect for dksA can be observed in S. enterica in minimal medium supplemented with amino

acids (41, unpublished data); this difference may be related to the multiple auxotrophy of dksA mutants

in both E. coli and S. enterica.

Other trans-acting factors.  In addition to the above studies utilizing the ppGppo background

(∆relA ∆spoT) and a dksA mutation, we also examined the effects on stationary phase induction of rpoS-

lac for mutations in four other genes.  The mutations tested were newly constructed insertion/deletions

of barA (29), or ppkx (36), and existing mutations affecting dsrA (deletion; 39), and hfq (Ω-Km

insertion; 6, 28, 40).  

                             

                     Figure 7.   Additive effect of ppGppo and a dsrA mutation.
Activity of β-galactosidase from exponential (OD600 =
0.25) and stationary phase (S+3 hr) cultures are given.
The strains used are listed in Table 8.
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Previously, a barA insertion (of λplacMu53) in MC4100 was shown to reduce RpoS by Western

blot and rpoS RNA by Northern blot (29).  A ppk ppx mutant in the JM101 background was reported to

have decreased HPII catalase (under RpoS control), and plasmid-encoded yeast PPX1 polyphosphatase

interfered with katE and rpoS induction as measured by Western blot and lac operon fusion, consistent

with positive regulation of rpoS by polyphosphate (36). 

For the first two mutations (barA and ppkx), we found that the effects on rpoS-lac expression

during growth in LB medium were small (data not shown).  No significant effect of ∆barA::tet was

observed for katE-lac [op] expression in either the MC4100 or MG1655 backgrounds; rpoS-lac [pr]

expression was either unchanged (MC4100) or elevated (MG1655).  The ∆ppkx::tet strain expressed

rpoS-lac [pr] at about 75% of the wild type level in stationary phase, whereas the ppGppo derivative was

about 10% of wild type in the same experiment. The ∆ppkx::tet mutant showed an rpoS-lac [pr]

induction ratio of 26-fold, versus 34-fold for wild type.  These small effects are difficult to interpret.

The dsrA gene encodes a small, untranslated RNA which is proposed to base pair with the

upstream antisense element of rpoS, thereby freeing the RBS to be engaged by ribosomes for translation.

Strong genetic evidence supports this model including the behavior of several sets of compensatory

mutations (23).  Sledjeski et al showed that in wild type cells RpoS abundance and rpoS-lac expression

increase dramatically at lower growth temperatures.  One major effect of the dsrA mutation is that this

low temperature response is lost (39).  At 37°C, there is no effect of a dsrA mutation on rpoS-lac
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expression in either exponential or stationary phase, whether in the MC4100 background (33) or in

MG1655 (our unpublished results). DsrA RNA is not required for stationary phase induction under these

conditions.  

In order to see the effect of loss of dsrA, cells were grown at 30°C.  At this temperature, wild

type cells with the standard fusion (construct A) showed a normal stationary phase induction (Fig. 7).

Both the dsrA mutant and the ppGppo mutant showed a substantial reduction in rpoS-lac expression, but

only modest effects were observed on the stationary phase induction ratio.  A mutant lacking both dsrA

and ppGpp showed a more severe phenotype in which rpoS-lac expression was almost completely

absent.  Because both the ppGppo and dsrA backgrounds show severe (10-fold) effects on rpoS-lac, we

suggest that during growth at 30°C most rpoS expression requires both ppGpp and DsrA RNA (whether

directly or indirectly).  We interpret the additive effect of the combined mutations by suggesting that the

two effectors act independently at least in part---ppGpp does not simply act by changing DsrA level or

activity.  However, we emphasize the finding that during growth at 37°C, dsrA function does not affect

rpoS expression, and even at 30°C, dsrA mutants show a stationary phase induction ratio of about 23-

fold.  

We also compared the effect of ∆dsrA in ∆1 through ∆4 (data not shown).  The model of DsrA

acting as an anti-antisense RNA predicts that deletions of the antisense element should not respond to

lack of DsrA.  As predicted, the ∆dsrA deletion does not affect ∆3 and ∆4.
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The last trans-acting regulator that we’ve investigated is hfq.  We found that, as in S. enterica

(10), the ∆2 construct does not respond to loss of hfq and the ∆1 construct shows only a modest effect

(data not shown).  Furthermore, the stationary phase induction ratio of an hfq mutant is very similar to

the hfq+ control, whether the fusion is rpoS-lac [pr] driven by the native promoters, or the ∆1 or ∆2

constructs, driven by lacUV5p (data not shown).  Therefore, Hfq cannot be a mediator of stationary

phase induction.  Finally, many mutations identifying "regulators" of rpoS expression have been

reported to have no effect in an hfq mutant background.  This set includes:  hns (28); stpA; galU, pgi,

and pgm (5); and oxyS (44).  Similarly, a leuO mutation makes no difference in the absence of dsrA

(16a).  Since stationary phase induction is normal in an hfq mutant, and these mutations presumably

affect RpoS secondarily through their effects on hfq, these factors cannot regulate stationary phase

induction.

                                Figure 8.  Stationary phase regulation requires the wild type rpoS RBS.
Various rpoS-lac fusion strains driven by the lacUV5 promoter were grown and assayed for
β-galactosidase.  The stationary phase induction ratio (expression at S+3 divided by that at
E1) is plotted in bar format for protein (pr) or operon (op) versions of each fusion.  Fusions
marked +1 contain the entire 564 nt rpoS leader; those marked 541 contain only 24 nt
upstream of the AUG start codon.  The pr control transcript sequence is compared to the pr
541 transcript below the bar graph.  In each fusion, codon 8 of the rpoS sequence is joined to
lac.  The strains used are listed in Table 8.
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Stationary phase regulation localized to the rpoS RBS region.  As shown in Table 6 and

Fig. 6, a substantial stationary phase induction can be observed even with the ∆4 construct, driven by

lacUV5 promoter, which contains only 24 nt upstream of the rpoS ATG initiation codon.  All lac fusion

constructs used so far have contained rpoS coding sequences extending to codon 73.  We wondered

whether this stationary phase response would be retained with lac fusions made to upstream sites, and

whether operon fusions would show a difference from protein fusions.  To make the new constructs, we

used the λred recombination method (43) to position the lacUV5 promoter precisely at various sites.

We chose to retain the first 4 nt of the lac transcript (AAUU) in these fusions.  Otherwise identical

operon and protein fusion constructs were made by simply transforming the fusion fragment into a

different host strain (see Materials and Methods for details).  The results (Fig. 8) show that this aspect of

the stationary phase response is seen with protein but not with operon fusions (indicating a translation-

level defect) and does not require rpoS sequences downstream of codon 8.  The fusion labeled pr control

in Fig. 8, substitutes the lac RBS (not including operator sequences), for the rpoS RBS.

Discussion.

Ever since the discovery by Gentry et al that mutants lacking ppGpp are deficient in RpoS after

growth to stationary phase in rich medium (14), a role for ppGpp in RpoS regulation has been an

attractive unifying hypothesis.  Thus, ppGpp control of RpoS might explain not only induction of RpoS

during growth into stationary phase, but also growth rate regulation, induction by limitation for single

nutrients and by other stresses such as challenge with high salt, and even induction during growth within
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eukaryotic host cells.  Here, the sensitivity obtained by using lac as a reporter for rpoS expression allows

a clear demonstration that ppGppo mutants are just as defective during exponential as in late stationary

phase and therefore, we suggest that ppGpp should be considered mainly as a basal and not a regulatory

factor.  

This conclusion should be qualified.  First, ppGppo mutants do show a delay in the rate of

increase in RpoS during stationary phase, so that relatively early (at the time we define as S+3 hr), there

is a modest regulatory defect which is made up by a slow, late accumulation.  Second, it is conceivable

that ppGpp is regulatory in stationary phase in wild type cells, but a redundant mechanism operates in

the ppGppo mutant.  Also, the delay of the mutant in achieving stationary phase, and halting protein

synthesis, could allow more time for RpoS to accumulate or might trigger some type of compensatory

increase.  Finally, a regulatory role for ppGpp under other conditions is not ruled out.  Preliminary

experiments indicate that osmotic shock can still induce rpoS normally even in a ppGppo host

(unpublished data).  But ppGpp control might explain the large difference between rpoS expression in

rich and minimal medium.  The complex nutritional defect of ppGppo mutants makes that idea difficult

to test.

Analysis of rpoS-lac operon and protein fusions, as well as promoter substitutions and deletions,

should allow us to suggest one or more mechanisms of ppGpp action in this system.  The total effect is

robust:  expresssion of rpoS-lac [pr] is ca. 25-fold higher in wild type than for the ppGppo mutant at S+3

hr (Table 5).  However, this large effect is distributed in small installments over several targets.  The
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basal increase in expression involves:  (i) an effect lost when transcription is from the lacUV5 promoter

(consistent with primer extension results in reference17), (ii) an effect seen with a protein fusion but not

an operon fusion, and (iii) a target, probably transcription elongation, which is distinct from the first

two.  In contrast, the regulatory effect of ppGpp apparently involves the antisense element (Table 5 and

Fig. 6) yet paradoxically, is still visible with an operon fusion and thus presumably involves

transcription elongation (Fig. 5).  The distributed nature of ppGpp’s targets complicates analysis by

combining several small, presumably multiplicative effects.  

Another area of uncertainty involves the question whether high levels of ppGpp, achieved by

inducing a truncated ribosome-independent RelA protein during exponential growth, alter rpoS

expression in the same way as the effects seen here by use of a ppGppo mutant (14).  Recent work

shows that overproduction of ppGpp dramatically increases RpoS protein synthesis with little change in

the amount of rpoS RNA (8).  Our results, with only a small role for translational control, seem

inconsistent with this.  One resolution is to suppose that ppGpp overproduction affects rpoS by a

different mechanism.  In support of this interpretation, dksA function is required for ppGpp

overproduction to induce rpoS (8), yet stationary phase regulation is normal in a dksA mutant.

Furthermore, the sequences required for dksA to affect rpoS expression in our experiments are different

than those required for ppGpp regulation (Fig. 6).

The most surprising conclusion from these experiments is that much of stationary phase

regulation is retained in lacUV5p-driven fusions that retain only 24 nt upstream of the rpoS AUG

initiation codon and an additional 7 codons downstream (Fig. 8).  This effect of sequences close to the



85

ribosome binding site is independent of the antisense element, ppGpp, and all known trans-acting

regulators of rpoS including dsrA and dksA. 
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Abstract

The sigma factor RpoS is known to regulate at least 60 genes in response to environmental

sources of stress or during growth to stationary phase (SP).  Accumulation of RpoS relies on integration

of multiple genetic controls including regulation at the levels of transcription, translation, protein

stability and protein activity.  Growth to SP in rich medium results in a 50-fold induction of RpoS,

although the mechanism of this regulation is not understood.  Here we characterized the activity of

promoters serving rpoS in Salmonella enterica, and report that regulation of transcription during growth

into SP depends on Fis, a DNA-binding protein whose abundance is high during exponential growth and

very low in SP.  A fis mutant of S. enterica shows a nine-fold increase in expression from the major

rpoS promoter (PrpoS) during exponential growth, whereas expression during SP is unaffected.  Increased

transcription from PrpoS in the absence of Fis eliminates the 10-fold transcriptional induction as cells

enter SP.  The mutant phenotype can be complemented by wild type fis carried on a single-copy

plasmid.  Fis regulation of rpoS requires the presence of a Fis site positioned at -50 with respect to PrpoS

and this site is bound by Fis in vitro.  A model is presented in which Fis binding to this site allows

repression of rpoS specifically during exponential growth, thus mediating transcriptional regulation of

rpoS.
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Introduction 

Bacteria maintain intricate signaling networks that sense the environment and adjust cellular

physiology accordingly.  In Salmonella enterica (S. enterica) and Escherichia coli (E. coli), less

favorable growth conditions (e.g. nutrient limitation, starvation, low temperature, or osmotic shock)

initiate a general stress response by triggering the synthesis of the RNA polymerase sigma factor RpoS

(σS).  By directing RNA polymerase to promoters of specific genes involved in stress resistance, RpoS

serves as the central regulator of the general protective response, also known as SP, and thus increases

survival (28).  The importance of RpoS to S. enterica pathogenesis is evident from a mouse model

involving lethal infections where rpoS mutants are completely avirulent (22). 

The complexity of RpoS regulation is illustrated by the variety of mechanisms reported so far in

E. coli:  transcription, translation, protein turnover and protein activity (28).  One of the best

characterized induction phenomena is regulation of RpoS translation at low temperature in rich medium

(≤ 30°C). This stimulus increases transcription of a regulatory RNA, DsrA, which can pair with an

upstream antisense element in the leader region of the rpoS transcript to relieve the antisense element’s

inhibition of rpoS translation (38). This process requires the Sm-like RNA-binding protein, Hfq, and

results in activation of RpoS expression at a post-transcriptional step. Notably, hfq mutants show normal

SP induction of RpoS in rich medium, both in E. coli (29) and S. enterica (our unpublished data).

  

Another regulatory pathway limiting RpoS abundance in growing cells is proteolytic degradation

involving the ATP-dependent ClpXP protease and a response regulator called MviA (in S. enterica) or
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SprE / RssB in E. coli (52, 62).  In this pathway MviA is activated by an unknown stimulus through

phosphorylation on D58, which substantially increases its ability to bind to RpoS.  The relevant kinase

has not yet been found (16, 28).  The binding event (dependent on K173 of RpoS) results in a

sequestered non-functional RpoS molecule and thus can modulate RpoS activity in itself (8, 75). The

MviA-RpoS complex also interacts with the ClpXP protease, which then actively degrades RpoS,

recycling MviA (44, 52).  RpoS elevates transcription of the response regulator during SP, thus

constituting an auto-regulatory loop in which the concentration of MviA is a limiting factor for the rate

of RpoS degradation in vivo (53, 57).

