Abstract Submittal Form

JANNAF 62nd JPM / 10th MSS / 8th LPS / 7th SPS Joint Subcommittee Meeting Nashville, TN • June 1 – 4, 2015

Abstract Due Date: January 16, 2015

Unclassified Abstract (250 – 300 words; do not include figures or tables)

* A liquid oxygen / liquid methane 2,000 lbf thruster was designed and tested in conjuction with a nozzle heat exchanger for cold helium
pressurization. Cold helium pressurization systems offer significant spacecraft vehicle dry mass savings since the pressurant tank size can be
reduced as the pressurant density is increased. A heat exchanger can be incorporated into the main engine design to provide expansion of the
pressurant supply to the propellant tanks. In order to study the systems integration of a cold-helium pressurization system, a 2,000 lbf thruster
with a nozzle heat exchanger was designed for integration into the Project Morpheus vehicle at NASA Johnson Space Center. The testing goals
were to demonstrate helium loading and initial conditioning to low temperatures, high-pressure/low temperature storage, expansion through the
main engine heat exchanger, and propellant tank injection/pressurization. The helium pressurant tank was an existing 19 inch diameter
composite-overwrap tank, and the targert conditions were 4500 psi and -250 degF, providing a 2:1 density advantage compared to room
tempatrue storage. The thruster design uses like-on-like doublets in the injector pattern largely based on Project Morpheus main engine hertiage
data, and the combustion chamber was designed for an ablative chamber. The heat exchanger was installed at the ablative nozzle exit plane.
Stand-alone engine testing was conducted at NASA Stennis Space Center, including copper heat-sink chambers and highly-instrumented spool-
pieces in order to study engine performance, stability, and wall heat flux. A one-dimensional thermal model of the integrated system was
completed. System integration into the Project Morpheus vehicle is complete, and systems demonstrations will follow.

- If your abstract is anything other than Distribution Statement A, please upload both pages of this completed form to the CPIAC secure website. Upload instructions can be found in the <u>Call for Papers</u> on page 3. Distribution Statement A abstracts may be uploaded or emailed.
- > By submitting an abstract, you agree to both complete a final paper for publication and to attend the meeting to present this information.
- Direct questions to Shelley Cohen, by phone at 410.992.7302 x 215, or email to scohen@cpiac.ihu.edu.