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36 Abstract: There is considerable interest in GIPR agonism to enhance the insulinotropic and 
37 extra-pancreatic effects of GIP, thereby improving glycaemic and weight control in type 2 
38 diabetes (T2D) and obesity. Recent genetic epidemiological evidence has implicated higher 
39 GIPR-mediated GIP levels in raising coronary artery disease (CAD) risk, a potential safety 
40 concern for GIPR agonism. We therefore aimed to quantitatively assess whether the association 
41 between higher GIPR-mediated fasting GIP levels and CAD risk is mediated via GIPR or is 
42 instead the result of linkage disequilibrium (LD) confounding between variants at the GIPR 
43 locus. Using Bayesian multi-trait colocalisation, we identified a GIPR missense variant 
44 rs1800437 (G allele; E354) as the putatively causal variant shared between fasting GIP levels, 
45 glycaemic traits and adiposity-related traits (posterior probability for colocalisation, 
46 PPcoloc>0.97; PP explained by the candidate variant; PPexplained=1) that was independent from a 
47 cluster of CAD and lipid traits driven by a known missense variant in APOE (rs7412; distance 
48 to E354 ~770Kb; R2 with E354 = 0.004; PPcoloc>0.99; PPexplained=1). Further, conditioning the 
49 association between E354 and CAD on the residual LD with rs7412, we observed slight 
50 attenuation in association, but it remained significant (OR per copy of E354 after adjustment 
51 1.03; 95% CI, 1.02, 1.04; P=0.003). Instead, E354’s association with CAD was completely 
52 attenuated when conditioning on an additional established CAD signal, rs1964272, (R2 with 
53 E354=0.27), an intronic variant in SNRPD2 (OR for E354 after adjustment for rs1964272: 1.01; 
54 95% CI, 0.99, 1.03; P=0.06). We demonstrate that associations with GIP, anthropometric and 
55 glycaemic traits are driven by distinct genetic signals from those driving CAD and lipid traits 
56 in the GIPR region, and higher E354-mediated fasting GIP levels are not associated with CAD 
57 risk. These findings provide evidence that the inclusion of GIPR agonism in dual GIPR/GLP-
58 1R agonists could potentiate the protective effect of GLP-1 agonists on diabetes without undue 
59 CAD risk, an aspect which has yet to be assessed in clinical trials.

60
61



62 The incretin hormones glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like 

63 peptide-1 (GLP-1) are well known for their insulinotropic activity(1,2), which is diminished in 

64 type 2 diabetes (T2D)(3–6). This has prompted significant therapeutic interest in the agonism 

65 of their respective receptors, GIPR and GLP1R, to enhance their insulinotropic and extra-

66 pancreatic effects(7,8). Moreover, preclinical and clinical data demonstrate that dual agonism 

67 of the GIPR and GLP1R delivers superior glycaemic and weight control efficacy compared to 

68 selective GLP1R agonism(9–12). Clinical proof for the superiority of tirzepatide, a dual 

69 GIPR/GLP1R agonist, versus GLP1R agonism was established in a 6-month dose range finding 

70 Phase 2b trial in subjects with type 2 diabetes(11). Post hoc analysis reported a beneficial effect 

71 on cardiovascular risk biomarkers compared to the blinded GLP1R agonist included in the 

72 trial(13,14).

73

74 There exists little direct preclinical experimental evidence for GIPR agonism contributing to 

75 cardiovascular disease (CVD) risk (15,16). GIP exhibits anti-atherogenic effects on vascular 

76 endothelial cells(17–20) with the exception that it has been reported to stimulate expression of 

77 osteopontin in the vasculature in an endothelin-1 dependent manner(21). Additionally, GIP 

78 exerts anti-inflammatory effects on monocytes/macrophages(17,22). These in vitro findings 

79 are reflected by cardioprotective GIP pharmacology in mouse models of atherosclerosis 

80 irrespective of their diabetic condition(17,22,23). Further, GIP infusion or overexpression is 

81 protective in mouse models of restenosis and cardiac remodelling(17,24). Whilst germline or 

82 cardiomyocyte-selective knock-out of GIPR protected against ischemic injury, GIP itself was 

83 not deleterious(25). Further, cardiac selective knock-out of the GIPR was not protective in 

84 experimental models of heart failure(25). In contrast with these preclinical experimental 

85 findings, recent evidence suggests that fasting GIP levels are associated with increased carotid 

86 intimal thickening(26). In addition, evidence from a recent meta-analysis(27) of two large 



87 population-based cohort studies suggests that higher fasting but not post-challenge GIP levels 

88 were associated with increased risk of CVD mortality (HR, 1.30; 95% CI, 1.11, 1.52; P=0.001). 

89 GLP-1 was not associated with CVD mortality, consistent with clinical trial data(28–31) and 

90 genetic evidence(32) highlighting the beneficial effects of GLP-1R agonism.

91

92 Genetic evidence from two-sample Mendelian randomisation (2SMR) has reinforced 

93 suggestions that higher GIP levels raise CVD risk(27). A missense variant in GIPR, rs1800437 

94 (E354Q), encoding a substitution of glutamic acid for glutamine at position 354 of the GIPR 

95 protein, was used as an instrumental variable for fasting GIP levels(27). The 354Q allele has 

96 been reported to reduce GIPR signalling by increasing receptor desensitisation and down-

97 regulation(33). This variant has previously been associated with higher 2-hour glucose(34), 

98 BMI(35) and fasting and 2-hour GIP levels(36). In line with a predicted causal direction from 

99 fasting GIP levels to coronary artery disease (CAD) risk, estimates in the reverse direction 

100 showed no significant effect of CAD on fasting GIP levels(27). These estimates should be 

101 interpreted with caution, however, as (1) they represent the association of a single variant with 

102 CAD risk and do not model the effects of other variants in the region which may dampen or 

103 modulate this effect, and (2) they do not take into account that the association between E354 

104 and CAD may be entirely synthetic due to linkage disequilibrium (LD) between this variant 

105 and the true CAD causal variant.

