10 research outputs found

    Cloning, Expression, and Purification of Histidine-Tagged Escherichia coli Dihydrodipicolinate Reductase

    Get PDF
    This work was supported in part by funds from an Oklahoma State Regent Grant for Higher Education (021606), P20RR016478 grant from the National Center for Research Resources (NCRR) a component of National Institute of Health (NIH), and a grant from the University of Central Oklahoma office of Research and Grants to L.C.The enzyme dihydrodipicolinate reductase (DHDPR) is a component of the lysine biosynthetic pathway in bacteria and higher plants. DHDPR catalyzes the NAD(P)H dependent reduction of 2,3-dihydrodipicolinate to the cyclic imine L-2,3,4,5,-tetrahydropicolinic acid. The dapB gene that encodes dihydrodipicolinate reductase has previously been cloned, but the expression of the enzyme is low and the purification is time consuming. Therefore the E. coli dapB gene was cloned into the pET16b vector to improve the protein expression and simplify the purification. The dapB gene sequence was utilized to design forward and reverse oligonucleotide primers that were used to PCR the gene from Escherichia coli genomic DNA. The primers were designed with NdeI or BamHI restriction sites on the 5’and 3’ terminus respectively. The PCR product was sequenced to confirm the identity of dapB. The gene was cloned into the expression vector pET16b through NdeI and BamHI restriction endonuclease sites. The resulting plasmid containing dapB was transformed into the bacterial strain BL21 (DE3). The transformed cells were utilized to grow and express the histidine-tagged reductase and the protein was purified using Ni-NTA affinity chromatography. SDS/PAGE gel analysis has shown that the protein was 95% pure and has approximate subunit molecular weight of 28 kDa. The protein purification is completed in one day and 3 liters of culture produced approximately 40–50 mgs of protein, an improvement on the previous protein expression and multistep purification.Yeshttp://www.plosone.org/static/editorial#pee

    An optimized hepatitis C virus E2 glycoprotein core adopts a functional homodimer that efficiently blocks virus entry

    No full text
    The hepatitis C virus (HCV) envelope glycoprotein E2 is the major target of broadly neutralizing antibodies in vivo and is the focus of efforts in the rational design of a universal B cell vaccine against HCV. The E2 glycoprotein exhibits a high degree of amino acid variability which localizes to three discrete regions: hypervariable region 1 (HVR1), hypervariable region 2 (HVR2), and the intergenotypic variable region (igVR). All three variable regions contribute to immune evasion and/or isolate-specific structural variations, both important considerations for vaccine design. A high-resolution structural definition of the intact HCV envelope glycoprotein complex containing E1 and E2 remains to be elucidated, while crystallographic structures of a recombinant E2 ectodomain failed to resolve HVR1, HVR2, and a major neutralization determinant adjacent to HVR1. To obtain further information on E2, we characterized the role of all three variable regions in E2 ectodomain folding and function in the context of a recombinant ectodomain fragment (rE2). We report that removal of the variable regions accelerates binding to the major host cell receptor CD81 and that simultaneous deletion of HVR2 and the igVR is required to maintain wild-type CD81-binding characteristics. The removal of the variable regions also rescued the ability of rE2 to form a functional homodimer. We propose that the rE2 core provides novel insights into the role of the variable motifs in the higher-order assembly of the E2 ectodomain and may have implications for E1E2 structure on the virion surface. IMPORTANCE Hepatitis C virus (HCV) infection affects ∼2% of the population globally, and no vaccine is available. HCV is a highly variable virus, and understanding the presentation of key antigenic sites at the virion surface is important for the design of a universal vaccine. This study investigates the role of three surface-exposed variable regions in E2 glycoprotein folding and function in the context of a recombinant soluble ectodomain. Our data demonstrate the variable motifs modulate binding of the E2 ectodomain to the major host cell receptor CD81 and have an impact on the formation of an E2 homodimer with high-affinity binding to CD81

    Antigen ligation triggers a conformational change within the constant domain of the αβ T cell receptor

    Get PDF
    Ligation of the αβ T cell receptor (TCR) by a specific peptide-loaded major histocompatibility complex (pMHC) molecule initiates T cell signaling via the CD3 complex. However, the initial events that link antigen recognition to T cell signal transduction remain unclear. Here we show, via fluorescence-based experiments and structural analyses, that MHC-restricted antigen recognition by the αβ TCR results in a specific conformational change confined to the A-B loop within the α chain of the constant domain (Cα). The apparent affinity constant of this A-B loop movement mirrored that of αβ TCR-pMHC ligation and was observed in two αβ TCRs with distinct pMHC specificities. The Ag-induced A-B loop conformational change could be inhibited by fixing the juxtapositioning of the constant domains and was shown to be reversible upon pMHC disassociation. Notably, the loop movement within the Cα domain, although specific for an agonist pMHC ligand, was not observed with a pMHC antagonist. Moreover, mutagenesis of residues within the A-B loop impaired T cell signaling in an in vitro system of antigen-specific TCR stimulation. Collectively, our findings provide a basis for the earliest molecular events that underlie Ag-induced T cell triggering

    The structural basis for autonomous dimerization of the pre-T-cell antigen receptor

    No full text
    The pre-T-cell antigen receptor (pre-TCR), expressed by immature thymocytes, has a pivotal role in early T-cell development, including TCR beta-selection, survival and proliferation of CD4(-)CD8(-) double-negative thymocytes, and subsequent ab T-cell lineage differentiation(1-3). Whereas alpha beta TCR ligation by the peptide-loaded major histocompatibility complex initiates T-cell signalling(4), preTCR-induced signalling occurs by means of a ligand-independent dimerization event(5). The pre-TCR comprises an invariant a-chain (pre-T alpha) that pairs with any TCR beta-chain (TCR beta) following successful TCR beta-gene rearrangement(6). Here we provide the basis of pre-T alpha-TCR beta assembly and pre-TCR dimerization. The pre-T alpha chain comprised a single immunoglobulin-like domain that is structurally distinct from the constant (C) domain of the TCR alpha-chain(7); nevertheless, the mode of association between pre-T alpha and TCRb mirrored that mediated by the C alpha-C beta domains of the abTCR. The pre-TCR had a propensity to dimerize in solution, and the molecular envelope of the pre-TCR dimer correlated well with the observed head-to-tail pre-TCR dimer. This mode of pre-TCR dimerization enabled the pre-T alpha domain to interact with the variable (V) beta domain through residues that are highly conserved across the V beta and joining (J) beta gene families, thus mimicking the interactions at the core of the alpha beta TCR's V alpha-V beta interface. Disruption of this pre-T alpha-V beta dimer interface abrogated pre-TCR dimerization in solution and impaired pre-TCR expression on the cell surface. Accordingly, we provide a mechanism of pre-TCR self-association that allows the pre-T alpha chain to simultaneously 'sample' the correct folding of both the V and C domains of any TCR beta-chain, regardless of its ultimate specificity, which represents a critical checkpoint in T-cell development. This unusual dual-chaperone-like sensing function of pre-T alpha represents a unique mechanism in nature whereby developmental quality control regulates the expression and signalling of an integral membrane receptor complex

    Quellen- und Literaturverze

    No full text
    corecore