Perhaps the most striking induction of RpoS is observed during growth to SP in rich medium,

where the level of induction exceeds 30-fold, based on the activity of RpoS-responsive reporters and

rpoS-lac fusions (28, our unpublished data).  The transcriptional component of this induction ranges

from 5-10 fold (28, 29).  Expression levels are significantly lower in the absence of guanosine

tetraphosphate during both growth and SP, but the actual induction ratio is nearly unchanged (29). The

cyclic-AMP (cAMP) receptor protein, Crp, is also thought to be involved in rpoS transcriptional control

yet the effect of the mutants is modest and interpretation is difficult due to the growth deficiency of the

crp or cya (defective in adenylate cyclase) mutants in combination with growth-rate transcriptional

control of rpoS (36, 37). 

In this study we show that the Fis protein (factor for inversion stimulation) is involved in RpoS

regulation during growth in rich medium.  Fis is a DNA-binding and bending protein that was initially

characterized for its stimulatory role in site-specific DNA recombination (31, 34).  Fis has been

implicated in many other processes such as stimulation of excision and integration of lambda (4, 5, 20,
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67), DNA replication at oriC (24, 26, 58), transposition (70), invasion of HEp-2 cells (71) and

transcriptional activation and repression of several genes including hns, leuV, gyr, tyrT, proP, nuo,

osmE, and rRNA operons (21, 56, 33, 3, 72, 68, 12, 74). 

Here we investigate rpoS promoter activity and demonstrate that Fis mutants have elevated

expression of rpoS that is specific to exponential phase.  This pattern of regulation is in good agreement

with the known variation in Fis abundance in different phases of growth:  Fis is undetectable in SP but is

present at over 40,000 dimers per cell upon dilution into fresh medium (2, 6, 50).  Based on these results

and the requirement for specific sequences upstream of the major rpoS promoter, we present an intuitive

model for transcriptional regulation of rpoS in which Fis binds to and represses transcription from PrpoS.

Materials and Methods

Media and growth conditions.

Bacteria were grown at 37°C (except where noted) in various media:  LB medium (63), LB

medium containing 1x NCE minimal salts (buffered LB medium; 10), nutrient broth supplemented with

5 g/liter of NaCl (NB, Difco), and brain heart infusion (BHI, Difco).  Liquid minimal medium was

morpholinepropanesulfonic acid (MOPS) medium (48) as modified (11), supplemented with 0.2%

glucose as the carbon and energy source.  When indicated, minimal medium was supplemented with 1%

casamino acids (CAA, Difco).  Plates were prepared using nutrient agar (Difco).  Antibiotics were added

to final concentrations in selective media as follows: 100 µg of sodium ampicillin/ml, 20 µg of
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chloramphenicol/ml, 50 µg of kanamycin sulfate/ml, and 20 µg of tetracycline hydrochloride/ml, except

that the ampicillin concentration was reduced to 50 µg/ml for use with single copy plasmids.

MacConkey lactose agar was prepared as described (43).  X-Gal (5-bromo-4-chloro-3-indolyl-β-D-

galactopyranoside) was used at 50 µg/ml.

Bacterial strains and construction.  Most of the strains used in this study were derived from wild

type Salmonella enterica LT2 (serovar Typhimurium); all strains are described in Table 8.  We obtained

strain LT2 from John Roth.  Although this strain is the reference wild type, it has been shown to contain

a nonfunctional mviA gene (V102G substitution) and is therefore defective in regulated RpoS turnover

by ClpXP proteolysis (9, 16).  LT2A is a derivative of LT2 whose only known difference is that it

contains a functional mviA gene.  LT2A was used to investigate RpoS proteolysis as indicated in the text

(16). The phage P22 mutant HT105/1 int-201 was used for transduction in S. enterica by standard

methods (18), while P1 vir was used for transduction of fusions carried on the E. coli chromosome into

S. enterica strain TE7304 (see below).  Transductants inheriting cya::Tn10 and crp::Tn10 insertions

were selected on NB plates containing tetracycline and supplemented with 0.2% glucose.  The crp*

allele used in this study was originally isolated by Ailion et al. (1).

Construction of promoter fusions.  The system used to construct promoter fusions relies on the

cloning of PCR products amplified from S. enterica LT2 chromosomal DNA.  In the Genbank sequence

file AE008833.1 (40), the complement of the nlpD and rpoS sequences is given.  Here, positions are

indicated using coordinates from AE008833.1, including nlpD (bp 13178 -> 12045) and rpoS (bp 11982

> 10990), and coordinates are listed with the same polarity as the genes (higher to lower numbers). 
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DNA fragments were produced with flanking EcoRI (upstream) and BamHI (downstream) sites and

cloned into pRS551 to generate transcriptional lacZ fusions (19, 64).  To this end we made four different

PrpoS-lac [op] fusions:  construct A, bp 12764-12338 (TE8744); construct D, bp 12663-12467 (TE8971);

construct E, bp 12663-12528 (TE8868);  and construct F, bp 12586-12467 (TE8947).  (All primer

sequences are available upon request.)  The PnlpD-lac [op] fusion was generated in the same manner and

contains the region encompassing bp 13471-13052.  Recombinant plasmids were used to transform

DH5α and the fusions confirmed by PCR and DNA sequencing.  The fusions were recombined into the

E. coli chromosome as described (19), then transduced into S. enterica using P1 vir.  In S. enterica, they

are located at the put locus in single copy.

Construction of deletion/insertions and point mutations.  Most other constructs were made by

direct transformation of S. enterica with different DNA segments amplified by PCR, utilizing the

lambda red recombination system as provided on plasmid pKD46 (17).  Exponential-phase recipient

cells, growing at 30°C with selection for AmpR, were induced by treatment with 0.2% arabinose for 1 hr

before electroporation, after which transformants were plated and selected at 37°C.

To construct site-directed mutations in PrpoS-lac [op], we developed a multi-step method.  In

order to prevent unwanted recombination events, a CamR cassette was inserted at the native rpoS locus

(deleting bp 12720-12142).  The CamR cassette was amplified using rpoS-specific primers extended to

provide homology to cat at the 3’ end as follows:  TGCTTTTGCCGTTACGCACCAC (upstream) and

GCCTCAGGCATTTGAGAAGCAC (downstream).  The resulting insertion deleted the rpoS promoter

region and gave loss of rpoS function as determined by absence of visible catalase activity (production

of bubbles after spotting 5 µl of hydrogen peroxide on a patch of bacteria).  In the second step, a tetAR
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cassette (pWM7 as the template; 42) was inserted to delete the rpoS promoter of the PrpoS-lac [op]

fusion. Amplification used rpoS-specific primers extended to provide homology to tet at the 3’ end as

follows: CTCTTGGGTTATCAAGAGGG (tetA); ACTCGACATCTTGGTTACCG (tetR).  The tetAR

cassette is inserted at bp 12580-12555 of the PrpoS-lac fusion in strain TE8864.  

In the third step, a point mutation and an in-frame deletion mutation (both unmarked by drug

resistance) were introduced by transformation of strain TE8864.  PCR products were prepared

containing either three point mutations or an in-frame deletion of a predicted Fis binding site.  The

upstream (mutagenic) primers used were GACCAGGTCTGCACCAAATGCCACGGTTGCAGTTGC

and CACCCAGGCGGATGCAGCACAGCAAGGAGTTGTGACCAGG-∆-

GCAGTTGCGTCTCAACCAAC, together with a downstream primer from within lacZ.  The desired

transformants acquired the Fis site mutation and lost the tetAR insertion.  These transformants also

acquired a functional rpoS promoter; this allowed screening for them as Lac+ TetS colonies that were

confirmed by sequencing.

Isolation of rpoS::MudJ insertion and construction of promoter deletions.  A large pool of

MudJ insertions in LT2 was first generated by standard methods (30).  A phage P22 lysate grown on this

pool was then used to transduce strain TE8607 to Cys+ KanR on minimal medium containing X-gal.

Blue (Lac+) transductants were then screened by testing patches of cells grown on NB Kan agar for

catalase activity as described above.  Putative rpoS mutants were purified and tested by PCR, then

confirmed by DNA sequencing.  The rpoS1082::MudJ insertion used in these experiments lies at codon

66 of rpoS (bp 11784; strain TE8737).
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Several insertion / deletions were constructed in the TE8737 background using the tetAR cassette

and the lambda red method.  This method utilized strain TE8738, rpoS::MudJ containing pKD46 (17),

as the target for transformation with PCR-generated tetAR inserts derived from pWM7.  The linked

MudJ and tetAR insertions were then backcrossed by P22 mediated transduction to S. enterica LT2 and

the insertion joint was confirmed by DNA sequencing (see Table 8 for exact location of the tetAR

insertions). To construct an in-frame deletion of the rpoS promoter region, we inserted tetAR to knock

out PrpoS in the context of the MudJ fusion (TE8913) and subsequently transformed the strain with

pKD46 (TE8915). This strain served as the recipient for transformation with a PCR product carrying an

in-frame deletion of the rpoS promoter (bp12582-12540).  The deletion was generated by PCR using a

60-mer oligonucleotide with rpoS sequence interrupted by a 30 bp deletion including both the -35 and -

10 hexamers of the rpoS promoter:

AGGAGTTGTGACCAGGTCTGCACAAAATTCCACCGTTGCA-∆-

GAGGGCTCAGGTGAACAAAG, together with a downstream primer at bp 12301.  Although deleted

for the PrpoS promoter, lac is expressed from PnlpD in these strains, hence, transformants were screened

for a subtle Lac+ phenotype and confirmed as TetS and by DNA sequencing.

5’RACE reaction. RNA was isolated from wild type LT2 cells during exponential phase using a

RNAeasy mini Kit (Qiagen).  RNA served as the template for the 5’ RACE reactions performed using

the BD SMART RACE cDNA amplification kit as described by the manufacturer (BD Biosciences)

with one exception.  A rpoS specific primer was used in first strand cDNA synthesis, positioned at the

initiation codon of rpoS.  RACE reaction products were eluted from 1% agarose gels, using the

NucleoTrap Gel extraction kit (BD Biosciences), T/A cloned into a pCR4-TOPO vector (Invitrogen) and

subsequently used to transform TOP 10 Electrocomp cells (Invitrogen).  Transformants were selected on
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NB Kan plates containing X-gal (screening for a Lac- phenotype).  Plasmids were analyzed by PCR

amplification of the insert followed by DNA sequencing. 

Assay of β-galactosidase.  Cells were centrifuged, resuspended in Z-buffer (100 mM NaPO4 [pH

7.0], 10 mM KCl, 1 mM MgSO4) and then permeabilized by treatment with sodium dodecyl sulfate

(SDS) and chloroform (43).  The samples from exponential-phase time points were concentrated before

assay to be approximately equal in density to samples obtained at later times.  For all experiments,

exponential phase is defined as OD600 = 0.25. Assays were performed in Z-buffer containing 50 mM β-

mercaptoethanol by a kinetic method using a plate reader (Molecular Dynamics).  Activities (change in

optical density at 420 nm [OD420] per minute) were normalized to actual cell density (OD650) and were

always compared to appropriate controls assayed at the same time.  All the β-galactosidase assays were

performed within 1 hour of the time of sampling, during this interval cultures were kept on ice in Z

buffer.  The values shown are averages of at least 3 experiments with a standard deviation of less than

15% unless otherwise stated.  

Immunological detection of proteins.  For Western blots, cultures were grown as described in the

text.  Electrophoresis and protein transfer were as described previously (13, 16).  After transfer to a

Sequi-Blot PVDF membrane (BioRad), blots were blocked in non-fat milk and incubated in Phosphate

Buffered Saline-Tween containing the anti-RpoS monoclonal antibody R12 (13), which is of the γ2a

isotype.  After 30 min. incubation, blots were washed twice in PBS-Tween, then incubated for 30 min in

PBS-Tween containing biotinylated goat anti-mouse immunoglobin (Ig), and finally with streptavidin-

conjugated horseradish peroxidase (both from Southern Biotechnology Associates).  Detection was by
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enhanced chemiluminescence (Amersham Biosciences).

Complementation test. TE8905 harbors pFis349 (71), which contains a 1.68 kb DNA fragment

encoding the orf1-fis operon of S. enterica cloned into the single-copy plasmid pGS349 (32).  Plasmid

DNA isolated from an E. coli host was used to transform an r-m+ S. enterica strain (TE315) and

subsequently, wild type (TE8744) and ∆fis (TE8764) strains containing the PrpoS-lac [op] fusion.

Cultures were grown in LB with ampicillin and assayed for β-galactosidase as described in text.  

Gel-Shift assay. DNA target fragments were amplified from the S enterica chromosome using primers

engineered to generate EcoRI and BamHI restriction sites at opposite ends of the product.  We made

three different shift targets, designated A, B, and C, that correspond, respectively, to bp 12750-12604,

bp 12643-12547, and bp 12574-12475 of the PrpoS promoter.  We also generated two mutant targets

derived from target B, designated B* and B∆, using the same primers as for B but chromosomal

templates isolated from strains TE8887 and TE8895.  The PCR reactions were purified (Qiagen) and

digested with EcoRI and BamHI restriction endonucleases.  The fragment ends were then labeled by

incorporation of [α32P]ATP using the Klenow fragment of DNA polymerase as described by the

manufacturer (Promega), and purified using a PCR purification kit.  Radiolabeled DNA fragments (ca.

15,000 cpm per reaction) were incubated with purified Fis protein (gift of R. Johnson), for 15 min at

room temperature in buffer containing 20 mM Tris HCl [pH 7.5], 80 mM NaCl, 1 mM EDTA, 5%

glycerol, and 2 ng of poly[d(I-C)]/µl.  Binding reaction products were analyzed by electrophorhesis on a

8% native polyacrylamide gel as previously described (72).  The gels were then dried and the

radioactive DNA detected by autoradiography.
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                 Figure 9.  SP induction of RpoS is normal in turnover-defective mutants.

