99 research outputs found

    Response Features Determining Spike Times

    Get PDF
    Interpreting messages encoded in single neuronal responses requires knowing which features of the responses carry information. That the number of spikes is an important part of the code has long been obvious. In recent years, it has been shown that modulation of the firing rate with about 25 ms precision carries information that is not available from the total number of spikes across the whole response. It has been proposed that patterns of exactly timed (1 ms precision) spikes, such as repeating triplets or quadruplets, might carry information that is not available from knowing about spike count and rate modulation. A model using the spike count distribution, the low pass filtered PSTH (bandwidth below 30 Hz), and, to a small degree, the interspike interval distribution predicts the numbers and types of exactly-timed triplets and quadruplets that are indistinguishable from those found in the data. From this it can be concluded that the coarse (<30 Hz) sequential correlation structure over time gives rise to the exactly timed patterns present in the recorded spike trains. Because the coarse temporal structure predicts the fine temporal structure, the information carried by the fine temporal structure must be completely redundant with that carried by the coarse structure. Thus, the existence of precisely timed spike patterns carrying stimulus-related information does not imply control of spike timing at precise time scales

    Increasing the Power to Detect Causal Associations by Combining Genotypic and Expression Data in Segregating Populations

    Get PDF
    To dissect common human diseases such as obesity and diabetes, a systematic approach is needed to study how genes interact with one another, and with genetic and environmental factors, to determine clinical end points or disease phenotypes. Bayesian networks provide a convenient framework for extracting relationships from noisy data and are frequently applied to large-scale data to derive causal relationships among variables of interest. Given the complexity of molecular networks underlying common human disease traits, and the fact that biological networks can change depending on environmental conditions and genetic factors, large datasets, generally involving multiple perturbations (experiments), are required to reconstruct and reliably extract information from these networks. With limited resources, the balance of coverage of multiple perturbations and multiple subjects in a single perturbation needs to be considered in the experimental design. Increasing the number of experiments, or the number of subjects in an experiment, is an expensive and time-consuming way to improve network reconstruction. Integrating multiple types of data from existing subjects might be more efficient. For example, it has recently been demonstrated that combining genotypic and gene expression data in a segregating population leads to improved network reconstruction, which in turn may lead to better predictions of the effects of experimental perturbations on any given gene. Here we simulate data based on networks reconstructed from biological data collected in a segregating mouse population and quantify the improvement in network reconstruction achieved using genotypic and gene expression data, compared with reconstruction using gene expression data alone. We demonstrate that networks reconstructed using the combined genotypic and gene expression data achieve a level of reconstruction accuracy that exceeds networks reconstructed from expression data alone, and that fewer subjects may be required to achieve this superior reconstruction accuracy. We conclude that this integrative genomics approach to reconstructing networks not only leads to more predictive network models, but also may save time and money by decreasing the amount of data that must be generated under any given condition of interest to construct predictive network models

    Sensitivity to Sulfited Foods among Sulfite-Sensitive Subjects with Asthma

    Get PDF
    Eight individuals with asthma who had been diagnosed as sulfite sensitive on the basis of double-blind capsule-beverage challenges were subjected to challenges with various sulfited foods, including lettuce, shrimp, dried apricots, white grape juice, dehydrated potatoes (as mashed potatoes), and mushrooms. Four of these patients failed to respond to challenges with any of the sulfited foods. The other four patients experienced a decrease in pulmonary function on double-blind challenges with sulfited lettuce. Two of three of these patients reacted to challenges with dried apricots and white grape juice; the fourth patient has not yet been challenged with these products. Only one of these four patients reacted to challenges with dehydrated potatoes and mushrooms, and, in this case, the response to double-blind challenges with dehydrated potatoes was not consistent. None of the sulfite-sensitive subjects with asthma responded to challenges with sulfited shrimp. It is concluded that sulfite-sensitive subjects with asthma will not necessarily react after ingestion of sulfited foods. The likelihood of a reaction is dependent on the nature of the food, the level of residual sulfite, the sensitivity of the patient, and perhaps on the form of residual sulfite and the mechanism of the sulfite-induced reaction

    Assessment of Corticosteroid Therapy and Death or Disability According to Pretreatment Risk of Death or Bronchopulmonary Dysplasia in Extremely Preterm Infants