106

107 Considering the pharmacological interest in modulating this pathway as a potential T2D 

108 therapeutic, increases in CVD risk would represent a major concern regarding the safety and 

109 continued development of these therapies. We aimed to quantitatively assess whether the 

110 association between higher GIPR-mediated fasting GIP levels and CAD risk is mediated via 

111 GIPR or the result of LD between variants in GIPR and other variants in the region. Using 



112 2SMR, we aimed to quantify the association of higher fasting GIP levels with CAD and other 

113 metabolically relevant traits, including ~6000 ‘omics biomarkers, using E354 as an 

114 instrumental variable. Next, using Bayesian colocalisation, we aimed to partition the traits 

115 associated with E354 into distinct clusters driven by shared independent variants. Finally, using 

116 conditional analysis we aimed to assess whether any of these associations are confounded by 

117 LD between E354 and other variants in the GIPR region.



119 Materials and Methods

120 Study design

121 Three sets of genetic analyses were used to investigate the relationship between higher GIPR-

122 mediated fasting GIP levels and CVD risk. Firstly, using univariate 2SMR, we explored the 

123 association of higher fasting GIP levels with CAD and 23 different cardiometabolic diseases, 

124 along with anthropometric, glycaemic, lipid traits and ~6,000 ‘omics biomarkers from both in-

125 house and publicly available data, using E354 as a proxy (Table S1). Next, Bayesian multi-

126 trait colocalisation was used to partition the traits associated with E354 into distinct clusters 

127 driven by shared causal variants. Finally, conditional analyses were used to assess whether any 

128 of the associations with E354 are confounded by LD between E354 and other variants in the 

129 GIPR region, implying that their associations are not mediated via GIPR but other genes in the 

130 region. 

131

132 Study participants

133 EPIC-Norfolk(37) (Table S2) is a population-based prospective cohort of individuals aged 

134 between 40-79 years and living in Norfolk (a county of the United Kingdom) at the time of 

135 recruitment from primary-care outpatient clinics in the city of Norwich and surrounding areas. 

136 EPIC-Norfolk(37) consists of two sub-cohorts, a T2D case-cohort and a quasi-random 

137 selection of participants from the larger EPIC(38,39) study. The study was approved by the 

138 Norfolk Research Ethics Committee (ref. 05/Q0101/191) and all participants gave their written 

139 consent before entering the study.

140 Fenland(40) (Table S2) is a population-based cohort study of individuals without diabetes who 

141 were born between the years of 1950 and 1975 and recruited through population-based general 

142 practice registers in Cambridge, Ely and Wisbech (Cambridgeshire county, United Kingdom). 



143 Ethical approval for the study was given by the Cambridge Local Ethics committee (ref. 

144 04/Q0108/19) and all participants gave their written consent prior to entering the study.

145 UK Biobank(41) (Table S2) is a population-based cohort study of individuals recruited from 

146 22 rural and urban recruitment centres in the United Kingdom. European ancestry participants 

147 with available genome-wide genotyping and phenotypic data were included in this study. 

148 Ethical approval for the UK Biobank study was given by the North West - Haydock Research 

149 Ethics Committee (16/NW/0274). This research was conducted using application 44448. 

150 Participants gave their electronic consent to use their anonymised data and samples for health-

151 related research, to be re-contacted for further sub-studies, and for access to their health-related 

152 records.

153

154 Genotyping and imputation

155 Genome-wide genotyping in the Fenland cohort was performed in 3 sub-cohorts using either 

156 the Affymetrix genome-wide Human variant Array 5.0, the Affymetrix UK Biobank Axiom 

157 Array or the Illumina CoreExome-24 v1 chip, with imputation to the Haplotype reference 

158 consortium v1.1(42), the 1000 genomes project(43) and the UK10K(44) reference panels. 

159 Samples from EPIC-Norfolk and UK Biobank were genotyped using the Affymetrix UK 

160 Biobank Axiom Array and imputed to the same reference panels.

161

162 Profiling of the plasma proteome

163 Fasted EDTA plasma samples from 12,084 participants from the Fenland(40) study were 

164 subjected to proteomic profiling by SomaLogic Inc. (Boulder, US) using an aptamer-based 

165 technology (SOMAscan v4). The relative abundances of 4,775 human proteins were measured 

166 using 4,979 SOMAmers(45). To account for within run hybridisation variability, control 

167 probes were used to generate a scaling factor for each sample. Differences in total signal 



168 between samples as a result of variation in overall protein concentration or technical variability 

169 such as reagent concentration, pipetting or assay timing, were accounted for using the ratio 

170 between each SOMAmer's measured value and a reference value. The median of these ratios 

171 was computed for each dilution set (40%, 1% and 0.005%) and applied to each dilution set. 

172 Samples were removed if they failed SomaLogic QC measures or did not meet the acceptance 

173 criteria of between 0.25-4 for all scaling factors. A total of 10,078 samples had available 

174 genotype data and were used in this study. Aptamer target annotations and mapping to UniProt 

175 accession numbers as well as gene identifiers were provided by SomaLogic. 

