88 research outputs found

    Construction Innovation Center- Fire and Life Safety Analysis

    Get PDF
    In this report you will find the analysis of existing fire protection systems and features that are installed in the Construction Innovation Center at California Polytechnic State University, San Luis Obispo. The Buildings construction was completed in 2008 and is separated into three separate buildings A, B, and C connected by an exterior balcony. This report is separated into two separate analysis Prescriptive and Performance. The Prescriptive analysis reviews the buildings means of egress, fire alarm systems, the suppression systems, and the structural fire protection. The Prescriptive-based analysis of the Construction Innovation Center confirms that the building meets the requirements of NFPA 101, The Life Safety Code, NFPA 13, NFPA 17, NFPA 72, NFPA 92, The International Building Code (IBC), and The California Building Code (CBC). The performance-based analysis investigates two different fire scenarios. The first design is set in the lobby of the first floor of Building A. The second fire design scenario examines the effects that a fire would have on Buildings B and C if it started in Building 187, The Simpson Strong-Tie Materials Demonstration Lab, which is in the courtyard of The Construction Innovation Center. For the performance-based analysis Pyrosim and Pathfinder were used. Pyrosim is a type of fire dynamics simulator that simulates fire conditions inside a building including temperature, tenability, and other features. Pathfinder is used to simulate evacuation times. Both design scenarios yielded positive results of Required Safe Egress time (RSET) being greater than the Available Safe Egress Time (ASET). The Construction Innovation Center meets all code requirements and showed sufficient performance during the fire simulations. I would recommend that the Simpson Strong Tie Demonstrations Lab and The Construction Innovation Center have connected fire alarm systems due to the buildings having about a 20 ft. separation distance. If one building caught on fire it could ignite the face of the other building. The occupants of each building would benefit from being alerted to a fire in the adjacent building

    Extrusion limits of some magnesium alloys in relation to AA6063

    Full text link

    Hidden in Plain Sight: Homeless Students In America's Public Schools

    Get PDF
    Student homelessness is on the rise, with more than 1.3 million homeless students identified during the 2013-14 school year. This is a 7 percent increase from the previous year and more than double the number of homeless students in 2006-07. As high as these numbers seem, they are almost certainly undercounts.Despite increasing numbers, these students - as well as the school liaisons and state coordinators who support them - report that student homelessness remains an invisible and extremely disruptive problem.Students experiencing homelessness struggle to stay in school, to perform well, and to form meaningful connections with peers and adults. Ultimately, they are much more likely to fall off track and eventually drop out of school more often than their non-homeless peers.This study:provides an overview of existing research on homeless students,sheds light on the challenges homeless students face and the supports they say they need to succeed,reports on the challenges adults - local liaisons and state coordinators - face in trying to help homeless students, andrecommends changes in policy and practice at the school, community, state and national level to help homeless students get on a path to adult success.This is a critical and timely topic. The recent reauthorization of the Every Student Succeeds Act (ESSA) provides many new and stronger provisions for homeless students (effective Oct. 1, 2016); requires states, district and schools for the first time to report graduation rates for homeless students (effective beginning with the 2016-17 school year); and affirms the urgency and importance of dealing with homelessness so that all children can succeed

    Metal Hydrides, MOFs, and Carbon Composites as Space Radiation Shielding Mitigators

    Get PDF
    Recently, metal hydrides and MOFs (Metal-Organic Framework/microporous organic polymer composites - for their hydrogen and methane storage capabilities) have been studied with applications in fuel cell technology. We have investigated a dual-use of these materials and carbon composites (CNT-HDPE) to include space radiation shielding mitigation. In this paper we present the results of a detailed study where we have analyzed 64 materials. We used the Band fit spectra for the combined 19-24 October 1989 solar proton events as the input source term radiation environment. These computational analyses were performed with the NASA high energy particle transport/dose code HZETRN. Through this analysis we have identified several of the materials that have excellent radiation shielding properties and the details of this analysis will be discussed further in the paper

    Comparing the Performances of Force Fields in Conformational Searching of Hydrogen-Bond-Donating Catalysts

    Get PDF
    Here, we compare the relative performances of different force fields for conformational searching of hydrogen-bond-donating catalyst-like molecules. We assess the force fields by their predictions of conformer energies, geometries, low-energy, nonredundant conformers, and the maximum numbers of possible conformers. Overall, MM3, MMFFs, and OPLS3e had consistently strong performances and are recommended for conformationally searching molecules structurally similar to those in this study

    Machine learning activation energies of chemical reactions

    Get PDF
    Application of machine learning (ML) to the prediction of reaction activation barriers is a new and exciting field for these algorithms. The works covered here are specifically those in which ML is trained to predict the activation energies of homogeneous chemical reactions, where the activation energy is given by the energy difference between the reactants and transition state of a reaction. Particular attention is paid to works that have applied ML to directly predict reaction activation energies, the limitations that may be found in these studies, and where comparisons of different types of chemical features for ML models have been made. Also explored are models that have been able to obtain high predictive accuracies, but with reduced datasets, using the Gaussian process regression ML model. In these studies, the chemical reactions for which activation barriers are modeled include those involving small organic molecules, aromatic rings, and organometallic catalysts. Also provided are brief explanations of some of the most popular types of ML models used in chemistry, as a beginner's guide for those unfamiliar

