161 research outputs found

    Forge 2.0 Clean Burning Cook Stove

    Get PDF
    Team Forge 2.0 is a team of mechanical engineers that has designed, modified, and manufactured a cook stove that creates a clean burn in order to help relieve respiratory disease and harmful environmental impacts resulting from the combustion of biomass in developing nations. The stove is developed specifically for developing communities in Nicaragua that still use traditional cooking methods which contribute to premature deaths due to respiratory illness. The designed product is a cylindrical cooking device that has a unique air flow system which optimizes the gasification process. Gasification is the process in which gas released from the primary combustion of biomass is reignited, creating a more complete combustion and thus reducing harmful emissions compared to a traditional wood fire. From testing with a previous design team’s prototype, observations were made which led to the implementation of an air flow system which could be regulated manually. The air flow regulator is a mechanical attachment that allows users to adjust the air flow in the stove to prolong the gasification process; this modification helps the stove maintain gasification throughout usage, and resulted in an 8% reduction of particulate matter in the stove’s exhaust compared to the most recent design

    Opioid and Non-Opioid Prescribing Rates for Ankle Fractures in Emergency Departments across the United States between 2006 and 2015

    Get PDF
    This presentation describes the percentage of patients prescribed a controlled and non-controlled medication in an United States Emergency Department for a diagnosed ankle fracture

    A cluster-randomized crossover trial of organic diet impact on biomarkers of exposure to pesticides and biomarkers of oxidative stress/inflammation in primary school children

    Get PDF
    Despite suggestive observational epidemiology and laboratory studies, there is limited experimental evidence regarding the effect of organic diet on human health. A cluster-randomized 40-day-organic (vs. 40-day-conventional) crossover trial was conducted among children (11–12 years old) from six schools in Cyprus. One restaurant provided all organic meals, and adherence to the organic diet intervention was measured by parent-provided diet questionnaire/diary data. Biomarkers of pyrethroid and neonicotinoid pesticide exposures were measured using tandem mass spectrometry, and oxidative stress/inflammation (OSI) biomarkers using immunoassays or spectrophotometry. Associations were assessed using mixed-effect regression models including interactions of treatment with time. Seventy-two percent of neonicotinoid biomarkers were non-detectable and modeled as binary (whether detectable). In post-hoc analysis, we considered the outcome of age-and-sex-standardized BMI. Multiple comparisons were handled using Benjamini-Hochberg correction for 58 regression parameters. Outcome data were available for 149 children. Children had lower pesticide exposures during the organic period (pyrethroid geometric mean ratio, GMR = 0.297; [95% confidence interval (95% CI): 0.237, 0.373], Q-value < 0.05); odds for detection of neonicotinoids (OR = 0.651; [95% CI: 0.463, 0.917), Q-value < 0.05); and decreased OSI biomarker 8-OHdG (GMR = 0.888; [95% CI: 0.808, 0.976], Q-value < 0.05). An initial increase was followed by a countervailing decrease over time in the organic period for OSI biomarkers 8-iso-PGF2a and MDA. BMI z-scores were lower at the end of the organic period (ÎČ = -0.131; [95% CI: 0.179, -0.920], Q-value < 0.05). Energy intake during the conventional period was reported to be higher than the recommended reference levels. The organic diet intervention reduced children’s exposure to pyrethroid and neonicotinoid pesticides and, over time lowered biomarkers of oxidative stress/inflammation (8-iso-PGF2a, 8-OHdG and MDA). The several-week organic diet intervention also reduced children’s age- and-sex-standardized BMI z-scores, but causal inferences regarding organic diet’s physiological benefits are limited by the confounding of the organic diet intervention with caloric intake reduction and possible lifestyle changes during the trial

    Association of Cardiometabolic Genes with Arsenic Metabolism Biomarkers in American Indian Communities: The Strong Heart Family Study (SHFS)

    Get PDF
    Background: Metabolism of inorganic arsenic (iAs) is subject to inter-individual variability, which is explained partly by genetic determinants. Objectives: We investigated the association of genetic variants with arsenic species and principal components of arsenic species in the Strong Heart Family Study (SHFS). Methods: We examined variants previously associated with cardiometabolic traits (~ 200,000 from Illumina Cardio MetaboChip) or arsenic metabolism and toxicity (670) among 2,428 American Indian participants in the SHFS. Urine arsenic species were measured by high performance liquid chromatography–inductively coupled plasma mass spectrometry (HPLC-ICP-MS), and percent arsenic species [iAs, monomethylarsonate (MMA), and dimethylarsinate (DMA), divided by their sum × 100] were logit transformed. We created two orthogonal principal components that summarized iAs, MMA, and DMA and were also phenotypes for genetic analyses. Linear regression was performed for each phenotype, dependent on allele dosage of the variant. Models accounted for familial relatedness and were adjusted for age, sex, total arsenic levels, and population stratification. Single nucleotide polymorphism (SNP) associations were stratified by study site and were meta-analyzed. Bonferroni correction was used to account for multiple testing. Results: Variants at 10q24 were statistically significant for all percent arsenic species and principal components of arsenic species. The index SNP for iAs%, MMA%, and DMA% (rs12768205) and for the principal components (rs3740394, rs3740393) were located near AS3MT, whose gene product catalyzes methylation of iAs to MMA and DMA. Among the candidate arsenic variant associations, functional SNPs in AS3MT and 10q24 were most significant (p \u3c 9.33 × 10–5). Conclusions: This hypothesis-driven association study supports the role of common variants in arsenic metabolism, particularly AS3MT and 10q24