176

177 Plasma metabolomic profiling

178 Within EPIC-Norfolk (37) (described previously), the levels of up to 1,504 metabolites were 

179 measured in three batches using the Metabolon DiscoveryHD4 platform(46) (Metabolon, Inc., 

180 Durham, USA), in citrate plasma samples collected at baseline. Measurements were made in 

181 approximately 12,000 samples, in two sets of approximately 6000 quasi-randomly selected 

182 samples, which were preceded by measurements in an incident T2D case-cohort (N= 1503; 857 

183 in the sub-cohort).

184

185 Briefly, raw data were extracted, peaks were identified and assessed for quality by Metabolon. 

186 Metabolite identification was done by comparing measures to a curated library containing the 

187 retention time, mass to charge ratio and chromatographic data of known metabolites. Each 

188 metabolite was then quantified using an area-under-the-curve method and the data were 

189 normalised to correct for instrument tuning variations across run-days. Data normalisation for 

190 each run-day set the median value for each metabolite to 1, normalising each measurement 

191 proportionately. Metabolite annotations and pathway classifications are as reported by 

192 Metabolon, Inc.



193

194 Statistical analysis

195 GWAS of plasma proteins and pairwise colocalisation of GIP levels with cardiometabolic traits

196 GWAS was performed as described in Table S3. Two SOMAmers targeted circulating GIP, 

197 namely 16292-288 and 5755-29. SOMAmer 16292-288 was selected against amino acids 1-93 

198 of the precursor protein (Uniprot ID: P09681), whereas, 5755-29 targeted amino acids 22-153. 

199 SOMAmers are relative measures of GIP abundance, therefore, in order to ascertain whether 

200 the underlying genetics at GIPR were comparable to previous results(36), we performed 

201 pairwise genetic colocalisation analyses between GIP measures and cardiometabolic traits.

202

203 T2D, CHD, BMI, 2-hour glucose adjusted for BMI and LDL were included as cardiometabolic 

204 traits of interest (Table S1). Summary statistics from a GWAS of 2-hr glucose adjBMI in 

205 Fenland (Table S3) were preferred to those from previous efforts(34), due to denser variant 

206 coverage. Using GWAS summary statistics for each trait, the 1Mb regions either side of E354 

207 (Chr19:45181392-47181392) were extracted. Insertions and deletions as well as any variants 

208 with a standard error of 0 were removed. Effect estimates were aligned to the GIP-raising 

209 alleles. Pairwise colocalisation was conducted using the COLOC(47) R package.  Priors, p1 

210 and p2, the prior probabilities that a variant is associated with either trait were set to 1x10-4 and 

211 p12, the probability that a single variant is associated with both traits, was set to 1x10-5. T2D 

212 and CHD were treated as case-control traits and all other traits as quantitative. Posterior 

213 probabilities (PPcoloc) were considered significant if they met the following criteria: (H4 + H3 

214 ≥ 0.9 & H4/H3 ≥ 3). 

215

216 GWAS of plasma metabolites



217 GWAS was performed in 2 sets, for all metabolites present in at least 100 individuals in both 

218 sets. The first set consisted of up to 5,841 individuals from both the sub-cohort of the T2D case 

219 cohort and the first batch of quasi-randomly selected samples. The second set consisted of up 

220 to 5,698 individuals from the second batch of quasi-randomly selected samples. GWAS was 

221 performed as described in Table S3. 

222

223 Association between E354, cardiometabolic and molecular traits

224 This work leveraged regional GWAS summary statistics from in-house studies and data from 

225 published studies in the 1Mb regions either side of E354 (Chr19:45181392-47181392). Details 

226 on all included phenotypes can be found in Table S1. GWAS for phenotypes derived in-house 

227 were performed as described in Table S3. Only self-reported, white European participants were 

228 included for all outcomes except for plasma metabolite measures in EPIC-Norfolk(37), where 

229 all participants were included. However, participants in EPIC-Norfolk(37) overwhelmingly 

230 self-reported as white European.

231

232 We performed univariate 2SMR using the Wald ratio method(48) to estimate the potential 

233 causal effect of fasting GIP levels on various traits (Table S1). Genetically predicted fasting 

234 GIP levels were used as the exposure with E354 as the instrumental variable (HUGO gene: 

235 GIPR; NCBI transcript NM_000164.4 c.1060G>C; protein change, E354Q; E345 variant is 

236 encoded by the G allele). All summary statistics were aligned to the fasting GIP raising allele 

237 (G) of E354. Bonferroni corrected significance thresholds were used to ascertain statistical 

238 significance of E354 across all outcomes. 

239

240 Partial correlations between X-12283 and known metabolites



241 To estimate the metabolite class and putative functional pathway of X-12283, we estimated 

242 partial correlations between X-12283 levels and the levels of other metabolites measured in 

243 11,966 participants from EPIC-Norfolk. 

244

245 First, missing metabolite measures were imputed within each measurement set, using 

246 multivariate imputation by chained equations (MICE)(49) with the R package “mice” v3.6.0. 

247 To ensure accurate imputation, we only considered the 883 metabolites with less than 50% 

248 missingness within both measurement sets. Imputation was repeated a total of 20 times, 

249 generating 20 sets of fully imputed results. Following imputation, measures were standardised 

250 (mean = 0, SD =1). For each imputation, partial correlations between metabolite pairs were 

251 calculated using the R package “GeneNet” v1.2.14. Partial correlation estimates were 

252 transformed using Fisher’s Z-transformation and the R package “psych” v1.9.12.31, and then 

253 pooled across the 20 imputations for each measurement set, using Rubin’s rules(50). Estimates 

254 for the two measurement sets were then meta-analysed, using a fixed effect, inverse variance 

255 weighted method in the R package “meta” v4.12-0, and finally back transformed to correlation 

256 estimates. P-values were calculated using the Fisher’s transformed partial correlations.