Results

SP induction of RpoS in S. enterica is normal even in the absence of regulated proteolysis.

Studies of Schweder (62) and Zgurskaya (73) suggest that in starving E. coli cells RpoS abundance

increases mainly as a result of increased protein stability.  Another E. coli study reports RpoS induction

in the absence of an intact RpoS degradation pathway (52).  We investigated the role of this pathway in

the induction of RpoS for S. enterica grown to SP in rich medium (LB).  A katE-lac [op] fusion was

used as a reporter of RpoS activity (13, 45).  Expression of the katE-lac fusion was measured both in a

(A) LT2A strains harboring the RpoS reporter, katE-lac [op], and carrying the
indicated mutations were sampled for β-galactosidase activity during exponential
phase at OD600 = 0.25 (E), and after 24 hours of growth (SP).  SP induction was
calculated as the ratio of the SP activity to the exponential phase value (SP/E). (B) The
indicated strains were probed for RpoS protein at time points E and SP by Western
analysis. The gel for the exponential experiment was loaded with the lysate recovered
from 10-fold more cells in order to visualize low concentrations of RpoS in the LT2A
background.  All strains were grown at 37°C in LB medium.  Strains:  LT2A mviA
(TE6851); LT2A clpX (TE6850).



102

wild type LT2A background and in clpX and mviA mutants defective in regulated turnover of RpoS.

[The mviA gene is the S. enterica ortholog of E. coli rssB / sprE (9)].

During exponential growth (OD600 = 0.25), expression of katE-lac in both the clpX and mviA

mutants was approximately five-fold higher than in the wild type (Fig. 9A). This result is consistent with

the idea that MviA and ClpXP function together to degrade RpoS during exponential growth (16, 44,

52).  A quantitatively similar increase in katE-lac expression in the mutant backgrounds was also

observed after 24 hours of growth (defined as SP).  This result suggests that the MviA and ClpXP

pathway for RpoS degradation functions at a similar level during both exponential growth and at SP in

LB medium.  The normal SP induction ratio for katE-lac expression in the mviA and clpX mutants

indicates that this proteolytic pathway does not regulate SP induction of RpoS (ratio shown as SP/E,

Fig.9A).  Somewhat higher katE-lac activity in the mviA mutant compared to the clpX mutant is

consistent with a role for MviA to sequester RpoS even if proteolysis is blocked (8, 75).

To confirm this result, the abundance of RpoS was determined by Western blot analysis of cells

in both exponential growth and SP (10-fold more material was loaded for exponential cells to allow

visualization of RpoS in wild type).  Both clpX and mviA mutations resulted in a marked increase in

RpoS abundance compared to wild type LT2A.  The increased amount of RpoS in the mutants appeared

similar to the amount of RpoS detected in the LT2 strain, which is naturally defective in mviA function.

The relative increase in RpoS observed in the mutant backgrounds for cells in exponential growth is

apparently the same as during SP (Fig.9B).  The combined lac fusion and Western blot results indicate

that in S. enterica, the MviA/ClpXP turnover pathway does not mediate the SP induction of RpoS in LB

medium.
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Promoters contributing to rpoS expression in S. enterica. We next considered transcriptional

regulation of rpoS.  Studies in E. coli (28, 29, 60) indicate that regulation of rpoS at the transcriptional

level may be particularly important when cells grow to SP in rich medium, in contrast to the post-

transcriptional mechanisms mediating response to osmotic shock, carbon starvation or low temperature.

We previously demonstrated a 15-fold induction of an rpoS-lac transcriptional fusion, when the rpoS

gene was derived from E. coli, and studied both in an E. coli (29) and an S. enterica host (13). 

              Figure 10.  Promoter activity analyzed using rpoS::MudJ as a reporter.
The top line depicts the genetic organization of the rpoS region, with long horizontal arrows showing
gene and transcriptional polarity, and small bent arrows indicating the promoters contributing to
rpoS expression.  Construct A contains the lac fusion formed by MudJ insertion at codon 66 of rpoS,
and is otherwise wild type.  Constructs B to E contain the same rpoS::MudJ insertion as construct A
and in addition, contain insertions of a tetracycline resistance cassette (TetR) accompanied by
deletions (insertion / deletions).  Construct F is identical to construct A except it contains an in-frame
deletion (represented by slanted lines) of the PrpoS promoter. Construct G is like construct F but also
contains the insertion / deletion from construct B. The MudJ element is not drawn to scale.
Construction details are given in Materials and Methods and precise insertion sites are given in Table
8.  Shown next to each fusion is the β-galactosidase activity as determined at OD600=0.25 (E) in
cultures grown at 37°C in rich medium. [N.D.(not detected).]  Strain numbers for these constructs
are as follows:  A, TE8737;  B, TE8901;  C, TE8907;  D, TE8913;  E, TE8914;  F, TE8925;  and G,
TE8937.
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Analysis of rpoS transcription in E. coli by primer extension, and in Salmonella dublin by both primer

extension and Northern blot, established that rpoS is transcribed from two distinct promoter regions (35,

51, 66).  Two closely-spaced and relatively weak promoters (PnlpD) generate a bicistronic nlpD-rpoS

message, while the major promoter (PrpoS) is located approximately in the center of the nlpD gene and

generates a monocistronic rpoS transcript with a long untranslated leader region of 566 nucleotides (35,

51).  E. coli and S. dublin share identical -35 and -10 hexamers for PrpoS with a 17 bp spacer, and initiate

transcription at the same nucleotide.  This region of S. enterica is identical to S. dublin and therefore it is

likely that the defined PrpoS promoter of E. coli and S. dublin is conserved in S. enterica. We investigated

the transcriptional start of PrpoS in S. enterica using RACE cDNA amplification.  Total cellular RNA

harvested during exponential phase served as template in a reverse transcription reaction that exhibits

terminal transferase activity, adding 3-5 residues to the 3’ end of the first strand cDNA.  These residues

anneal to an oligonucleotide that serves as an extended template for reverse transcriptase thus generating

a complete cDNA copy of the original RNA with known sequence at the end.  The first strand cDNA is

then used directly in a 5’ RACE PCR reaction to generate double stranded cDNA products.  Three

cDNA products were observed using a primer positioned at the initation codon of rpoS and these

corresponded to the predicted sizes of transcripts from PnlpD  and PrpoS  (data not shown).  The product

representing PrpoS was cloned and sequenced.  The results positioned the first base of the transcript 566

nucleotides upstream of the rpoS coding region at the identical initiating nucleotide of PrpoS in E. coli and

S. dublin. 

Genetic analysis of the region upstream of rpoS in S. enterica suggests a similar pattern of

transcriptional control compared to S. dublin and E. coli.  We first isolated an insertion of the lac fusion-

forming transposon MudJ in the rpoS gene, forming a transcriptional fusion of rpoS to lac (at codon 66
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of rpoS), to use as a reporter of in vivo transcriptional regulation (Fig. 10).  Expression of the

rpoS::MudJ fusion was analyzed during exponential phase in combination with insertion / deletion

mutations constructed with a tet cassette predicted to affect the promoters serving rpoS or a deletion

mutation of PrpoS (Fig. 10).  All constructs were placed at the native rpoS locus in the bacterial

chromosome. 

Insertion of tet downstream of PrpoS or an insertion of tet which also makes a small deletion

encompassing PrpoS, eliminated detectable activity of the rpoS::MudJ reporter (Fig. 10, constructs C and

D, lower limit of detection is 0.8 U).  In contrast, an insertion / deletion of the PnlpD promoter region but

retaining PrpoS showed relatively high (≈ 75%) expression of the parental rpoS::MudJ (construct B).  In a

further test, a precise in-frame deletion of 30 bp including the conserved -35 and -10 hexamers of the

PrpoS promoter was constructed (Fig. 10, construct F).  This deletion reduces expression of rpoS::MudJ

to ≈ 15% of wild type.  Similar to rpoS transcription in E. coli, we conclude that in S. enterica, PrpoS is

the major rpoS promoter and PnlpD plays a minor role.

Activity of the major rpoS promoter, PrpoS.  Since most transcription of rpoS originates from PrpoS,

we characterized this promoter in isolation by using a lac fusion system described previously (19), in

which the fusion is transferred to the S. enterica chromosome at the put locus.  The fusion employed,

PrpoS -lac [op] (strain TE8744), includes 426 bp encompassing PrpoS, from -209 to +217 with respect to

the transcriptional start site.  Activity of β-galactosidase was determined during exponential growth and

in SP for cultures grown at 37°C in different media (Table 7).  Expression of the PrpoS –lac [op] fusion

increased 8-fold in SP during growth in two different rich media, which is consistent with results

obtained from E. coli (28).
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Table 7.  Activity of PrpoS in different media

Growth Medium β-galactosidase activity a

E SP SP/E

LB 31 230 7.6
Buffered LB 28 262 9.3
Buffered LB + glucose 28 208 7.4
BHI 31 232 7.4
Minimal glucose 124 191 1.5
Minimal glucose + casamino acids 109 203 1.8

a exponential phase (E) and stationary phase  (SP) are defined
in text. Values are averages with a variation of <17%.
Stationary phase induction is defined as SP/E.

Both carbon availability and the production of weak acids have been shown to affect rpoS

transcription in E. coli (37, 46, 60), and we hypothesized that these stimuli might be involved in SP

induction of S. enterica rpoS.  However, when activity and SP induction of PrpoS -lac [op] were assayed

in buffered LB medium and buffered LB supplemented with 0.2% glucose the results were very similar

to those observed in LB and brain heart infusion (BHI) medium.  This suggests that neither pH changes

nor lack of a suitable carbon source are responsible for SP induction.  When strain TE8744 was grown

in minimal medium (either with or without casamino acids), rpoS-lac expression increased

approximately 3.5-fold over expression in LB.  This increase in expression was specific to exponential

growth in minimal medium.  As a result, SP induction of rpoS transcription was much reduced.  This

result might be explained by growth-rate regulation of rpoS transcription, however, our previous

analysis of rpoS growth rate regulation in S. enterica indicated that it is mainly at a post-transcriptional

level (16).

No auto-transcriptional role of rpoS.  The transcriptional start of PrpoS is preceded by a typical
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sigma 70 RNA polymerase-dependent promoter consensus sequence (TTGCGT-17 nt spacer-

TATTCT).  To examine whether RpoS contributes to its own transcription, we investigated the activity

of several promoters as well as PrpoS in both wild type and rpoS mutant backgrounds.  Strains harboring

PrpoS -lac [op] or a PnlpD -lac [op] fusion, 419 nucleotides encompassing the nlpD promoter region (-264

to +154), in either a wild type or rpoS background, were grown at 37°C in LB medium for 24 hours and

assayed for β-galactosidase activity (Fig. 11).  A small increase in the expression of PnlpD and PrpoS was

evident in the mutant background, rather than the decrease predicted by a model involving self-

transcription.  As a positive control, we used the katE-lac [op] fusion and observed a 95% reduction in

katE-lac activity in the rpoS mutant (13, 59).  A lacUV5-lac [op] fusion was used as a negative control.

Expression of this fusion demonstrated a 15-20% increase in the absence of RpoS, similar to that seen

with the PnlpD and PrpoS fusions.  These results confirm that RpoS is not involved in autoregulation

during SP.  The increased expression of sigma 70 promoters in the absence of RpoS is consistent with

competition of sigma factors for RNA polymerase (23). 

                                    Figure 11.  Testing autotranscription of rpoS.
LT2 strains harboring transcriptional lacZ fusions, expressed from the indicated
promoters, in either a wild type or rpoS mutant background, were grown at 37°C
in LB medium for 24 hours and β-galactosidase activity was determined.
Promoter activity in the rpoS mutant is plotted as a percentage of the activity in the
corresponding wild type strain.  Strains were as follows:  PrpoS (TE8744, TE8758),
PnlpD (TE8698, TE8761), PkatE (TE6153, TE8760), PlacUV5 (TE6676, TE8759).
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                                   Figure 12.  Analysis of the sequence near PrpoS.

Computational analysis of the rpoS promoter. To further explore the transcriptional regulation of

rpoS, we used the DNA-motif search engine available at http://arep.med.harvard.edu/ecoli_matrices/  to

recognize potential protein binding sites in the region of the PrpoS promoter (Fig. 12; 55).  This program

utilizes the known, characterized binding sites of 59 transcriptional regulators to predict putative binding

(A) The sequence of the PrpoS promoter region is shown (bp 12764-12338 of
AE008833.1).  Predicted Fis binding sites are underlined, and arrows designate putative
CRP-binding half-sites.  The numbering is relative to the transcriptional start site (labeled
+1). (B) The consensus sequence for Fis protein binding is given as well as the sequences
of predicted Fis binding sites near PrpoS, individually designated by Roman numerals.  The
column labeled bit score represents the similarity of each putative site to a collection of
known Fis binding sites as determined by information analysis (described in the text).
Five of the most conserved bp in the consensus are marked with an underline (where
present in each sequence), and the asterisk marks the axis of rotational symmetry for the
Fis consensus sequence.

http://arep.med.harvard.edu/ecoli_matrices/
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sites throughout the entire E. coli chromosome.  Results suggested putative binding sites for a large

number of regulators including CytR, CRP, DnaA, FarR, Fis, FNR, HNS, IHF, GlpR, Lrp, MalT, MetJ,

MetR, NarL, OmpR, SoxS and TyrR.  Of these, only CRP has been reported as a regulator of rpoS

transcription (36, 37).  We constructed tet insertion / deletions in cytR, fnr and dps.  No role for these

three genes in the control of rpoS transcription was indicated, based on equivalent activity of PrpoS -lac

[op] in the wild type and mutant backgrounds (data not shown). The roles of Fis and CRP were further

investigated. 