    Harvest strategy evaluation to optimise the sustainability and value of the Queensland scallop fishery. Queensland scallop fishery - FRDC Project No 2006/024 Final Report

    Get PDF
    Objective 1. Measure spatial and temporal trawl frequency of scallop grounds using VMS data. This will provide a relative measure of how often individual undersized scallops are caught and put through a tumbler 2. Estimate discard mortality and growth rates for saucer scallops using cage experiments. 3. Evaluate the current management measures, in particular the seasonal closure, rotational closure and seasonally varying minimum legal sizes using stock assessment and management modeling models. Recommend optimal range of management measures to ensure long-term viability and value of the Scallop fishery based on a formal management strategy evaluation. Outcomes acheived to date: 1. Improved understanding of the survival rates of discarded sub-legal scallops; 2. Preliminary von Bertalanffy growth parameters using data from tagged-and-released scallops; 3. Changing trends in vessels and fishing gear used in the Queensland scallop fishery and their effect on scallop catch rates over time using standardised catch rates quantified; 4. Increases in fishing power of vessels operating in the Queensland scallop fishery quantified; 5. Trawl intensity mapped and quantified for all Scallop Replenishment Areas; 6. Harvest Strategy Evaluations completed

    Potentially Heterogeneous Cross-Sectional Associations of Seafood Consumption with Diabetes and Glycemia in Urban South Asia.

    Get PDF
    Aims: In this study, we aimed to estimate cross-sectional associations of fish or shellfish consumption with diabetes and glycemia in three South Asian mega-cities. Methods: We analyzed baseline data from 2010-2011 of a cohort (n = 16,287) representing the population ≄20 years old that was neither pregnant nor on bedrest from Karachi (unweighted n = 4017), Delhi (unweighted n = 5364), and Chennai (unweighted n = 6906). Diabetes was defined as self-reported physician-diagnosed diabetes, fasting plasma glucose ≄126 mg/dL (7.0 mmol/L), or glycated hemoglobin A1c (HbA1c) ≄6.5% (48 mmol/mol). We estimated adjusted and unadjusted odds ratios for diabetes using survey estimation logistic regression for each city, and differences in glucose and HbA1c using survey estimation linear regression for each city. Adjusted models controlled for age, gender, body mass index, waist-height ratio, sedentary lifestyle, educational attainment, tobacco use, an unhealthy diet index score, income, self-reported physician diagnosis of high blood pressure, and self-reported physician diagnosis of high cholesterol. Results: The prevalence of diabetes was 26.7% (95% confidence interval: 24.8, 28.6) in Chennai, 36.7% (32.9, 40.5) in Delhi, and 24.3% (22.0, 26.6) in Karachi. Fish and shellfish were consumed more frequently in Chennai than in the other two cities. In Chennai, the adjusted odds ratio for diabetes, comparing more than weekly vs. less than weekly fish consumption, was 0.81 (0.61, 1.08); in Delhi, it was 1.18 (0.87, 1.58), and, in Karachi, it was 1.30 (0.94, 1.80). In Chennai, the adjusted odds ratio of prevalent diabetes among persons consuming shellfish more than weekly versus less than weekly was 1.08 (95% CI: 0.90, 1.30); in Delhi, it was 1.35 (0.90, 2.01), and, in Karachi, it was 1.68 (0.98, 2.86). Conclusions: Both the direction and the magnitude of association between seafood consumption and glycemia may vary by city. Further investigation into specific locally consumed seafoods and their prospective associations with incident diabetes and related pathophysiology are warranted

    The Southeast Alaska Tribal Ocean Research (SEATOR) Partnership: Addressing Data Gaps in Harmful Algal Bloom Monitoring and Shellfish Safety in Southeast Alaska