257

258 Partial correlation estimates with absolute values of more than 0.1 were then used to draw a 

259 gaussian graphical model (GGM) in Cytoscape v3.2.1. Partial correlations were considered 

260 significant at a Bonferroni significance threshold of P≤ 1.28x10-7, accounting for the 389,403 

261 metabolite pairs tested. 

262

263 Multi-trait colocalisation across cardiometabolic traits

264 Multi-trait colocalisation (HyPrColoc)(51) was used at the GIPR locus to 1) identify 

265 cardiometabolic traits that share a common causal variant, and 2) partition clusters of 



266 cardiometabolic traits driven by distinct causal variants. HyPrColoc was run using the default 

267 variant-specific prior configuration, priors 1 and 2 were set at 1x10-4 and 0.02 respectively, and 

268 regional and alignment thresholds of 0.5 were used(51). 

269

270 Variants were extracted and excluded from GWAS summary statistics for 26 cardiometabolic 

271 traits of interest as in the pairwise colocalisations above and all variants in perfect LD (R2 = 1) 

272 with E354 were removed. The GIP measures considered were fasting GIP as measured by 

273 SOMAmers X16292_288 and 5755-29, as well as fasting and 2-hr GIP measures from the 

274 Malmö Diet and Cancer (MDC) sub-cohort of Almgren et al. 2017(36). Both the MDC and 

275 PPP-botnia cohorts were genotyped using exome-wide arrays, thereby limiting the number of 

276 variants included in the analysis when considering variants present across all traits. MDC 

277 measures were preferred to those from either the PPP-Botnia sub-cohort or the meta-analysis 

278 of the two sub-cohorts due to denser variant coverage, despite PPP-Botnia having a larger 

279 sample size. The anthropometric traits adjusted and unadjusted for BMI (where applicable) 

280 were BMI, WHR, and hip and waist circumferences. T2D and CAD were included as disease 

281 outcomes. Glycaemic measures included non-fasted glucose, HbA1c, 2-hr glucose adjusted for 

282 BMI, fasting glucose adjusted for BMI and fasting insulin adjusted for BMI. GWAS summary 

283 statistics from Fenland were used for fasting and 2-hour glucose as well as fasting insulin. 

284 Finally, lipid traits included were LDL, HDL, total cholesterol, triglycerides, lipoprotein A, 

285 apolipoprotein A1 and apolipoprotein B. 

286

287 To assess sensitivity in the number and size of clusters identified, increasingly stringent prior 

288 and threshold configurations were used. Prior 2 values of 0.02, 0.01 and 0.001, and threshold 

289 values of 0.5, 0.6, 0.7, 0.8 and 0.9 were considered. T2D and CAD were considered as binary 

290 case-control traits and all others were considered quantitative. To estimate the posterior 



291 probability (PP) that the candidate variant is the causal variant (PPcausal), we multiplied the 

292 PPcoloc by the PP explained by the candidate variant (PPexplained). Trait clusters were reported at 

293 the recommended(51) thresholds of prior 2 = 0.02, regional and alignment thresholds = 0.9. 

294

295 To account for low variant coverage in the MDC cohort, we ran a secondary analysis using the 

296 same populations, configuration and sensitivity assessments as above, while excluding the GIP 

297 traits measured in MDC.

298

299 Finally, heatmaps based on similarity matrices estimating how often trait pairs were clustered 

300 together across all algorithm parameter choices were drawn. In addition, regional association 

301 plots were drawn for each cluster using the gassocplot R package and. LD data from EPIC-

302 Norfolk. All data analysis was performed using R version 3.6.3.

303

304 Conditional analysis at the GIPR locus

305 To determine whether the association between E354 and CAD was due to LD between E354 

306 and other CAD lead variants in the GIPR region, we performed conditional analysis using 

307 GCTA(52) v1.93.1. Using full GWAS summary statistics for CAD(53) on chromosome 19, we 

308 implemented a step-wise selection to identify independent variants associated with CAD. 

309 Selection was performed using a threshold of P< 1x10-5, a threshold for collinearity between 

310 variants of 0.05 and a minor allele frequency threshold of 1%. An LD reference panel from 

311 EPIC-Norfolk was used. The association between E354 and CAD was then conditioned on 

312 each independent variant to estimate whether the association was attenuated, implying that the 

313 association was due to the residual LD between E354 and an independent variant. This was 

314 repeated for all traits associated with E354. If E354 (or a proxy variant in complete LD with 

315 E354) was identified as one of the independent variants, conditional analysis was not 



316 performed. Following this, regional association plots were generated using LocusZoom v1.2. 

317 To determine whether other variants previously found to be associated with fasting GIP 

318 levels(36) were associated with CAD, we extracted their estimates from the CAD summary 

319 statistics(53). 