                           Figure 13.  RpoS protein is elevated in a fis null mutant.

(A) Wild type and fis mutant strains carrying PrpoS-lac [op] (TE8744 and TE8764
respectively) were grown to SP and the β-galactosidase activity determined; the
same cultures were diluted into pre-warmed fresh LB medium to allow
exponential growth into SP, and the activity determined for both E and SP. (B)
Wild type (TE6285) and fis mutant (TE8768) strains were analyzed for RpoS
protein at two exponential phase time points as described in Materials and
Methods.
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PrpoS expression and RpoS protein level are elevated in a fis mutant.  One of the most

convincing (and intriguing) potential binding sites was a strong Fis site centered at bp -50 with respect

to the transcriptional start.  Repression of rpoS transcription by Fis was an attractive hypothesis because

the amount of Fis varies substantially at different points along the growth curve:  Fis is abundant during

exponential phase when RpoS is at a low level, whereas the Fis level drops sharply in SP as RpoS is

induced (2, 6).  To investigate the role of Fis in rpoS regulation, we tested the effect of a fis insertion /

deletion (49) on the activity of PrpoS -lac [op].  During exponential phase, PrpoS -lac expression was 9-

fold higher in the fis mutant than in wild type (Fig. 13A).  This large increase was evident throughout

exponential phase, yet there was little difference from wild type during SP.  Since the negative effect of

Fis is restricted to exponential phase, this finding supports a role for Fis as negative regulator of rpoS at

the transcriptional level.  The activity of PrpoS -lac [op] in both wild type and fis mutant backgrounds did

not change even after extended growth in exponential phase, achieved by three repeated dilutions of

dividing cells into pre-warmed fresh LB medium, (data not shown).  

Western blot analysis was used to determine the abundance of RpoS protein in the fis mutant.

Samples for Western analysis were taken two generations after dilution (OD600 = 0.05) and near mid-

exponential phase, OD600= 0.2 (Fig. 13B).  At both exponential time points RpoS protein abundance

appeared significantly higher in the fis mutant (3-4 fold as measured by densitometry).  RpoS protein

observed in the fis mutant after 24 hours of growth, a time when Fis levels are at a minimum, was

indistinguishable from wild type (data not shown).  We also observed increased exponential phase

expression of the RpoS-dependent dependent reporters katE-lac [op] (three-fold) and proV-lac [op]

(four-fold) in the fis mutant, consistent with the Western blot analysis of RpoS protein.  Again, the
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specificity of the fis effect to exponential phase defines a regulatory role. 

Complementation of the fis mutation. To confirm that the increase in rpoS transcription in the fis

mutant was due to the absence of Fis, exponential phase activity of PrpoS -lac [op] was measured in wild

type and fis mutant backgrounds harboring either the single-copy fis expression plasmid, pFis349, or the

empty vector control pGS349 (32, 71).  The nine-fold elevation of rpoS transcription in the fis mutant

was completely eliminated by pFis349 (Fig. 14).  The presence of pFis349 in the wild type strain

slightly decreased PrpoS -lac activity, consistent with the idea that Fis represses rpoS transcription.  The

wild type and fis strains containing the control plasmid exhibited similar activities compared to the

plasmid-free strains.

                                       Figure 14.  Complementation of the fis mutant.

LT2 wild type and fis mutant strains containing the PrpoS-lac [op] fusion, and also
harboring pFis349 (fis+;  TE8916, TE8917) or its vector control pGS349 (TE8911,
TE8912) were grown at 37°C in LB medium containing ampicillin.  Activity of β-
galactosidase was determined for cultures grown to OD600 = 0.25.



112

       Figure 15.  Transcriptional regulation of rpoS by Fis depends on Fis site III.
Construct A represents the full-length, wild type PrpoS-lac [op] fusion.  Predicted Fis
binding sites (labeled I to V) are represented by black boxes, and predicted CRP half-sites
are shown using straight arrows. The bent arrow represents the transcriptional start.
Construct B is a derivative of construct A carrying an in-frame deletion of the high-
scoring Fis site III. Construct C is identical to construct A except for a set of 3 point
mutations (represented by an asterisk) altering conserved nucleotides of Fis site III.  In
constructs D, E, F, and G additional segments of this region are deleted as shown.
Constructs H and I are control transcriptional fusions driven by either the PlacUV5 or Ptac
promoter.  These constructs were assayed during exponential phase growth in LB
medium, in wild type and fis mutant backgrounds.  Results are plotted as the ratio of
activity in the ∆fis strain to the activity observed in wild type.  Wild type and fis mutant
strains are, respectively, as follows:  A, (TE8744, TE8764); B, (TE8899, TE8900); C,
(TE8887, TE8888); D, (TE8971, TE8972); E, (TE8868, TE8869); F, (TE9083, TE9096);
G, (TE8947, TE8949); H, (TE6676, TE8766); I, (TE6675, TE8948).
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Elevation of PrpoS activity in a fis mutant depends on a predicted Fis binding site.  Fis-

binding DNA sequences have been analyzed by using information analysis (27).  In this method, known

binding sites are first aligned based on highly conserved nucleotides.  The nucleotide distribution at each

position within the alignment is then used to derive a weight matrix according to classic information

theory (61, 65).  To determine the quantitative “goodness” of a candidate site, the relevant entries for

each position in the weight matrix are summed.  If a particular position were completely conserved

within the known sites, a correct match in the candidate site would contribute 2 bits to its score.

Characterized Fis sites have total scores that range from 2.5 to 15.7, and the well-studied ones in hin

proximal to the hixL site have scores of 8-9 (27), while total scores for random sequence average 0.

Information analysis has been shown to accurately predict new Fis DNA binding sites (27).

Software to perform the calculations is available (http://www.lecb.ncifcrf.gov/~toms/delila.html)

but we chose to implement these relatively simple computations as a Python script (unpublished data).

Our analysis predicted a single high-scoring Fis binding site centered at position –50 with respect to the

PrpoS start site (bit score of 10.9;  TCTGCACAAAATTCCACCGTT, Fig. 12; Fis site III in Fig. 15).

Only 10 out of 60 characterized Fis sites have a higher score.  Weaker Fis sites near PrpoS were also

predicted (scores from 4.1, Fig. 12B).  In fact, we found 83 sites with scores equal to or greater than

rpoS Fis site III within the first 106 bp of the E. coli genomic sequence.  Nevertheless, since Fis is an

abundant DNA binding protein at its peak levels (up to 100,000 monomers per cell), it is possible that

most predicted sites are actually bound by Fis protein during exponential growth.  

http://www.lecb.ncifcrf.gov/~toms/delila.html
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The contribution of Fis site III to rpoS regulation was determined by constructing mutant

derivatives of the standard PrpoS -lac [op] fusion (Fig. 15, construct A).  This construct displays over a

nine-fold elevation during exponential growth in the fis mutant, compared to a wild type background.

Construct B contains a deletion of Fis site III (in frame for nlpD, ∆ -60 to -40) in which half of a

putative CRP binding site, which overlaps Fis site III, was also deleted (Fig. 12 and 15).  This construct

was nearly blind to the effect of the fis mutation and demonstrated a ratio of activity (fis mutant / wild

type) similar to the PlacUV5-lac control (Fig. 15).  Construct C is identical to construct A except for three

point mutations at critical base pairs in Fis-site III [A(-53)G, T(-48)G, C(-43)G; bit score of -3.3) that do

not alter the predicted CRP site. This fusion also failed to show elevated expression of PrpoS in the fis

mutant.  Both of the Fis site III mutations (constructs B and C) confer a modest defect in expression in

the fis mutant, as compared to construct A (1.5 and 2.4 fold decrease, respectively), perhaps because

these mutations also affect basal promoter activity slightly.  All fusions that retained the intact Fis site

III were subject to control by Fis (Fig. 15 constructs A, D, E and F). Conversely, constructs in which Fis

site III was altered or deleted (Fig. 15 constructs B, C and G) were independent of regulation by Fis. We

used the Ptac promoter as a second control in addition to PlacUV5; its activity was not increased and in fact

was faintly depressed in the fis background.

Fis protein binds to the PrpoS region.  Next, we characterized Fis binding in the PrpoS promoter

region using gel-shift analysis. All binding reactions were performed in the presence of the non-specific

competitor DNA, poly [d(I-C)].  As a control for these studies, we first demonstrated binding of purified

Fis protein (a gift from R. Johnson) to the E. coli proP2 promoter region over the concentration range

reported by Xu and Johnson (72).
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PCR products corresponding to three adjacent regions near PrpoS (Fig. 16, fragments A, B, and C)

were used as binding targets.  Fis bound to each of the fragments, notably with apparent affinities that

reflected the score for the predicted Fis site(s) carried on each fragment.  Fragment B includes Fis site

III required for the in vivo effect of Fis on rpoS (Fig. 15).  This fragment exhibited binding at a low

concentration of Fis (32 nM) and greater than 90% of the DNA target was in the bound form at 325 nM

Fis.  In marked contrast, fragments A and C demonstrate 15% or less than 1%, respectively, of bound

target at the same Fis concentration.  To further define the contribution of Fis site III, fragment B* was

generated from a template carrying the three point mutations in site III that block Fis regulation in vivo.

At a higher Fis concentration, in which the wild type B target was essentially all (98%) in the bound

form, the mutant target B* was predominantly unbound.  The B∆ target that has a 21 bp deletion of Fis

site III also lost the ability to bind Fis.  These results suggest that Fis acts directly as a repressor of the

PrpoS promoter.

Testing the interaction of CRP and Fis in transcriptional regulation of rpoS. In E. coli,

cAMP-CRP is reported as a negative regulator of rpoS transcription during exponential phase while

during entry to SP, the complex may activate transcription (28, 39). A motif search of the PrpoS promoter

region by the method of Schneider et al. (61) confirmed two putative CRP binding sites that were also

previously predicted in E. coli (37).  The higher-scoring of the two sites is centered at -63.5 and actually

overlaps Fis site III (Fig. 12).  This placement suggests a potential relationship between Fis and CRP in

the regulation of rpoS transcription.  Coordinate transcriptional regulation between Fis and CRP has

been reported for several systems (14, 72).
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                         Figure 16.  Fis binds several DNA sites near PrpoS in vitro.
Electrophoretic mobility shift assay analysis of Fis protein binding to the PrpoS region.  A
map of the region is depicted at the top with black boxes representing predicted Fis
binding sites (labeled I-V).  PCR was used to generate targets for shift assays which are
labeled A through C.  For B* and B∆, respectively, the asterisk and the slanted lines
represent either a set of 3 point mutations altering Fis site III or a deletion of that site.
Radiolabeled fragments were incubated with increasing concentrations of purified Fis
protein and analyzed by electrophoresis on a native polyacrylamide gel as described
previously (72).
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To investigate the role of CRP, we measured expression of PrpoS -lac [op] during exponential

growth in strains bearing the indicated mutations (Fig. 17).  These experiments were performed at 37 °C

in buffered LB medium supplemented with 0.2% glucose to minimize any growth deficiency of the cya

and crp mutants.  The cya and crp mutants both demonstrated a three-fold increase in rpoS transcription

during exponential phase.  When a mutant crp* gene encoding a constitutively active form of CRP was

introduced into the cya mutant background, wild type expression was restored.  In the fis crp double

mutant, only a slight increase in PrpoS -lac [op] expression was observed compared to the fis single

mutant.  Furthermore, in the fis crp double mutant PrpoS -lac [op] expression was substantially elevated

compared to the crp single mutant.  These results are consistent with a model in which most Fis

regulation of rpoS is independent of CRP function, and is not mediated through, for example,

competitive binding of the two regulators at the overlapping Fis III and CRP sites.

                       Figure 17.  CRP and cAMP influence rpoS transcription.
PrpoS-lac [op] activity was assayed during exponential phase (OD600 = 0.25) in
strains containing the indicated mutations.  Growth was at 37°C in buffered LB
supplemented with 0.2% glucose.  The crp* allele encodes a constitutively
active form of the CRP protein (independent of cAMP).
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Discussion

The sigma factor RpoS has been described as the “master regulator of the general stress

response” (28). It is noteworthy that this transcriptional regulatory protein is itself up-regulated in

response to a number of different stresses, by pathways that act on diverse targets including

transcription, translation, protein stability and protein activity.  The SP induction of RpoS in rich

medium is a dramatic effect, whether observed by Western blot of RpoS protein (25) or in a number of

studies employing rpoS-lac fusions including our own work, where we estimate the magnitude of the

response at 30-fold (28, 29, unpublished data).  What seems surprising is that various stimuli induce

RpoS by such different mechanisms.  Starvation for carbon seems to involve mainly stabilization of the

protein against attack by the ClpXP protease (36, 66, 73).  Osmotic shock involves both protein

stabilization (44) and a post-transcriptional effect dependent mainly on DsrA RNA and the Hfq protein.

This pathway does not lead to an increase in the amount of DsrA (38).  In contrast, low temperature

leads to increased synthesis of DsrA RNA and Hfq-dependent activation of RpoS translation (54).

Finally, SP induction of RpoS in rich medium involves both transcriptional and post-transcriptional

components (28, 29).

We initially eliminated the ClpXP-MviA degradation pathway as a regulator of SP

induction of RpoS in rich medium (Fig. 9).  This conclusion is consistent with the results of Pratt

et al. (52) who demonstrated increased RpoS during both exponential and SP in a sprE mutant of

E. coli grown in LB.  However, during growth of E. coli in minimal medium, the RpoS protein

has a short half-life (1 min) and upon osmotic challenge, starvation or switch to an acidic pH,
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protein stabilization is responsible for RpoS induction (7, 44, 73).  These reports are consistent

with only a small transcriptional induction of PrpoS during growth to SP in minimal medium

(Table 7).  In rich media (LB and BHI) control of SP induction of RpoS is exerted at the

transcriptional and translational level while in minimal medium proteolysis seems to play the

major role. 