    Get PDF
    Many communities in Southeast Alaska harvest shellfish such as mussels and clams as an important part of a subsistence or traditional diet. Harmful algal blooms (HABs) of phytoplankton such as Alexandrium spp. produce toxins that can accumulate in shellfish tissues to concentrations that can pose a hazard for human health. Since 2013, several tribal governments and communities have pooled resources to form the Southeast Alaska Tribal Ocean Research (SEATOR) network, with the goal of minimizing risks to seafood harvest and enhancing food security. SEATOR monitors toxin concentrations in shellfish and collects and consolidates data on environmental variables that may be important predictors of toxin levels such as sea surface temperature and salinity. Data from SEATOR are publicly available and are encouraged to be used for the development and testing of predictive algorithms that could improve seafood risk assessment in Southeast Alaska. To date, more than 1700 shellfish samples have been analyzed for paralytic shellfish toxins (PSTs) in more than 20 locations, with potentially lethal concentrations observed in blue mussels (Mytilus trossulus) and butter clams (Saxidomus gigantea). Concentrations of PSTs exhibit seasonality in some species, and observations of Alexandrium are correlated to sea surface temperature and salinity; however, concentrations above the threshold of concern have been found in all months, and substantial variation in concentrations of PSTs remain unexplained.Funding: The views expressed in this paper are those of the authors and do not reflect the views of the National Oceanic and Atmospheric Administration. Funding for this work was provided by the Saltonstall-Kennedy Grant Program (Award NA17NMF4270238). Gribble’s e ort was supported by grants from the National Institute of Environmental Health Sciences (R01ES029165 and P30ES019776).Ye

    Regulating the expression of gene drives is key to increasing their invasive potential and the mitigation of resistance

    Get PDF
    Homing-based gene drives use a germline source of nuclease to copy themselves at specific target sites in a genome and bias their inheritance. Such gene drives can be designed to spread and deliberately suppress populations of malaria mosquitoes by impairing female fertility. However, strong unintended fitness costs of the drive and a propensity to generate resistant mutations can limit a gene drive’s potential to spread. Alternative germline regulatory sequences in the drive element confer improved fecundity of carrier individuals and reduced propensity for target site resistance. This is explained by reduced rates of end-joining repair of DNA breaks from parentally deposited nuclease in the embryo, which can produce heritable mutations that reduce gene drive penetrance. We tracked the generation and selection of resistant mutations over the course of a gene drive invasion of a population. Improved gene drives show faster invasion dynamics, increased suppressive effect and later onset of target site resistance. Our results show that regulation of nuclease expression is as important as the choice of target site when developing a robust homing-based gene drive for population suppression

    Association of Cardiometabolic Genes with Arsenic Metabolism Biomarkers in American Indian Communities: The Strong Heart Family Study (SHFS)

    Get PDF
    BACKGROUND: Metabolism of inorganic arsenic (iAs) is subject to inter-individual variability, which is explained partly by genetic determinants. OBJECTIVES: We investigated the association of genetic variants with arsenic species and principal components of arsenic species in the Strong Heart Family Study (SHFS). METHODS: We examined variants previously associated with cardiometabolic traits (~ 200,000 from Illumina Cardio MetaboChip) or arsenic metabolism and toxicity (670) among 2,428 American Indian participants in the SHFS. Urine arsenic species were measured by high performance liquid chromatography-inductively coupled plasma mass spectrometry (HPLC-ICP-MS), and percent arsenic species [iAs, monomethylarsonate (MMA), and dimethylarsinate (DMA), divided by their sum × 100] were logit transformed. We created two orthogonal principal components that summarized iAs, MMA, and DMA and were also phenotypes for genetic analyses. Linear regression was performed for each phenotype, dependent on allele dosage of the variant. Models accounted for familial relatedness and were adjusted for age, sex, total arsenic levels, and population stratification. Single nucleotide polymorphism (SNP) associations were stratified by study site and were meta-analyzed. Bonferroni correction was used to account for multiple testing. RESULTS: Variants at 10q24 were statistically significant for all percent arsenic species and principal components of arsenic species. The index SNP for iAs%, MMA%, and DMA% (rs12768205) and for the principal components (rs3740394, rs3740393) were located near AS3MT, whose gene product catalyzes methylation of iAs to MMA and DMA. Among the candidate arsenic variant associations, functional SNPs in AS3MT and 10q24 were most significant (p < 9.33 × 10-5). CONCLUSIONS: This hypothesis-driven association study supports the role of common variants in arsenic metabolism, particularly AS3MT and 10q24. Citation: Balakrishnan P, Vaidya D, Franceschini N, Voruganti VS, Gribble MO, Haack K, Laston S, Umans JG, Francesconi KA, Goessler W, North KE, Lee E, Yracheta J, Best LG, MacCluer JW, Kent J Jr., Cole SA, Navas-Acien A. 2017. Association of cardiometabolic genes with arsenic metabolism biomarkers in American Indian communities: the Strong Heart Family Study (SHFS). Environ Health Perspect 125:15-22; http://dx.doi.org/10.1289/EHP251
    • 

    corecore