320

321 Data and resource availability

322 The datasets analysed during the current study are publicly available and links are provided in 

323 Table S1. EPIC-Norfolk or Fenland data are available upon reasonable request via the study 

324 websites (https://www.mrc-epid.cam.ac.uk/research/studies/epic-norfolk/ and 

325 https://www.mrc-epid.cam.ac.uk/research/studies/fenland/information-for-researchers/). GIP 

326 measures from Almgren et al. (36) are available from the relevant corresponding author upon 

327 reasonable request. All data from UK Biobank are available to approved users upon 

328 application. No applicable resources were generated or analysed during the current study.

https://www.mrc-epid.cam.ac.uk/research/studies/epic-norfolk/
https://www.mrc-epid.cam.ac.uk/research/studies/fenland/information-for-researchers/


329 Results 

330 Characterisation of a missense variant E354 (rs1800437) in GIPR

331 Among the cardiometabolic disease outcomes examined, higher E354-predicted fasting GIP 

332 levels were associated with lower T2D risk (OR per copy of E354, 0.97; 95% CI, 0.96, 0.99; 

333 P=3×10-4; Fig. 1A), an effect which strengthened following BMI adjustment (0.93; 95% CI, 

334 0.91, 0.95; P=3×10-14). In line with this, lower 2-hour glucose levels were observed (2-hour 

335 glucose in mmol/L per copy of E354, -0.09; 95% CI, -0.11, -0.07; P=2×10-15; Fig. 1B). 

336 Additionally, HbA1c levels were shown to be 0.01 SD units lower per copy of E354. E354 

337 showed a weak positive association with non-fasted glucose levels. As this phenotype captures 

338 wide-ranging physiological responses in both the fasted and postprandial state, deconvoluting 

339 this association requires further investigation. E354 was associated with higher CAD risk (OR 

340 per copy of E354, 1.03; 95% CI, 1.02, 1.05; P=2x10-6; Fig. 1Aand higher levels of several lipid 

341 risk factors but lower triglyceride levels (Fig. 1B). E354 was not significantly associated with 

342 other CVD subtypes in UKBB (Fig. S1). 

343

344 Each copy of E354 was associated with 0.03 SD higher BMI (95% CI, 0.03, 0.04; P=3×10-59; 

345 Fig. 1B). Similar associations were observed between E354 and higher regional anthropometric 

346 measures from bio-impedance data (Fig. S2) as well as hip and waist circumferences and waist-

347 to-hip ratio. In addition, significant associations were found with both higher lean and fat mass 

348 from a large GWAS based on bio-impedance data (Fig. S2).

349

350 Of the 19 biomarkers investigated, E354 was significantly associated with lower levels of only 

351 two, namely albumin and creatinine (beta in SD units per copy of E354, -0.01; 95% CI, -0.02, 

352 -0.01; P=6×10-6; and -0.02; 95% CI, -0.02, -0.01; P=1×10-11, respectively; Fig. 1B).

353



354 Next, we estimated the association of E354 with the fasting levels of 4,979 human proteins 

355 from the SOMAscan® v4 system. Significant associations with the levels of three proteins 

356 were found (Fig. S3), one of these being 0.08 SD higher fasting GIP levels (95% CI, 0.05, 0.11; 

357 P=4×10-6) as measured by SOMAmer 16292-288. Interestingly, our analysis did not find a 

358 significant association between the other GIP SOMAmer, 5755-29, and E354. Lower levels of 

359 secretoglobin family 3A member 1 (SCGB3A1) and glutaminyl-peptide cyclotransferase-like 

360 protein (QPCTL) were also found to be associated with E354. In contrast with a previous 

361 report(21), no association between E354 and osteopontin was found.

362

363 Lower levels of an unidentified metabolite, X-12283 (beta in SD units per copy of E354, -0.08; 

364 95% CI, -0.12, -0.05; P=2×10-5; Fig. S4), analysed in 8,278 participants, were found to be 

365 significantly associated with E354. A total of 11 metabolites were significantly correlated with 

366 X-12283, of these, six had a partial correlation estimate with X-12283 with absolute values 

367 greater than 0.1 (Fig. S5). In addition to significant correlations with unknown metabolites, X-

368 12283 was most significantly correlated with indolepropionate (correlation estimate = 0.21; 

369 P=1x10-45; Fig. S5). 

370

371 Multi-trait colocalisation across cardiometabolic traits at GIPR

372 A total of 424 variants were included in the main analysis, which was limited due to the 

373 inclusion of fasting and 2-hour GIP measures from MDC(36), whereas 5,015 were included in 

374 the secondary analysis (Table 1). Using the recommended prior and threshold configuration, 

375 5 distinct trait clusters were identified, 3 of which were shared by both analyses (Table 1). 

376 Cluster similarity across all prior and threshold permutations for the two analyses are 

377 summarised in heatmaps (Fig. 2). Results for all permutations for both analyses can be found 

378 in Tables S4 and S5 respectively. 



379

380 Of the clusters identified, two distinct clusters were of interest. The first, driven by rs7412 a 

381 missense variant in the apolipoprotein E gene (APOE), contained CAD and lipid traits – many 

382 of which are established CVD risk factors. Both PPcoloc and PPcausal were estimated to be 1 in 

383 the two analyses, demonstrating robust evidence for colocalisation (Table 1 and Fig. S6). This 

384 robustness is further emphasised as the same cluster of traits was identified when using more 

385 stringent prior configurations (Fig. 2, Tables S4 and S5). A second cluster of GIP, 

386 anthropometric and glycaemic traits was driven by rs1800437 (E354) (Table 1 and Fig. S7). 

387 The PPcoloc for both analyses showed robust evidence for colocalisation (Main analysis: 

388 PPcoloc=0.97; PPexplained=1; PPcausal=0.97; Secondary analysis: PPcoloc=0.91; PPexplained=0.68; 

389 PPcausal=0.62). A second cluster of BMI and waist circumference driven by E354 was observed 

390 in the secondary analysis (Table 1). Sensitivity analyses showed that this split was an artefact 

391 of the branch and bound clustering algorithm in HyPrColoc and the single causal variant 

392 assumption (Fig. S7). Removal of the clustering algorithm showed that BMI and waist 

393 circumference were part of the larger cluster of GIP, anthropometric and glycaemic traits 

394 driven by E354 (PPcoloc = 0.95; PPexplained = 1; PPcausal = 0.95).. 