Consistent with previous reports, rpoS is transcribed from two promoter regions PnlpD and

PrpoS (35, 51).  PnlpD is a minor contributor during both growth and SP and does not exhibit SP

induction beyond the PlacUV5 control (Fig. 10, data not shown).  PrpoS is the major rpoS promoter

during growth and SP, when increased transcriptional activity coincides with elevated RpoS.

Three lines of evidence suggest that σ70 recognizes PrpoS in vivo: (i) the presence of an apparent

σ70 promoter sequence (Fig. 12); (ii) RpoS does not contribute to expression from its own

promoter (Fig. 11); (iii) RNA polymerase holoenzyme (σ70 ) transcribes this promoter in vitro

(data not shown). 

The elevation of PrpoS   activity in the fis mutant during exponential phase eliminated SP

transcriptional induction, an effect that can be totally complemented by plasmid-encoded Fis.

The standard PrpoS fusion (Fig. 15, construct A) contains 5 predicted Fis binding sites.  Fis

binding was demonstrated to at least 3 sites (Fig. 16) suggesting a nucleoprotein complex forms

near PrpoS  in vivo.  However only Fis site III, positioned at -50, was required for the regulatory

effect.  The importance of a single Fis binding site near transcriptional start sites has been

reported for two other promoters, Pfis and P2proP. (50, 72).  In each case Fis binds to several

positions although nearly all regulation is conferred by a single Fis binding site centered at -42
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(Pfis) and -41 (P2proP) from the transcriptional start sites (41, 50, 72).  Transcriptional regulation

by Fis at Pfis causes repression, possibly by blocking RNA polymerase interactions at the -35

region.  During growth, the fis mutant displayed a nine-fold elevation of PrpoS activity although

the increase of RpoS protein was estimated at three to four-fold (Fig. 13).  This suggests that

additional (post-transcriptional) regulation may prevent some of the expected increase in protein

levels, thereby making both rpoS transcription and translation rate limiting.

Concerning the role of CRP-cAMP in the regulation of PrpoS, we suggest that it functions

as a repressor although its effect is modest (two to three-fold).  The relationship between CRP

and Fis appears to be one of Fis epistasis.  The fis crp double mutant does not display an additive

effect on PrpoS activity but there is only a slight increase over the large effect of the fis single

mutant.  From this it seems that Fis regulation does not require CRP and that full CRP regulation

is hindered in the absence of Fis. Further experimentation is necessary to define the role of CRP

in the regulation of rpoS transcription.

In this study, we document a role for the DNA-binding protein, Fis, as a negative

regulatory element for RpoS, acting at the transcriptional level.  This model is intuitive, because

Fis abundance varies inversely with RpoS.  Synthesis of Fis is under transcriptional control and

Fis abundance varies dramatically from undetectable in SP to over 40,000 dimers per cell upon

dilution into fresh medium (2, 6, 50).  In E. coli, Fis displays auto-regulation in which Fis protein

competes with RNA polymerase for binding to the fis promoter thus repressing its own

transcription (6).  This auto-regulatory effect is less pronounced in S. enterica (50).  In both

organisms growth-phase expression of fis is thought to occur by a mechanism apparently
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involving a non-optimal -35 to -10 region and specific base pairs near the transcriptional start

site (69).  It has been demonstrated that normal regulation is also dependent upon CRP and in

vitro results suggest fis promoter activation in the absence of Fis, while Fis and CRP act

synergistically as transcriptional repressors (47).

We believe that Fis probably acts directly as a repressor given that a specific site

positioned at -50 is necessary for complete repression and that this site is specifically bound in

vitro.  Fis activates transcription of rRNA and many other genes including some involved in

replication, so it is conceivable that Fis also works indirectly.  Further investigations into the

regulation of Fis expression would provide a greater understanding of the interplay of global

regulators in physiological adaptation.
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Abstract 

In enteric bacteria, adaptation to a number of different stresses is mediated by the RpoS protein,

one of several sigma-factors that collectively allow a tailored transcriptional response to environmental

cues.  Stress stimuli including low temperature, osmotic shock, nutrient limitation, and growth to

stationary phase (SP), all result in a substantial increase in RpoS abundance and activity.  The

mechanism of regulation depends on the specific signal, but may occur at the level of transcription,

translation, protein activity or targeted proteolysis.  In both Escherichia coli and Salmonella enterica, SP

induction of RpoS in rich medium is >30-fold and includes effects on both transcription and translation

but not protein turnover.  Recently, we showed that SP control of rpoS transcription in S. enterica

involves repression of the major rpoS promoter by the global transcription factor Fis during exponential-

phase.  Working primarily in E. coli, we now show that 24 nucleotides of the rpoS ribosome-binding

sequence (RBS) are necessary and sufficient for the nearly 10-fold increase in rpoS translation as cells

grow to SP.  Genetic evidence supports a model in which the paired structure of the RBS enforces

regulation.  This regulation is conserved between E. coli and S. enterica.  When combined with a fis

mutation, substitution of the rpoS RBS sequence by the lacZ RBS eliminates nearly all SP induction of

RpoS.
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Introduction

Bacteria maintain intricate signaling networks that sense the environment and adjust cellular

physiology accordingly.  In Salmonella enterica and Escherichia coli, unfavorable growth conditions

(including nutrient limitation, outright starvation, low temperature, osmotic shock, and other stresses)

initiate a generalized stress response by triggering increased abundance of the RNA polymerase sigma

factor RpoS (σS;  reviewed in reference 16). In association with RNA polymerase, RpoS directs

transcription of as much as 10% of the E. coli genome, including genes necessary for stress resistance

and virulence (13, 48).  RpoS thereby serves as the central regulator of the general protective response

(16).  

The transition to SP is accompanied by morphological and physiological changes

resulting in a non-dividing and multiple-stress resistant state.  Growth into stationary phase (SP)

in rich media, such as Luria-Bertani (LB), leads to a dramatic increase of > 30-fold in RpoS

abundance (14, 17, 18, 28, 33, 39).  In recent work, we characterized transcriptional regulation of

rpoS in S. enterica as cells enter SP (18).  The mechanism involves Fis, a DNA-binding protein

which acts globally as a transcription factor.  Fis is itself growth-phase regulated in an inverse

relationship to RpoS:  the Fis protein is undetectable in SP but rapidly increases to a level of

more than 40,000 dimers per cell upon dilution into fresh medium (1, 3, 35).  A strong Fis-

binding site near the major rpoS promoter (PrpoS), is required for this regulation.  Fis likely binds

to this site specifically during exponential growth, resulting in repression of rpoS transcription

(18).  As cells enter SP, Fis disappears, and rpoS transcription increases nearly 10-fold (1, 18). 
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The rpoS transcript contains a 565 nucleotide 5’ untranslated region (the rpoS leader; 16, 43).

This sequence includes an antisense element [leader nucleotides (nt) 461 to 478] that can pair with the

rpoS RBS to inhibit translation, presumably by blocking ribosome access (8).  The antisense element is

the reported target of three regulatory RNAs which are thought to alter conformation of the RBS to an

“open” position, increasing translation (22, 23, 25, 31, 38, reviewed in ref. 15).  The best-characterized

example of regulation of rpoS translation occurs at low temperature and relies on the direct pairing of

the antisense element with the 85-nucleotide regulatory RNA, DsrA (42).  This interaction activates

rpoS translation five to 10-fold and is mediated by the RNA-binding protein Hfq (25, 38).

In the present study, we show that 24 nucleotides of the rpoS RBS are necessary and sufficient

for a nearly 10-fold increase in rpoS translation as cells grow to SP.  Genetic evidence supports a model

in which the secondary structure of the RBS is required for regulation.  Substitution of this sequence

with the RBS of lacZ, in a fis mutant background, virtually eliminates SP induction of RpoS.

Materials and Methods

Bacterial strains and construction.  Most strains used in this study are derived from the wild type

E. coli K-12 strain MG1655 (Table 8).  The parental strain was CF7968, which is MG1655 that has been

corrected to rph+ (20) and deleted for lacIZ, obtained from M. Cashel.  Phage P1 vir was used for

transduction in E. coli by standard methods (41).  The katE-lac [op] (operon) fusion used in this work
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has been described previously and is used as a reporter of RpoS activity (7, 9, 18).  All fusions in E. coli

are located in single-copy in the trp region of the bacterial chromosome as described previously (12).

We also investigated the behavior of particular rpoS-lacZ constructs in Salmonella enterica

serovar Typhimurium.  The parental strain was LT2, obtained from J. Roth, or LT2A (10, 18).  To this

end, constructs in E. coli were transduced into a galE mutant of S. enterica by using P1 vir as described

previously (12).  The phage P22 mutant HT105 / 1 int-201 was then used for transduction in S. enterica

by standard methods (11).  All fusions in S. enterica are located in single-copy at the putPA locus (12). 

Media and growth conditions.  Bacteria were grown at 37°C in LB medium (41) and on nutrient

agar (NB) plates containing 5 g of NaCl per liter, except where indicated.  Minimal agar was prepared

with NCE medium containing 0.2% glucose (5).  Liquid minimal medium was

morpholinepropanesulfonic acid (MOPS) medium (34) as modified (6), supplemented with 0.2%

glucose as the carbon and energy source.  Antibiotics were added to final concentrations in selective

media as follows: 20 µg of chloramphenicol/ml, 50 µg of kanamycin sulfate/ml, and 20 µg of

tetracycline hydrochloride/ml.  X-Gal (5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside) was used at

50 µg/ml.

Fusion construction.  We took advantage of our previously described method for making lac

transcriptional and translational constructs in which a region of interest is inserted between the promoter

PlacUV5 and the lacZYA genes (17).  This method relies on the high efficiency λ Red recombination

system of Yu et al (49).  A chromosomal template that has the tetAR cassette immediately upstream of
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PlacUV5 was amplified by PCR, using the following primer design (all primer elements are listed in

order from 5’ to 3’):  (i) a common upstream 60-mer that contains 40 nt of kan homology to mediate

upstream recombination followed by 20 nucleotides of tetA priming sequence;  (ii) construct-specific

downstream 80-mers contained 40 nucleotides of either lac or rpoS homology for downstream

recombination followed by a variable region of interest preceding priming homology within the lacUV5

promoter.  The resulting PCR products have the following structure: kan-tetAR-PlacUV5-region of

interest-rpoS codons 1-8 or, alternatively, lacZ coding sequence.  Products with downstream homology

to rpoS were used to transform TE8402 or TE9277 to generate translational or transcriptional fusions

respectively.  When recombination directly to the lacZ coding sequence was desired, strain TE9059

served as the recipient.  Transformants were selected on NB plates containing tetracycline.  The region

extending from upstream of PlacUV5 through the downstream recombination site (lacZ codon 22) was

sequenced.  All fusions were then backcrossed into E. coli MG1655 ∆lacIZ.  The sequences for primers

used in this study are available upon request.  

Unselected chromosomal mutations.  

To replace the rpoS RBS with that of lacZ in the rpoS native context (i.e. at the rpoS

locus), a strain with λ Red was utilized that carries the katE-lac [op] fusion.  First, 24 nt

surrounding the rpoS RBS (5’-3’), GGGATCACGGGTAGGAGCCACCTT, were substituted

with tetAR.   Transformants had a Lac- phenotype on NB plates containing tetracycline and X-

gal.  Next, a 188 bp PCR product was generated from a wild type template using an upstream

rpoS primer (position 410 of the rpoS transcript) and a downstream primer that contained (i) 40

nt of downstream homology to allow recombination downstream of the ATG initiation codon of
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rpoS; (ii) 17 nt of the lacZ RBS (AATTTCACACAGGAAACAGCT), and (iii) 19 nt of priming

homology to the rpoS leader (nt 541-522).  This PCR product was used to transform the TetR

strain constructed in the first step followed by dilution into fresh medium for overnight growth.

Cultures were then diluted and plated on NB containing kanamycin and X-gal.  The phenotype of

desired transformants was Lac+; these were recovered at a frequency of >10-4, and the insertion

was confirmed by DNA sequencing.  This unmarked substitution was then backcrossed into a

MG1655 background by using a recipient strain which contains the katE-lac [op] fusion,

∆rpoS::cat (CamR), and also ∆cysC::tetAR.  The cysC locus is ≈ 6 kb from rpoS and tightly

linked to it by P1 transduction.  Cys+ Lac+ transductants were selected on minimal medium

plates containing X-gal and the lacZ RBS substitution in the rpoS leader was confirmed again by

sequencing. 

Typically, our lac [op] constructs contain a RNase III processing site (7, 24), which insulates

lacZ expression from variations due to differences in upstream sequences.  For the experiments

described here, this property is not desirable.  A similar non-selective transformation method to that

described above was employed to eliminate the processing site from a strain containing the kan-PlacUV5-

rpoS (codon 8) transcriptional fusion (TE8403).  Briefly, the cat gene was used to make an insertion-

deletion with loss of 76 bp including the RNase III cleavage site, located in the 170 nt spacer region

between rpoS codon 8 and the lacZ RBS.  The desired transformants were Lac- (TE9274).  Next, a PCR

product was generated with the following structure: rpoS codons 6-8 followed by 31 nucleotides of the

spacer region, the lacZ RBS and 144 nt of the lacZ coding sequence. Transformation of TE9274 with

this PCR product followed by screening for Lac+, resulted in a strain that is deleted for the processing
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site and sensitive to chloramphenicol.  The relevant region was confirmed by DNA sequencing

(TE9277).

The fis gene of E. coli was deleted and substituted with cat using standard methods (18).

Regions surrounding the sites of recombination, fis codon 22 and immediately following the fis

termination codon, were confirmed by DNA sequencing.  