    Characterization of a Pressure-Fed LOX/LCH4 Reaction Control System Under Simulated Altitude and Thermal Vacuum Conditions

    Get PDF
    A liquid oxygen, liquid methane (LOX/LCH4) reaction control system (RCS) was tested at NASA Glenn Research Center's Plum Brook Station in the Spacecraft Propulsion Research Facility (B-2) under simulated altitude and thermal vacuum conditions. The RCS is a subsystem of the Integrated Cryogenic Propulsion Test Article (ICPTA) and was initially developed under Project Morpheus. Composed of two 28 lbf-thrust and two 7 lbf-thrust engines, the RCS is fed in parallel with the ICPTA main engine from four propellant tanks. 40 tests consisting of 1,010 individual thruster pulses were performed across 6 different test days. Major test objectives were focused on system dynamics, and included characterization of fluid transients, manifold priming, manifold thermal conditioning, thermodynamic vent system (TVS) performance, and main engine/RCS interaction. Peak surge pressures from valve opening and closing events were examined. It was determined that these events were impacted significantly by vapor cavity formation and collapse. In most cases the valve opening transient was more severe than the valve closing. Under thermal vacuum conditions it was shown that TVS operation is unnecessary to maintain liquid conditions at the thruster inlets. However, under higher heat leak environments the RCS can still be operated in a self-conditioning mode without overboard TVS venting, contingent upon the engines managing a range of potentially severe thermal transients. Lastly, during testing under cold thermal conditions the engines experienced significant ignition problems. Only after warming the thruster bodies with a gaseous nitrogen purge to an intermediate temperature was successful ignition demonstrated

    Design and Test of a Liquid Oxygen / Liquid Methane Thruster with Cold Helium Pressurization Heat Exchanger

    Get PDF
    A liquid oxygen / liquid methane 2,000 lbf thruster was designed and tested in conjuction with a nozzle heat exchanger for cold helium pressurization. Cold helium pressurization systems offer significant spacecraft vehicle dry mass savings since the pressurant tank size can be reduced as the pressurant density is increased. A heat exchanger can be incorporated into the main engine design to provide expansion of the pressurant supply to the propellant tanks. In order to study the systems integration of a cold-helium pressurization system, a 2,000 lbf thruster with a nozzle heat exchanger was designed for integration into the Project Morpheus vehicle at NASA Johnson Space Center. The testing goals were to demonstrate helium loading and initial conditioning to low temperatures, high-pressure/low temperature storage, expansion through the main engine heat exchanger, and propellant tank injection/pressurization. The helium pressurant tank was an existing 19 inch diameter composite-overwrap tank, and the targert conditions were 4500 psi and -250 F, providing a 2:1 density advantage compared to room tempatrue storage. The thruster design uses like-on-like doublets in the injector pattern largely based on Project Morpheus main engine hertiage data, and the combustion chamber was designed for an ablative chamber. The heat exchanger was installed at the ablative nozzle exit plane. Stand-alone engine testing was conducted at NASA Stennis Space Center, including copper heat-sink chambers and highly-instrumented spoolpieces in order to study engine performance, stability, and wall heat flux. A one-dimensional thermal model of the integrated system was completed. System integration into the Project Morpheus vehicle is complete, and systems demonstrations will follow

    Vehicle-Level Oxygen/Methane Propulsion System Hotfire Testing at Thermal Vacuum Conditions

    Get PDF
    A prototype integrated liquid oxygen/liquid methane propulsion system was hot-fire tested at a variety of simulated altitude and thermal conditions in the NASA Glenn Research Center Plum Brook Station In-Space Propulsion Thermal Vacuum Chamber (formerly B2). This test campaign served two purposes: 1) Characterize the performance of the Plum Brook facility in vacuum accumulator mode and 2) Collect the unique data set of an integrated LOX/Methane propulsion system operating in high altitude and thermal vacuum environments (a first). Data from this propulsion system prototype could inform the design of future spacecraft in-space propulsion systems, including landers. The test vehicle for this campaign was the Integrated Cryogenic Propulsion Test Article (ICPTA), which was constructed for this project using assets from the former Morpheus Project rebuilt and outfitted with additional new hardware. The ICPTA utilizes one 2,800 lbf main engine, two 28 lbf and two 7 lbf reaction control engines mounted in two pods, four 48-inch propellant tanks (two each for liquid oxygen and liquid methane), and a cold helium system for propellant tank pressurization. Several hundred sensors on the ICPTA and many more in the test cell collected data to characterize the operation of the vehicle and facility. Multiple notable experiments were performed during this test campaign, many for the first time, including pressure-fed cryogenic reaction control system characterization over a wide range of conditions, coil-on-plug ignition system demonstration at the vehicle level, integrated main engine/RCS operation, and a non-intrusive propellant mass gauging system. The test data includes water-hammer and thermal heat leak data critical to validating models for use in future vehicle design activities. This successful test campaign demonstrated the performance of the updated Plum Brook In-Space Propulsion thermal vacuum chamber and incrementally advanced the state of LOX/Methane propulsion technology through numerous system-level and subsystem experiments
    corecore