395

396 Critically, these results replicate our findings using pairwise-trait colocalisation at this locus, 

397 showing that fasting GIP levels and CVD risk are driven by independent variants (R2 between 

398 E354 and rs7412 = 0.004) (Table 1; Fig. S6-S8; Fig. 2). Additionally, both colocalisation 

399 analyses demonstrate that the underlying genetics at GIPR are comparable between GIP levels 

400 measured by SOMAmer 16292-288 and the ELISA of previous analyses(36). Together these 

401 results robustly demonstrate that the GIP-raising and CVD risk increasing effects at this locus 

402 are distinct (Tables S4 and S5). 

403



404 A third cluster including a mixture of glycaemic, anthropometric traits and ApoA1 levels were 

405 estimated to colocalise at rs4420638 which was in LD with rs429358 (R2 = 0.69), a missense 

406 variant in APOE identified as the candidate variant in the secondary analysis (R2 with E354 = 

407 0.001). . As the secondary analysis included more variants and therefore had greater genomic 

408 context, rs429358 is likely to be the candidate variant at which these traits colocalise. The high 

409 PPcoloc demonstrated robust evidence for colocalisation between these traits at rs429358. 

410

411 Finally, a cluster between T2D and T2D adj. BMI was identified in the main analysis but was 

412 not replicated in the secondary analysis (Table 1). Instead, a cluster between triglycerides and 

413 hip circumference adj. BMI was identified, driven by an independent variant rs5117 (R2 with 

414 rs8108269 < 0.001) (Table 1). This discrepancy is likely to be a result of the number of variants 

415 present in the main analysis. 

416

417 Conditional analysis at the GIPR locus

418 Our univariate two-sample MR results showed that E354 was associated with a total of 20 traits 

419 at a nominal significance threshold (Fig. 1). Independent signal selection showed that E354, or 

420 proxy variants in high LD (R2 > 0.9) with E354, were identified as independent signals for 

421 fasting GIP, 2-hour glucose, total cholesterol levels, BMI and X-12283 levels. A total of 24 

422 variants were independently associated with CAD on chromosome 19, four of which were in 

423 the 1Mb regions either side of E354 at the GIPR locus (Table 2). Conditioning the association 

424 between E354 and CAD on the residual LD between E354 and rs7412, the variant estimated to 

425 drive the cluster with CAD, resulted in a slight attenuation of this association but remained 

426 significant (OR per copy of E354 after adjustment 1.03; 95% CI, 1.02, 1.04; P=0.003). Of the 

427 independent variants identified, rs1964272 an intronic variant in small nuclear 

428 ribonucleoprotein D2 polypeptide (SNRPD2), was estimated to be in the strongest LD with 



429 E354 (R2=0.27) (Fig. 3 and Fig. S9). The association between E354 and CAD risk was 

430 attenuated when conditioned on rs1964272 (OR per copy of E354 after adjustment, 1.01; 95% 

431 CI, 0.99, 1.03; P = 0.06) (Table 3). In line with this, the association between rs1964272 and 

432 CAD risk was attenuated but remained significant when conditioning on E354 (beta per copy 

433 of rs1964272 after adjustment, 0.02; 95% CI, 0.01, 0.03; P = 7x10-4; Table S6). In addition, 

434 the association between E354 and small vessel stroke was also attenuated when conditioned on 

435 rs1964272 (Table 3). None of the other loci previously shown to be associated with fasting 

436 GIP levels were found to be associated with CAD (Table S7). Interestingly, rs1964272 was 

437 also associated with levels of QPCTL and SCGB3A1, indicating confounding by LD for the 

438 proteomics data as well (Fig. S10). Conditioning the association between E354 and QPCTL 

439 levels on rs1964272 attenuated the association to non-significance (beta QPCTL per copy of 

440 E354 after adjustment, 0.01; 95% CI, -0.02, 0.04; P=0.48; Table 3).

441

442 Conditioning the association of E354 with LDL, ApoB and triglycerides on independent 

443 variants for each trait showed that these remained statistically significant despite being 

444 attenuated (Table 3), suggesting that E354 may have independent effects on lipid metabolism. 

445



447 Discussion 

448 In this study, we applied Bayesian multi-trait colocalisation and conditional analysis to gain 

449 greater understanding of the underlying genetic architecture of CAD and its relation to fasting 

450 GIP levels at the GIPR locus. Multi-trait colocalisation robustly identified a cluster of CAD 

451 and lipid traits at APOE that was independent from a cluster of fasting and 2-hour GIP, 

452 glycaemic and anthropometric traits driven by E354. Further, conditional analysis robustly 

453 attenuated E354’s association with CAD, small vessel stroke and QPCTL levels when adjusting 

454 for rs1964272 in SNRPD2, an established CAD risk locus(53). Together these results show that 

455 association signals for CAD at GIPR are not mediated by an independent effect of GIPR 

456 variants on CAD risk but are instead the result of LD confounding between E354 and 

457 rs1964272.