Assay of β-galactosidase.  Cells were centrifuged and resuspended in Z-buffer (100 mM NaPO4 [pH

7.0], 10 mM KCl, 1 mM MgSO4) and then permeabilized by treatment with sodium dodecyl sulfate

(SDS) and chloroform (29).  The samples from exponential-phase were concentrated before assay to be

approximately equal in density to samples obtained from later times.  For all experiments, exponential-

phase is defined as OD600 = 0.25 and SP is 24 hours after inoculation.  Assays were performed in Z-

buffer containing 50 mM β-mercaptoethanol by a kinetic method using a plate reader (Molecular

Dynamics).  In all experiments, β-galactosidase activity (change in OD420 per minute) was normalized to

cell density (OD650) and was always compared to appropriate controls assayed at the same time. The

values shown are averages of at least four experiments with a standard deviation of <17%, unless

otherwise stated.

Immunological detection of proteins.  For Western blots, cultures were grown as described in the

text.  Electrophoresis and protein transfer were as described previously (7, 10).  After transfer to a

Sequi-Blot polyvinylidene difluoride membrane (BioRad), blots were blocked in 5% non-fat milk and

incubated in phosphate buffered saline (PBS)-Tween (0.05%) containing the anti-RpoS monoclonal
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antibody R12 (7).  After 60 min of incubation, blots were washed in PBS-Tween, incubated for 60 min

in PBS-Tween containing biotinylated goat anti-mouse immunoglobin, and finally incubated in PBS-

Tween containing streptavidin-conjugated horseradish peroxidase (Southern Biotechnology Associates).

Detection was by enhanced chemiluminescence (Amersham Biosciences).

Figure 18.  Stationary phase induction of rpoS translation relies on the ribosome-binding
sequence.
The top line depicts the general fusion context.  The lacUV5 promoter drives expression
of a variable segment of the rpoS 5’ untranslated region (rpoS leader) followed by the first
8 codons of rpoS.  At this position, the lacZ gene is joined to rpoS to form a translational
fusion.  Six different rpoS constructs are shown, labeled with the position of the variable
upstream end of the segment.  Next to each construct is the stationary phase (SP)
induction ratio, obtained by dividing SP activity by the exponential-phase activity.  The
variable region of constructs 1 and 454 fusions are shown as black lines due to their
longer size, while the broken lines indicate a magnification of rpoS ribosome-binding
sequence.  The RBS of lacZ served as a control and is labeled lacZ.
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Results

The rpoS RBS regulates SP induction of translation.  Growth of E. coli or S. enterica into

SP in rich medium (LB) results in a >30-fold increase in expression of rpoS-lac [pr] (protein)

and an even greater increase in RpoS activity as demonstrated by katE-lac [op] (17, 18).  As

shown by others (21, 28, 33, 39, reviewed in ref 13) and confirmed by us for both E. coli and S.

enterica (17, 18) this increase has components of both transcriptional and post-transcriptional

regulation.  SP induction in LB is independent of the response regulator RssB/SprE/MviA as

well as the energy-dependent protease ClpXP, which together regulate RpoS abundance under

other conditions (18, 27, 32, 36, 40).  SP induction is also independent of the Hfq protein and

likewise, the regulatory DsrA RNA (17). 

A striking result from previous analysis of rpoS translation in E. coli was that most of the SP

induction (at 37°C in LB) is maintained when most of the 565 nt rpoS leader region is deleted (17),

including the antisense element that binds DsrA (25).  Nearly 10-fold induction was observed for a

rpoS-lac [pr] fusion expressed from PlacUV5, that contains only 48 nt of rpoS - 24 nt of the RBS, which

includes the Shine-Dalgarno (S.D.) sequence (GGGATCACGGGTAGGAGCCACCTTATG), followed

by the first eight codons of the gene (third construct in Fig. 18, labeled 542; construct I in Fig. 19).  

To further define the sequence required for translational regulation of SP induction, three

additional constructs with further deletions of the rpoS leader were analyzed (Fig. 18).  Cultures were
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assayed for β-galactosidase activity during exponential-phase (OD600 = 0.25) and after 24 hours of

growth (SP) in LB medium at 37°C.  The SP induction ratio (SP activity / exponential-phase activity)

for each construct is reported in Fig. 18. 

The construct bearing the entire 565 nt leader region of rpoS, was induced 17-fold as cells grew

to SP (Fig. 18, labeled 1, and Fig. 19, construct G).  Constructs with sequential 5’ leader deletions to

within 21 nt of the rpoS initiation codon each maintained about half of this regulation, with induction

ratios of seven-fold to nine-fold (Fig. 18, constructs 454, 542 and 545).  Removal of an additional four

nt decreased induction to an intermediate value of four-fold (Fig. 18, construct 549), while SP regulation

was completely eliminated in a construct retaining only 13 nt of the rpoS leader (Fig. 18, construct 553).

As a negative control for these experiments, 21 nt of the lacZ RBS in the same fusion context (and

maintaining the first eight codons of rpoS), showed a minimal 1.6-fold increase during SP (Fig. 18,

lacZ). 

Conservation of rpoS RBS-mediated induction.  The sequence of the rpoS RBS is completely

conserved among several species of enteric bacteria including several strains of E. coli (including

MG1655 and O157:H7), serovars of S. enterica (including Typhi and Typhimurium), Shigella flexneri

and Enterobacter cloacae.  To determine if RBS-mediated SP induction is specific to E. coli, we

investigated the activity of construct 542 in S. enterica serovar Typhimurium.  As cells grew into SP, the

activity of construct 542 increased 10-fold in contrast to the 1.5-fold SP induction of the lacZ RBS (data

not shown).  The nearly identical induction ratios obtained with E. coli MG1655 and S. enterica serovar

Typhimurium (LT2A and LT2) suggest a conserved regulatory mechanism.



140

             Figure 19.  β-galactosidase activity of various ribosome-binding sequences. 

Dissection of the RBS and its role in SP induction.  

The deletion constructs described above also carry the first 8 codons of rpoS fused to lacZ.  We

tested whether this sequence from the rpoS coding region has a regulatory role by determining

The β-galactosidase activity of various ribosome-binding sequences (RBS), in a translational
lacZ fusion context, was determined during exponential growth (E) and during stationary phase
(SP).  These values were used to determine the SP induction (SP / E) of the listed constructs.
All fusions are expressed from the lacUV5 promoter (PlacUV5) and a partial promoter sequence,
including the -10 hexamer is underlined.  The fusions are grouped into three categories:  (i)
hybrid constructs which contain nucleotides from both the rpoS RBS and lacZ RBS, shown in
bold black font and white font, respectively;  (ii) full-length constructs having the entire rpoS
leader region (nucleotides 1-565), in this case a double slash mark symbolizes nt 1-541 of the
native rpoS transcript which are not shown;  (iii) leader deletion constructs which are based on
the rpoS RBS (nucleotides 542-565) with mutations affecting the RBS shown in normal font
(not bold); Each RBS is linked either to the first eight codons of rpoS and then to lacZ, shown
by ATG nucleotides in bold, or directly to the lacZ coding sequence (ATG in white).  All
strains were grown at 37°C in LB medium.

Bold = rpoS  white = lacZ
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the β-galactosidase activity of a construct that has just the 24 nt of the rpoS RBS preceding

native lacZ (Fig. 19, construct A).  This sequence maintained an SP induction ratio of 8.5-fold,

similar to the induction shown by construct 542 (Fig. 18; Fig. 19, construct I).  Together with the

deletion results, this clearly demonstrates that the rpoS RBS is necessary and sufficient for the

nearly nine-fold increase in translation after cells enter SP. 

To investigate the regulatory role of the 24 nt rpoS RBS in the context of the entire rpoS leader, a

fusion was constructed in which these bases were substituted by 21 nt of the lacZ RBS (Fig. 19,

construct H).  In this case, SP induction decreased to that of lacZ, 1.6-fold, compared to the 17-fold

induction of the native leader region (Fig. 19, compare constructs G and H). 

The 24 nt RBS of rpoS includes a five base S.D. sequence near its center (AGGAG), bounded by

12 bases upstream and seven bases downstream.  The lacZ RBS also consists of a nearly centered

AGGA bordered by upstream and downstream sequence elements.  We exchanged the upstream and

downstream elements, to construct a panel of rpoS/lacZ RBS in the fusion contexts mentioned above

(Fig. 19).  In construct B, the upstream segment is from rpoS and the downstream segment is substituted

from lacZ; construct C is identical except that it has the shorter lacZ S.D. sequence (AGGA).  Both

hybrid RBSs demonstrated significant SP induction similar to results obtained with the wild type rpoS

RBS (Fig. 19, compare constructs A, B and C).  Substitution of the downstream lacZ element is also

without effect on SP induction in the context of a fusion bearing the first 8 codons of rpoS (construct D).

A quite different result is observed for substitution of the upstream element.  Construct E

contains the upstream segment from lacZ and the downstream segment from rpoS (Fig. 19).  This hybrid
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RBS construct is unique among all tested herein in that its relative activity is extremely high (Fig. 19).

This result appears to be due to increased translation because a corresponding transcriptional fusion

demonstrates the same activity of all other transcriptional fusions tested (data not shown). Importantly,

construct E is not regulated during growth to SP.  This result was confirmed for the same hybrid RBS

expressed from a mutant PlacUV5 (T→A at –12), which is reduced 100-fold in overall transcriptional

activity (data not shown).  Thus, the bases directly upstream from the S.D. sequence (rpoS nt 542-557)

seem to be required for SP induction. 

Testing the role of potential trans-regulators in SP induction.  We considered the

possibility that trans-acting factors recognize the rpoS RBS and repress activity during

exponential-phase or activate translation during SP.  Three genes, whose products have been

implicated in control of rpoS translation, were investigated including DksA, the transiently

expressed subunit of the DNA-binding HU dimer, and the RNA-binding protein Hfq (2, 7, 31,

47).  Normal SP induction of construct 542 occurred in a dksA, hupB or hfq mutant background

(data not shown).  Additionally, it seems unlikely that induction is mediated by a small

regulatory RNA, since most are dependent on Hfq for action (38).   

We investigated whether known variations in ribosome composition as cells grow to SP confer

an attraction for the rpoS RBS.  The genes encoding four transiently expressed, ribosome-associated

proteins YfiA, YhbH, Sra and Rmf (19, 26, 45) were individually inactivated and the SP induction of

construct 542 was determined in the mutant backgrounds.  In each case, SP regulation was not

significantly different than wild type (data not shown).  
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     Figure 20.  Predicted RNA secondary structure of the rpoS ribosome-binding region.

Secondary structure and SP induction.  Another model posits that the secondary structure of the

rpoS RBS acts directly as a regulatory signal.  The thermodynamically favored secondary structure of

construct 542 (48 nt of rpoS) was predicted using the mfold algorithm of M. Zuker (Fig. 20; 50).  In this

structure, the rpoS S.D. sequence (AGGAG) is positioned within a single-stranded loop flanked by a 4

bp stem.  Disruption of the stem with a targeted double mutation eliminated most of the SP induction

observed for the wild type rpoS RBS (Fig. 19 construct J; Fig. 20, G550C/G551C).  A construct

containing two compensatory mutations (Fig. 19, construct K; Fig. 20, G550C/G551C/C563G/T564G),

which restore the predicted structure of the wild type RBS, was also investigated.  In this case, SP

induction was restored and slightly elevated compared to wild type (Fig. 19, compare constructs I, J, and

K).  

To test this model further, another construct was made which reversed the sequence of the rpoS

RBS while maintaining the extended S.D. sequence (Fig. 19, construct L).  Remarkably, the reversed

Mfold was used to predict the RNA secondary structure of a 48 nucleotide
region of the rpoS transcript:  24 nucleotides directly preceding the rpoS start
codon (labeled with an asterisk) extending to rpoS codon 8 (50).  The nt of the
extended Shine-Dalgarno sequence of rpoS are individually circled.  Arrows
indicate positions of directed mutations, the substituted nt are also shown, as
described in the text
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RBS demonstrated significant SP induction, with a ratio even higher than the wild type rpoS RBS (Fig.

19, constructs L and I).  This result, along with those from the directed-mutation analyses, strongly

supports the idea that the structure of the RBS, and not primary sequence, functions as a regulatory

signal.   

Figure 21.  Stationary phase regulation of various ribosome-binding sequences at the 
                   transcriptional level.

The stationary phase (SP) induction ratios of various transcriptional fusions containing
the indicated ribosome-binding sequences were investigated.  A description of the
ribosome-binding sequences is given under each column and the actual sequences
correspond with the letter designations of Fig. 19.  The β-galactosidase activity of each
construct was determined during exponential growth (E) and SP, and the SP induction
ratio (SP/E) is shown.
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RNA stability and SP induction.  To investigate the possibility that differential transcript

stability mediates SP induction of rpoS synthesis, we constructed several strains with RBS

variants in a transcriptional fusion context.  All transcriptional fusions investigated demonstrated

a low 1.5 to 2-fold SP induction ratio, similar to the lacZ control, regardless of translational

regulation (Fig. 21).  This small increase in transcriptional activity does not account for the large

differences in translational induction seen among the various RBSs, indicating that altered RNA

stability does not regulate SP induction. 

Regulation at the native rpoS locus.  

SP induction of RpoS in LB occurs at both the transcriptional and translational levels, while

targeted proteolysis influences RpoS abundance but not regulation per se (18).  To determine if

the RBS of rpoS has a role in SP regulation in the native context, we replaced the 24 nt sequence

with the RBS of lacZ (Fig. 22A).  In this background RpoS activity, as measured by the katE-lac

[op] reporter, increased nearly three-fold, specifically during exponential-phase, thereby

reducing SP induction (Fig. 22B).  This result is supported by significantly increased RpoS

protein abundance during exponential-phase (Fig. 22C, WT vs. lacZ RBS). 
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                    Figure 22.  SP regulation of RpoS depends on the rpoS RBS and Fis.