    Get PDF
    IMPORTANCE: Meta-analyses suggest that corticosteroids may be associated with increased survival without cerebral palsy in infants at high risk of bronchopulmonary dysplasia (BPD) but are associated with adverse neurologic outcomes in low-risk infants. Whether this association exists in contemporary practice is uncertain because most randomized clinical trials administered corticosteroids earlier and at higher doses than currently recommended. OBJECTIVE: To evaluate whether the pretreatment risk of death or grade 2 or 3 BPD at 36 weeks\u27 postmenstrual age modified the association between postnatal corticosteroid therapy and death or disability at 2 years\u27 corrected age in extremely preterm infants. DESIGN, SETTING, AND PARTICIPANTS: This cohort study analyzed data on 482 matched pairs of infants from 45 participating US hospitals in the National Institute of Child Health and Human Development Neonatal Research Network Generic Database (GDB). Infants were included in the cohort if they were born at less than 27 weeks\u27 gestation between April 1, 2011, and March 31, 2017; survived the first 7 postnatal days; and had 2-year death or developmental follow-up data collected between January 2013 and December 2019. Corticosteroid-treated infants were propensity score matched with untreated controls. Data were analyzed from September 1, 2019, to November 30, 2022. EXPOSURE: Systemic corticosteroid therapy to prevent BPD that was initiated between day 8 and day 42 after birth. MAIN OUTCOMES AND MEASURES: The primary outcome was death or moderate to severe neurodevelopmental impairment at 2 years\u27 corrected age. The secondary outcome was death or moderate to severe cerebral palsy at 2 years\u27 corrected age. RESULTS: A total of 482 matched pairs of infants (mean [SD] gestational age, 24.1 [1.1] weeks]; 270 males [56.0%]) were included from 656 corticosteroid-treated infants and 2796 potential controls. Most treated infants (363 [75.3%]) received dexamethasone. The risk of death or disability associated with corticosteroid therapy was inversely associated with the estimated pretreatment probability of death or grade 2 or 3 BPD. The risk difference for death or neurodevelopmental impairment associated with corticosteroids decreased by 2.7% (95% CI, 1.9%-3.5%) for each 10% increase in the pretreatment risk of death or grade 2 or 3 BPD. This risk transitioned from estimated net harm to benefit when the pretreatment risk of death or grade 2 or 3 BPD exceeded 53% (95% CI, 44%-61%). For death or cerebral palsy, the risk difference decreased by 3.6% (95% CI, 2.9%-4.4%) for each 10% increase in the risk of death or grade 2 or 3 BPD and transitioned from estimated net harm to benefit at a pretreatment risk of 40% (95% CI, 33%-46%). CONCLUSIONS AND RELEVANCE: Results of this study suggested that corticosteroids were associated with a reduced risk of death or disability in infants at moderate to high pretreatment risk of death or grade 2 or 3 BPD but with possible harm in infants at lower risk

    Short-Term Memory Trace in Rapidly Adapting Synapses of Inferior Temporal Cortex

    Get PDF
    Visual short-term memory tasks depend upon both the inferior temporal cortex (ITC) and the prefrontal cortex (PFC). Activity in some neurons persists after the first (sample) stimulus is shown. This delay-period activity has been proposed as an important mechanism for working memory. In ITC neurons, intervening (nonmatching) stimuli wipe out the delay-period activity; hence, the role of ITC in memory must depend upon a different mechanism. Here, we look for a possible mechanism by contrasting memory effects in two architectonically different parts of ITC: area TE and the perirhinal cortex. We found that a large proportion (80%) of stimulus-selective neurons in area TE of macaque ITCs exhibit a memory effect during the stimulus interval. During a sequential delayed matching-to-sample task (DMS), the noise in the neuronal response to the test image was correlated with the noise in the neuronal response to the sample image. Neurons in perirhinal cortex did not show this correlation. These results led us to hypothesize that area TE contributes to short-term memory by acting as a matched filter. When the sample image appears, each TE neuron captures a static copy of its inputs by rapidly adjusting its synaptic weights to match the strength of their individual inputs. Input signals from subsequent images are multiplied by those synaptic weights, thereby computing a measure of the correlation between the past and present inputs. The total activity in area TE is sufficient to quantify the similarity between the two images. This matched filter theory provides an explanation of what is remembered, where the trace is stored, and how comparison is done across time, all without requiring delay period activity. Simulations of a matched filter model match the experimental results, suggesting that area TE neurons store a synaptic memory trace during short-term visual memory

    DAF-16/FoxO directly regulates an atypical AMP-activated protein kinase gamma isoform to mediate the effects of insulin/IGF-1 signaling on aging in Caenorhabditis elegans

    Get PDF
    The DAF-16/FoxO transcription factor controls growth, metabolism and aging in Caenorhabditis elegans. The large number of genes that it regulates has been an obstacle to understanding its function. However, recent analysis of transcript and chromatin profiling implies that DAF-16 regulates relatively few genes directly, and that many of these encode other regulatory proteins. We have investigated the regulation by DAF-16 of genes encoding the AMP-activated protein kinase (AMPK), which has ?, ? and ? subunits. C. elegans has 5 genes encoding putative AMP-binding regulatory ? subunits, aakg-1-5. aakg-4 and aakg-5 are closely related, atypical isoforms, with orthologs throughout the Chromadorea class of nematodes. We report that ?75% of total ? subunit mRNA encodes these 2 divergent isoforms, which lack consensus AMP-binding residues, suggesting AMP-independent kinase activity. DAF-16 directly activates expression of aakg-4, reduction of which suppresses longevity in daf-2 insulin/IGF-1 receptor mutants. This implies that an increase in the activity of AMPK containing the AAKG-4 ? subunit caused by direct activation by DAF-16 slows aging in daf-2 mutants. Knock down of aakg-4 expression caused a transient decrease in activation of expression in multiple DAF-16 target genes. This, taken together with previous evidence that AMPK promotes DAF-16 activity, implies the action of these two metabolic regulators in a positive feedback loop that accelerates the induction of DAF-16 target gene expression. The AMPK ? subunit, aakb-1, also proved to be up-regulated by DAF-16, but had no effect on lifespan. These findings reveal key features of the architecture of the gene-regulatory network centered on DAF-16, and raise the possibility that activation of AMP-independent AMPK in nutritionally replete daf-2 mutant adults slows aging in C. elegans. Evidence of activation of AMPK subunits in mammals suggests that such FoxO-AMPK interactions may be evolutionarily conserved
    • …
    corecore