458

459 Taken together, these findings highlight the specificity of E354’s effects on fasting GIP levels 

460 and robustly demonstrate that higher E354-mediated fasting GIP levels are not associated with 

461 CVD risk. These results contradict recent genetic evidence linking higher fasting GIP levels 

462 with increased CVD risk(21,27), which led to concerns that chronic pharmacological GIPR 

463 agonism could have detrimental effects on cardiovascular health(27) and represent safety 

464 concerns for pharmacological agonism of this pathway(54). We therefore provide evidence that 

465 the inclusion of GIPR agonism in dual GIPR/GLP-1R agonists could potentiate the protective 

466 effect of GLP-1 agonists on diabetes without undue CVD risk, an aspect which has yet to be 

467 assessed in clinical trials. Many studies have shown that GLP1R agonism achieved through 

468 chronic pharmacologic therapy, or genetic gain of function, is associated with improved 

469 cardiovascular outcomes(28–32). Hence, the available evidence suggests that dual agonism of 

470 these receptors may exploit the metabolically favourable combined pharmacology of these 

471 incretins without undue CVD risk. However, this proposition requires formal assessment in 



472 clinical trials such as the recently initiated SURPASS cardiovascular outcomes trial of the 

473 GIP/GLP1R dual agonist tirzepatide (clinicaltrials.gov: NCT04255433).

474

475 This study has potential limitations. Firstly, our analysis focuses on a single locus associated 

476 with both fasting GIP levels and CAD. This assumes that the GIPR locus is a suitable proxy 

477 for fasting GIP levels within which to partition the associations of these two complex traits. 

478 Considering that the association at this locus with 2-hour glucose is statistically robust and in 

479 line with the established function of GIP, this is a reasonable assumption. In addition, no other 

480 locus has been reported to be associated with both fasting GIP and CAD, and examining the 

481 association of other variants associated with fasting GIP levels(36) in genes other than GIPR, 

482 showed no association of any of these variants with CAD. However, this does not preclude the 

483 existence of other variants that have not yet been associated with GIP levels may contribute to 

484 CVD risk. Patients with T2D are the target of GIPR/GLP-1R agonist treatment. We investigate 

485 the genetic association of E354 on CAD using the largest publicly available genome-wide 

486 summary statistics(53). Therefore, analyses stratified by T2D status are not possible since such 

487 results were not generated and are hence not available. Indeed, pursuing this in individual 

488 studies would vastly lower sample sizes and therefore be underpowered to detect whether 

489 associations with CAD differ significantly by T2D status. Specifically, to affect our 

490 results and conclusions about the E354-CAD association being the result of confounding by 

491 LD, the genetic architecture at GIPR would have to differ between European-

492 descent individuals with and without prevalent T2D, such that the residual confounding by 

493 LD differs by T2D status. As LD is generally preserved between individuals from the same 

494 ethnic group, this is a very unlikely scenario.

495
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Table 1. Clusters of colocalised traits identified by the main and secondary analyses at recommended settings.

Main Analysis Secondary Analysis

Locus Candidate 
LD (R2) § Colocalised Traits PP 

Coloc*
Candidate 

variant
PP 

explained
N 

variants Colocalised Traits PP 
Coloc*

Candidate 
variant

PP 
explained

N 
variants

GIPR 1
LDL, CAD, HDL, Total 

Cholesterol, Lipoprotein A, 
ApoB

1 rs7412 1 424
LDL, CAD, HDL, Total 

Cholesterol, Lipoprotein A, 
ApoB

1 rs7412 1 5,015

GIPR 0.69
HbA1c, ApoA1, WHRadjBMI, 
Waist circumference adjBMI, 

WHR
0.99 rs4420638 1 424

HbA1c, ApoA1, 
WHRadjBMI, Waist 

circumference adjBMI, 
WHR

0.97 rs429358 1 5,015

GIPR 1

GIP SOMAmer 16292_288, 
Fasting GIP, 2hr GIP, BMI, 

Glucose, Hip circumference, 
Waist circumference, 2hr 

Glucose adjBMI

0.97 rs1800437 1 424

GIP SOMAmer 
16292_288, Hip 

circumference, 2hr 
Glucose adjBMI

0.91 rs1800437 0.68 5,015

GIPR NA BMI, Waist circumference 1 rs1800437 1 5,015
GIPR NA T2D, T2D adjBMI 0.98 rs8108269 0.99 424

GIPR NA Triglycerides, Hip 
circumference adjBMI 0.98 rs5117 0.93 5,015

Abbreviations: GIPR, Glucose-dependent insulinotropic polypeptide receptor; LD, Linkage disequilibrium; PP, Posterior probability; coloc, Colocalisation; N, Number; variants, 
Single nucleotide polymorphisms; LDL, Low-density lipoprotein; CAD, Coronary artery disease; HDL, High-density lipoprotein; ApoB, Apolipoprotein B; Glucose, Non-fasted 
glucose; ApoA1, Apolipoprotein A1; adj., Adjusted for; WHR, Waist-to-hip ratio; BMI, Body mass index; T2D, Type 2 diabetes
* Trait clusters are reported at the recommended thresholds for Hyprcoloc: Prior 2 = 0.02; regional and alignment thresholds = 0.9
‡Blank rows for either analysis indicate a cluster not identified in the respective analysis
§The LD in R2 between the candidate variants for the main and secondary analyses respectively



Table 2. Independent CAD variants identified using approximate conditional analysis.