The 24 nucleotides preceding the rpoS initiation codon were replaced with the depicted lacZ
RBS in the native rpoS context (A).  RpoS activity during exponential growth and stationary
phase was measured in a wild type background, a fis deletion mutant (fis) and in a background
that contains the replacement shown in (A) with or without a fis deletion (lacZ RBS and lacZ
RBS fis respectively, B).  (C) Western analysis of RpoS protein during exponential growth in
the indicated backgrounds.
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In S. enterica serovar Typhimurium, Fis controls SP induction of rpoS transcription by binding

near PrpoS and repressing activity during exponential-phase (18).  We investigated Fis regulation of

RpoS in E. coli by determining the SP induction of katE-lac [op] in a fis mutant background.  Due to

increased expression during exponential-phase, SP induction of RpoS decreased two-fold in the fis

mutant (Fig. 22B), an effect that correlates with a direct measure of RpoS abundance (Fig. 22C).

Finally, the SP induction of RpoS was determined in a E. coli background that is defective in

both transcriptional control (fis mutant) and translational control (rpoS RBS replaced with that of lacZ).

In this context, the near 100-fold SP induction of katE-lac [op] decreased to five-fold.  This result was

due to a large increase in RpoS protein during exponential-phase (Fig. 22B and 22C, compare WT vs.

lacZ RBS fis). 

Discussion

Regulation of RpoS in the enterics is remarkable for its diversity---both in the signals that

increase the level of the protein, as well as the mechanisms by which the increase is achieved.  Examples

are known where regulation occurs at the level of transcription, translation, targeted proteolysis, and

protein activity, as well as combinations of these (reviewed in16).  Perhaps the most dramatic difference

in RpoS abundance occurs between exponential-phase and SP in rich medium and is maintained by

transcriptional and translational control (17, 18).  Although this can be described as an induction or
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increase, the effects of regulatory mutants suggest that much of the control is negative, acting to restrict

expression during exponential-phase.  

In this study, we explore SP control of RpoS at the post-transcriptional level.  Remarkably, 24 nt

of the rpoS RBS are both necessary and sufficient for a nearly nine-fold increase in translation during SP

(Fig. 19).  These nucleotides are highly conserved among several enteric bacteria, and the induction

phenomenon occurs in S. enterica as well.  Genetic evidence supports a model in which the paired

structure of the rpoS RBS enforces this control (Fig. 19).  However, the precise mechanism resulting in

SP induction remains unclear.  It is not a result of differential transcript stability (Fig. 21) or control by

the reported rpoS regulators DksA or the HU dimer.  Also, the RNA-binding protein Hfq is not involved

and presumably, neither are small RNAs.  A simple model would be that the rpoS RBS is more

attractive to ribosomes during SP.  If this true, then it is not mediated by known proteins associated with

the ribosome specifically during SP.

The environmental stimulus that triggers RBS-mediated SP induction of rpoS translation also

remains unknown, but similar to transcriptional control, regulation is only seen in rich undefined media,

including LB and its individual components tryptone or yeast extract (18, data not shown).  No RBS-

mediated SP induction occurs in minimal medium containing different carbon sources even when

supplemented with amino acids and or putrescine, a polyamine reported to stimulate rpoS translation

(44, data not shown).  In these cases, fusion activity (Fig. 18, construct 542) is already high during

exponential growth (data not shown).  This media-dependent differential regulation of rpoS expression

is not due to altered growth rates. 
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SP induction of RpoS in rich medium depends on regulation of both transcription and translation

(17, 18).  During exponential growth, Fis protein binds to a site near PrpoS and blocks transcription (18).

As cells grow into SP, Fis abundance is drastically reduced and expression from PrpoS is released from

Fis repression (1, 18).  At the translational level, an unknown regulator acts on the structure of the rpoS

RBS and represses synthesis during exponential growth or activates it during SP (Fig. 19 and Fig. 22).

Collectively, these regulatory targets account for approximately 95% of the overall SP induction of

RpoS.  
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Table 8.  Bacterial strains.

Strain Genotype or description  

E. coli

DH5α K-12 F- λ- endA1 hsdR17(rK
-mK

+) supE44 thi-1 recA1 gyrA96 
(Nalr) relA1 ∆(lacZYA-argF)U169 (φ80dlacZ∆M15)

TE1400 K-12 F- λ-  araD139 ∆lacX74 galU galK  rK
- mK

+ StrR

BW26678 lacIQ rrnBTL4 ∆lacZ(WJ16) hsdR514 ∆araBAD(AH33) ∆rhaBAD(LD78) / pKD46
 [pSC101rep (Ts) AmpR araC+ PBAD-λred]

CF1693 ∆relA251:: kan ∆spoT207::cat
CF3032 argA::Tn10 ∆relA252::kan
CF7968 MG1655 ∆( lacIZ) rph+

DDS724 MC4100 cpsB-lac ∆dsrA5 zed::Tn10d-Tet
DY330 W3110 lacU169 [λ cI857ts ∆(cro-bioA)]
TE8184 CF7968 trpDC700::putPA1303:: kan-rpoS-lac [pr] b 
TE8197 CF7968 argA::Tn10 trpDC700::putPA1303:: kan-rpoS-lac [pr] 
TE8199 TE8197 ∆relA252::kan ∆spoT207::cat
TE8222 CF7968 argA::Tn10 trpDC700::putPA1303:: kan-rpoS-lac [op]a 
TE8224 TE8222 ∆relA252::kan ∆spoT207::cat
TE8226 CF7968 argA::Tn10 trpDC700::putPA1303:: kan-lacUV5p-rpoS-lac [pr] 
TE8228 TE8226 ∆relA252::kan ∆spoT207::cat
TE8230 CF7968 argA::Tn10 trpDC700::putPA1303:: kan-lacUV5p-rpoS-lac [op] 
TE8232 TE8230 ∆relA252::kan ∆spoT207::cat
TE8260 TE8184 ∆barA::tet
TE8263 CF7968 argA::Tn10 trpDC700::putPA1303:: kan-lacUV5p-lac [op] 
TE8265 TE8230 ∆relA252::kan ∆spoT207::cat
TE8378 CF7968 argA::Tn10 trpDC700::putPA1303:: kan- lacUV5p -rpoS-lac [pr] (+1)
TE8383 TE8378 ∆relA252::kan ∆spoT207::cat
TE8380 CF7968 argA::Tn10 trpDC700::putPA1303:: kan-rpoS-lac [pr] (codon 8) 
TE8382 TE8380 ∆relA252::kan ∆spoT207::cat
TE8267 CF7968 argA::Tn10 trpDC700::putPA1303:: kan-lacUV5p-rpoS-lac [pr] (∆1)
TE8269 TE8267 ∆relA252::kan ∆spoT207::cat
TE8271 CF7968 argA::Tn10 trpDC700::putPA1303:: kan-lacUV5p-rpoS-lac [pr] (∆2) 
TE8273 TE8271 ∆relA252::kan ∆spoT207::cat
TE8344 CF7968 argA::Tn10 trpDC700::putPA1303:: kan-lacUV5p-rpoS-lac [pr] (∆3)
TE8340 TE8344 ∆relA252::kan ∆spoT207::cat
TE8345 CF7968 argA::Tn10 trpDC700::putPA1303:: kan -lacUV5p-rpoS-lac [pr] (∆4)
TE8341 TE8345 ∆relA252::kan ∆spoT207::cat
TE8275 CF7968 argA::Tn10 trpDC700::putPA1303:: kan -rpoS-lac [pr] (C469G)
TE8277 TE8275 ∆relA252::kan ∆spoT207::cat
TE8279 CF7968 argA::Tn10 trpDC700::putPA1303:: kan -rpoS-lac [pr] (G549C)
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TE8281 TE8279 ∆relA252::kan ∆spoT207::cat
TE8283 CF7968 argA::Tn10 trpDC700::putPA1303::kan-rpoS-lac [pr] (C469G, G549C)
TE8285 TE8283 ∆relA252::kan ∆spoT207::cat
TE8266 CF7968 trpDC700::putPA1303:: kan-lacUV5p-rpoS-lac [pr] (∆1)
TE8316 CF7968 trpDC700::putPA1303:: kan-rpoS-lac[pr]dsrA+ zed::Tn10d-Tet
TE8317 CF7968 trpDC700::putPA1303:: kan-rpoS-lac[pr]∆dsrA5 zed::Tn10d-Tet
TE8318 TE8316 ∆relA252::kan ∆spoT207::cat
TE8319 TE8317 ∆relA252::kan ∆spoT207::cat
TE8372 TE8266 ∆dksA::tet
TE8270 CF7968 trpDC700::putPA1303:: kan-lacUV5p-rpoS-lac [pr] (∆2)
TE8373 TE8270 ∆dksA::tet
TE8314 CF7968 trpDC700::putPA1303:: kan-lacUV5p-rpoS-lac [pr] (∆3)
TE8374 TE8314 ∆dksA::tet
TE8315 CF7968 trpDC700::putPA1303:: kan-lacUV5p-rpoS-lac [pr] (∆4)
TE8375 TE8315 ∆dksA::tet
TE8363 CF7968 trpDC700::putPA1303::bla-rpoS-lac [pr] 
TE8377 TE8363 hfq-1::Ω-Km
TE8387 CF7968 trpDC700::putPA1303::bla-lacUV5p-rpoS-lac [pr] (∆1) 
TE8388 TE8387 hfq-1::Ω-Km
TE8391 CF7968 trpDC700::putPA1303::bla-lacUV5p-rpoS-lac [pr] (∆2) 
TE8392 TE8391 hfq-1::Ω-Km
TE8402 DY330 trpDC700::putPA1303:: kan -rpoS (ClaI, codon 8)-lac [pr]  
TE8403 DY330 trpDC700::putPA1303:: kan -rpoS (ClaI, codon 8)-RNAse III site-lac [op] 
TE8405 TE8184 ∆ppkx::tet
TE8419 CF7968 trpDC700::putPA1303::tet-lacUV5p-rpoS-lac [pr] (+1, codon 8)
TE8420 CF7968 trpDC700::putPA1303::tet-lacUV5p-rpoS-lac [pr] (541, codon 8)
TE8421 CF7968 trpDC700::putPA1303::tet-lacUV5p-rpoS-lac [op] (+1, codon 8)
TE8422 CF7968 trpDC700::putPA1303::tet-lacUV5p-rpoS-lac [op] (541, codon 8)
TE8439 CF7968 trpDC700::putPA1303::tetAR-lacUV5p-rpoS (454, codon 8)-lac [pr] 
TE8448 CF7968 trpDC700::putPA1303::tet-lacUV5p-lacRBS-rpoS-lac [pr] (565, codon 8)
TE8483 CF7968 trpDC700::putPA1303::tetAR-lacUV5p-rpoS (541, 558)-lac (AACAGCT)-

rpoS (ATG, codon 8)-lac [pr]
TE8520 CF7968 trpDC700::putPA1303::tetAR-lacUV5p-(TCACAC)-rpoS (554, codon8)-lac

[pr]
TE8999 CF7968 trpDC700::putPA1303::tetAR-lacUV5p-rpoS (548, codon 8)-lac [pr] 
TE9024 CF7968 trpDC700::putPA1303::tetAR-lacUV5p-rpoS (541, codon 8; G550C,

G551C)-lac [pr]
TE9030 CF7968 trpDC700::putPA1303::tetAR-lacUV5p-rpoS (544, codon 8)-lac [pr] 
TE9036 CF7968 trpDC700::putPA1303::tetAR-lacUV5p-rpoS (552, codon 8)-lac [pr] 
TE9059 DY330 trpDC700::putPA1303::kan-PlacUV5-lac [op]
TE9042 CF7968 trpDC700::putPA1303::tetAR-lacUV5p-rpoS (+1, 542)-

(TCACACAGGAACAGCT)-rpoS (ATG, codon 8)-lac [pr] 
TE9145 CF7968 trpDC700::putPA1303::kan -katE-lac [op]
TE9146 CF7968 trpDC700::putPA1303::tetAR-lacUV5p-rpoS (541, 565)-lac (ATG) [pr] 
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TE9200 CF7968 trpDC700::putPA1303::tetAR-lacUV5p-rpoS (541, codon 8; G550C, G551C,
C563G, T564G)-lac [pr]

TE9218 CF7968 trpDC700::putPA1303::tetAR-lacUV5p-rpoS (542, 558)-(AACAGCT)-lac
[op]

TE9249 CF7968 trpDC700::putPA1303::tetAR-lacUV5p-rpoS (542, 557)-(AACAGCT)-lac
[op]

TE9251 CF7968 trpDC700::putPA1303::tetAR-lacUV5p-
GGGTTCCACCAGGAGTGGGCACT-lac [pr]

TE9268 CF7968 trpDC700::putPA1303::tetAR-lacUV5p-
ACCACCCTGAACAGGATCAGGGCA-lac [pr]

TE9270 CF7968 trpDC700::putPA1303::tetAR-lacUV5p-ATCGATTGAGAGGATTTGA-lac
[op]

TE9274 DY330 trpDC700::putPA1303:: kan-rpoS (ClaI, codon 8)-cat-lac [op]
TE9277 DY330 trpDC700::putPA1303:: kan-rpoS (ClaI, codon 8)-lac [op]
TE9284 CF7968 trpDC700::putPA1303:: kan-katE-lac [op] 

rpoS(540)-AATTTCACACAGGAAACAGCT-rpoS(ATG)
TE9291 CF7968 trpDC700::putPA1303::tetAR-lacUV5p-

ACCACCCTGAACAGGATCAGGGTA-lac [op]
TE9300 CF7968 trpDC700::putPA1303::tetAR-lacUV5p-rpoS (542, codon 8)-lac [op] 
TE9301 CF7968 trpDC700::putPA1303::tetAR-lacUV5p-lac (TCACACAGGAACAGCT)-

rpoS (ATG, codon 8)-lac [op]
TE9302 CF7968 trpDC700::putPA1303:: kan-katE-lac [op] fis::cat
TE9303 CF7968 trpDC700::putPA1303:: kan-katE-lac [op] rpoS(541)-

AATTTCACACAGGAAACAGCT-rpoS(ATG) fis::cat
TE9304 CF7968 trpDC700::putPA1303::tetAR-lacUV5p-

GGGTTCCACCAGGAGTGGGCACT-lac [op]
TE9305 CF7968 trpDC700::putPA1303::tetAR-lacUV5p-rpoS (541, codon 8; G550C,

G551C, C563G, T564G)-lac [op]
TE9312 CF7968 trpDC700::putPA1303::tetAR-lacUV5p-rpoS (541, codon 8; G550C,

G551C)-lac [op]
TE9335 CF7968 trpDC700::putPA1303::tetAR-lacUV5p-rpoS (542, codon 8; G550C,

G551C)-lac [op]

S. enterica

LT2 wild type (mviA V102G) 
LT2A LT2 mviA+                                                                                                            
TH2285 fis-3::cat
TE315 TR5877 = hsdL6 hsdSA29 (rLT

- mLT
+ rS

- mS
+) metA22 metE551

ilv-452 trpB2 xyl-404 rpsL120 (StrR) H1-b H2-e,n,x (Fels2-) nml
TE6153 putPA1303::kan-katE-lac [op]
TE6675 putPA1303::kan-Ptac-lac [op]
TE6676 putPA1303::kan-PlacUV5-lac [op]
TE6756 LT2A putPA1303::kan-katE-lac [op]
TE6850 LT2A putPA1303::kan-katE-lac [op] clpX1::Tn10d-Cam
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TE6851 LT2A putPA1303::ka -katE-lac [op] mviA22::Tn10d-Cam
TE7304 TE315 galE putPA1303:: kan::cat-lac
TE8536 putPA1303::kan-katE-lac [op] / pKD46 
TE8607 ∆cysC::tetAR
TE8698 putPA1303::kan-PnlpD-lac [op] (13475-13053)
TE8737 rpoS1082::MudJ (codon 66)
TE8738 rpoS1082::MudJ (codon 66) / pKD46
TE8744 putPA1303::kan-PrpoS-lac [op] (12765-12338)
TE8754 putPA1303::kan-PrpoS-lac [op] (12765-12338) [op] cya::Tn10
TE8755 putPA1303::kan-PrpoS-lac [op] (12765-12338) cya::Tn10 

zhc-3729::Tn10d-Cam crp*-661
TE8758 putPA1303::kan-PrpoS-lac [op] (12765-12338) rpoS1071::Tn10d-Cam 
TE8759 putPA1303::kan-PlacUV5-lac [op] rpoS1071::Tn10d-Cam
TE8760 putPA1303::kan-katE-lac [op] rpoS1071::Tn10d-Cam
TE8761 putPA1303::kan-PnlpD-lac [op] (13475-13053) rpoS1071::Tn10d-Cam
TE8764 putPA1303::kan-PrpoS -lac [op] (12765-12338) fis-3::cat 
TE8766 putPA1303::kan-PlacUV5-lac [op] fis-3::cat
TE8767 putPA1303::kan-PrpoS-lac [op] (12765-12338) crp773::Tn10
TE8768 LT2 fis-3::cat
TE8770 putPA1303:: kan-PrpoS-lac [op] (12765-12338) crp773::Tn10 

fis-3::cat
TE8776 putPA1303::kan-PrpoS-lac [op] (12765-12338)

nlpD::Cam (12720)
TE8787 putPA1303::kan-PrpoS-lac [op] (12765-12338)

nlpD::Cam (12720) / pKD46
TE8864 putPA1303::kan-[PrpoS::tet]-lac [op]  (lac fusion contains bp 12765-12338, 

tetAR deletes 12580- 12555) nlpD:: cat (12720)
TE8867 TE8864 / pKD46
TE8868 putPA1303::kan-PrpoS-lac [op] (12663-12553)
TE8869 putPA1303::kan-PrpoS-lac [op] (12663-12553) fis-3::cat
TE8887 putPA1303::kan-PrpoS*-lac [op] (12765-12338) 

(* carries A12601C T12596G C12591G)
TE8888 TE8887 fis-3::cat
TE8895 putPA1303::kan-PrpoS∆-lac [op] (12765-12338, ∆ removes 

bp 12608-12588)
TE8900 TE8895 fis-3::cat
TE8903 rpoS1082::MudJ (codon 66) ∆nlpD::tetAR (13360-13003)
TE8990 rpoS1082::MudJ (codon 66) ∆nlpD::tetAR (12522-12454)
TE8911 putPA1303::kan-PrpoS-lac [op] (12765-12338) / pGS349
TE8912 putPA1303::kan-PrpoS-lac [op] (12765-12338)  fis-3::cat  / pGS349
TE8991 rpoS1082::MudJ (codon 66) ∆nlpD::tetAR (12584-12555)
TE8992 rpoS1082::MudJ (codon 66) ∆nlpD::tetAR (13360-12555)
TE8915 rpoS1082::MudJ (codon 66) ∆nlpD::tetAR (12584-12555) / pKD46
TE8916 putPA1303::kan-PrpoS-lac [op] (12765-12338) / pFis349
TE8917 putPA1303::kan-PrpoS-lac [op] (12765-12338)  fis-3::cat  / pFis349
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TE8919 PrpoS::tetAR(12580-12555)-lac [op] nlpD::cat (12720) / pKD46
TE8925 TE8737 ∆PrpoS (12584-12555)
TE8993 TE8925 nlpD::tetAR (13360-13003)
TE8947 putPA1303::kan-PrpoS-lac [op] (12587-12477)
TE8948 putPA1303::Ptac-lac [op] fis-3::cat
TE8949 putPA1303::kan-PrpoS-lac [op] (12587-12477) fis-3::cat
TE8971 putPA1303::kan-PrpoS-lac [op] (12663-12477)
TE8972 putPA1303::kan-PrpoS-lac [op] (12663-12477) fis-3::cat
TE9083 putPA1303::kan-PrpoS-lac [op] (12654-12477)
TE9096 putPA1303::kan-PrpoS-lac [op] (12654-12477) fis-3::cat
TE9195 LT2A putPA1303::tetAR-lacUV5p-rpoS (542, codon 8)-lac [pr] 
TE9196 LT2 putPA1303::tetAR-lacUV5p-rpoS (542, codon 8)-lac [pr]
TE9294 LT2A putPA1303::tetAR-lacUV5p-lac (TCACACAGGAACAGCT)-rpoS (ATG, codon

8)-lac [pr]
TE9295 LT2 putPA1303::tetAR-lacUV5p-lac (TCACACAGGAACAGCT)-rpoS (ATG, codon 8)-

lac [pr]

All numbering in parenthesis is in base pairs (unless otherwise indicated) relative to the first nt
of the transcript originating from PrpoS.  In this description, the first nt of the rpoS transcript
corresponds to 2866139 of GenBank AE000111 for E. coli and nt 12589 of GenBank
AE00833.1 for S. enterica serovar Typhimurium (nt upstream of the transcriptional start
directly correlate with the nt designation under the given accession number).  The extent of the
rpoS sequence in the fusions of TE8267, TE8271, TE8344, TE8345, TE8387, TE8391 is
described in the text (Chapter 2).  In some cases strains were previously constructed and are
noted in the text.  Strr, streptomycin resistance; Nalr, nalidixic acid resitance.
a [op], operon (transcriptional) fusion
b [pr], protein (translational) fusion
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General Discussion

“Regulation of RpoS itself is arguably the most complicated system in bacteria”- M.

Cashel (3).  Individual and combined environmental cues adjust RpoS abundance at every

primary level of regulation with genetic anomalies existing at the translational level (chapter 4;

5, 6).  Despite over a decade of experimentation by nearly a dozen labs, only two well

established stimulus → response pathways have been elucidated:  (i) carbon starvation results in

RpoS induction through inhibition of ClpXP/SprE-mediated proteolysis (9, 16, 21) and (ii) low

temperature induces rpoS translation through intermolecular RNA interactions between the rpoS

leader and DsrA (12).  Herein, we describe a third stimulus → response pathway; SP induction

of RpoS in rich medium.  

Initially, we investigated the unifying hypothesis that ppGpp regulates SP induction of

RpoS in E. coli (8).  This was an attractive model due to three previous results:  (i) conditions

that induce ppGpp also induce RpoS (14), (ii) mutants deficient for ppGpp are dramatically

decreased in RpoS abundance (4) and (iii) artificial overproduction of ppGpp results in RpoS

induction (3).  Our analysis demonstrated that SP induction occurs normally in the absence of

ppGpp, although basal expression was decreased six-fold (8).  In these experiments overall

induction of rpoS, at both the transcriptional and translational levels was 35-fold.  Surprisingly,

regulation at the transcriptional level appeared to play a larger role in SP induction (15-fold)

which prompted further investigations (7, 8).  
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Several other important conclusions were drawn from this work including the intriguing

result that SP induction of rpoS translation does not rely on the antisense element of the leader

region (8).  However, this element is necessary for adjustment of rpoS synthesis by at least two

sRNAs and Hfq (11, 12).  It is likely that the role of the antisense element is to maintain low

levels of synthesis during optimal conditions and regulators open the structure to increase

translation regardless of growth phase.  This interpretation may be applicable to DsrA, Hfq and

ppGpp, all of which influence rpoS translation and require the rpoS leader for action (8).  In the

respective mutant backgrounds, rpoS translation was defective although SP induction was

virtually unchanged (8).  

Next, we focused on transcriptional regulation of rpoS, which at that time, was basically

uncharacterized due to a general focus on translational models of control (6).  A sequence

analysis of the PrpoS region suggested putative binding sites for 17 transcriptional regulators

including Fis(7).  Transcriptional repression by Fis is a coherent model because an inverse

correlation exists between Fis and RpoS abundance (1, 7).  In addition, they are induced by

opposite stimuli, fresh medium (Fis) and spent medium (RpoS; 2, 6).  It is likely that Fis acts

directly as a repressor given the site necessary for regulation in vivo is specifically bound in vitro

(7).  However, Fis pleiotropy in the mutant background could indirectly contribute to regulatory

effects on PrpoS activity. 

If Fis regulates RpoS then what regulates Fis?  The generic answer is dilution into fresh

medium which results in a massive induction making Fis the most abundant nucleoid-associated

protein within the cell (1, 2, 15).  Fis is autoregulatory and increased Fis abundance results in
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transcriptional repression and levels decrease as a function of cell division (2).  Activation of Pfis

transription is tightly coupled to nutritional status including the availability of CTP, the first nt of

the fis trancript (19).  Additionally, Pfis activity is repressed by unfavorable growth conditions via

the stringent response (20).  Thus it is possible that decreased rpoS transcription in a ppGpp

mutant background is due to increased Fis repression.  Further investigations into the regulation

of Fis expression would provide a greater understanding of the interplay of global regulators in

physiological adaptation.

Our investigations regarding SP induction of RpoS at the translational level exposed a

novel form of regulation (Chapter 4).  Genetic dissection of the rpoS leader clearly demonstrates

that the RBS mediates nearly 10-fold induction in synthesis as cells enter SP.  The importance of

these nt in regulation was also shown at the native rpoS locus.  The rpoS RBS is highly

conserved among enteric bacteria and the induction phenomenon occurs in S. enterica as well.

The mechanism of translation induction remains elusive and is not a result of differential

transcript stability, Hfq-dependent sRNAs, and protein regulators that recognize a primary

sequence motif (Chapter 4).  Genetic evidence heavily favors a model in which the structure of

the rpoS RBS signals regulation.  The structural elements of the RBS necessary for SP regulation

are currently unclear, although a direct correlation was made between regulation and a single-

stranded SD sequence in the predicted secondary structure (data not shown).  This theory is

supported by the nature of the SD in the characterized RBS structures of cbiA (single-stranded)

and rpoH (partially double-stranded) (13, 17).  Of these RBSs, only cbiA signals SP induction, a

result that suggests control at this level is a general phenomenon (data not shown).  
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Another shocking result of our translational analysis was that lac/rpoS hybrid RBSs

varied in translational efficiency up to 100-fold (Chapter 4).  This was not a result of transcript

stabilization (data not shown).  The large translational variation in our engineered RBS is also

not due to a variable spacer region, between the SD sequence and the initiation codon, or an

extended RBS.  However, we did show that the five nt SD sequence (AGGAG) is expressed

approximately three-fold higher than AGGA in a similar context consistent with earlier reports

(10, 18).  These results demonstrate that slight nt adjustments in a RBS can dramatically affect

translational efficiency and regulation.

SP regulation of RpoS induction in LB is not regulated by ClpXP-SprE proteolysis (7,

16).  Although, mutants defective in protein turnover, demonstrate a three-fold increase in RpoS

abundance and activity (7).  It seems energetically unfavorable to make excess RpoS protein and

then actively degrade it unless a quick response to an unknown stimulus is necessary.  This may

be the case for increases RpoS in response to carbon starvation.

    

SP induction of RpoS in rich medium- The model

SP induction of RpoS in rich medium depends on regulation of both transcription and translation.

During exponential growth, Fis molecules bind several sites near PrpoS and block transcription

(7).  As cells grow into SP, Fis abundance is low and PrpoS expression increases (1, 7).  At the

translational level, the structure of the rpoS RBS signals SP induction by an uncharacterized
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mechanism (Chapter 4).  Collectively, these regulatory targets account for approximately 95% of

the overall SP induction of RpoS.  
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