Variant * Chr:pos
Closest 

gene EA EAF
Marginal 

Beta 
(SE) †

Marginal 
P-value 

†

Conditional 
Beta (SE) ‡

Conditional 
P-value ‡ N R2 with 

rs1800437

rs429358 19:45411941 APOE T 0.85 -0.09 
(0.008)

2.86x10-

27
-0.08 

(0.008) 5.87x10-23 286,423 0.001

rs7412 19:45412079 APOE T 0.08 -0.14 
(0.011)

1.66x10-

35
-0.12 

(0.011) 1.58x10-28 275,803 0.004

rs11673093 19:45742094 EXOC3L2 A 0.26 0.04 
(0.007)

4.11x10-

11 0.04 (0.007) 3.09x10-10 300,789 0

rs1964272 19:46190268 SNRPD2 A 0.48 -0.03 
(0.006)

9.65x10-

9
-0.03 

(0.006) 1.87x10-7 299,519 0.27

Abbreviations: Chr, Chromosome; pos, Position; EA, Effect allele; EAF, Effect allele frequency; SE, Standard error; 
N, Number of participants; R2, Linkage disequilibrium estimate
*The independent CAD variants in the 1Mb region either side of E354 are shown
†Log odds ratios from the original GWAS summary statistics
‡Log odds ratios from the joint model fitted by GCTA



Table 3. Conditioning each of the traits associated with E354 at nominal significance from the 
2SMR analysis on independent SNPs for each trait. Estimates of 2-hour glucose, total 
cholesterol and BMI were not included in this table as the independent signal selection showed 
that E354 was one of the independent variants.

2SMR result Conditional result Independent variant

Trait Beta (SE) P-value Beta (SE) P-value‡
Conditioned 

on*
LD with 

rs1800437†

T2D -0.03 
(0.007) 7x10-5 -0.03 (0.008) 4x10-4 rs3810291 0.001

T2DadjBMI -0.07 
(0.009) 2x10-14 -0.02 (0.009) 0.04 rs2238689 0.363

CAD 0.03 (0.007) 2x10-6 0.01 (0.007) 0.06 rs1964272 0.269

SVS -0.08 
(0.029) 0.009 -0.04 (0.029) 0.12 rs1964272 0.269

Non-fasted 
plasma 
glucose

0.02 (0.003) 3x10-8 0.01 (0.003) 0.05 rs1964272 0.269

HbA1c -0.01 
(0.003) 1x10-7 -0.0003 

(0.003) 0.92 rs9676912 0.356

ApoA1 0.01 (0.003) 3x10-6 0.002 (0.003) 0.37 rs2238689 0.363
HDL 0.02 (0.003) 7x10-9 0.003 (0.003) 0.31 rs2238689 0.363
ApoB 0.02 (0.002) 5x10-13 0.01 (0.002) 2x10-5 rs7412 0.004
LDL 0.02 (0.003) 2x10-16 0.016 (0.003) 1x10-8 rs7412 0.004

Triglycerides -0.01 
(0.003) 2x10-5 -0.01 (0.003) 5x10-5 rs4803936 0.001

CRP -0.01 
(0.002) 0.02 -0.004 

(0.002) 0.07 rs7412 0.004

Albumin -0.01 
(0.003) 6x10-6 -0.01 (0.003) 0.001 rs35114617 0.061

Creatinine -0.02 
(0.002) 1x10-11 -0.02 (0.002) 3x10-11 rs7412 0.004

QPCTL -0.07 
(0.016) 9x10-6 0.01 (0.016) 0.48 rs1964272 0.269

Secretoglobin 
family 3A 
member 1

-0.08 
(0.017) 6x10-7 -0.04 (0.017) 0.01 rs61703905 0.1

Abbreviations: SE, Standard error; T2D, Type 2 diabetes; adjBMI, Adjusted for BMI; CAD, Coronary artery disease; SVS, 
Small vessel stroke; HbA1c, Glycated haemoglobin; Apo, Apolipoprotein; HDL, High-density lipoprotein; LDL, Low-
density lipoprotein; CRP, C-reactive protein; QPCTL, Glutaminyl-peptide cyclotransferase like* The independent variant 
showing the greatest attenuation of the E354 association estimate with the respective trait
† LD estimates are in R2 and are quoted from 5 European populations in the LDlink database v4.1.0
‡ A nominal significance threshold of P ≤ 0.05 was used to ascertain significance for the conditional results



Figure legends: 

Fig. 1. Associations between E354 (rs1800437) and cardiometabolic disease endpoints, 
glycaemic traits, cardiovascular risk factors and lipids, anthropometric traits and biomarkers 
estimated using 2SMR. (A) Associations with cardiometabolic disease endpoints are shown in 
blue and are represented as odds ratios (95% CI) for each disease per copy of rs1800437. (B) 
Associations with glycaemic traits are shown in orange, cardiovascular and lipid traits in green, 
anthropometric traits and biomarkers are shown in yellow and purple respectively. Estimates 
are represented as beta (95% CI) for each outcome per copy of rs1800437. All traits are in SD 
units aside from fasting and 2-hour glucose which are in mmol/L, fasting insulin in log 
(pmol/L) and HbA1c in mmol/mol. Fold change insulin represents the fold change in insulin 
levels between fasting to 2-hour measures. A Bonferroni significance threshold of P ≤ 0.001 
was used, accounting for the number of traits tested. 
Abbreviations: 2SMR, Two sample Mendelian randomisation; OR, Odds ratio; CI, Confidence interval; N, Number; BMI, 
Body mass index; adj., Adjusted; HbA1c, Glycated haemoglobin; ApoA1, Apolipoprotein A1; ApoB, Apolipoprotein B; HDL, 
High-density lipoprotein; LDL, Low-density lipoprotein; γ, Gamma.
* HbA1c estimates are in SD units per copy of E354. The corresponding clinical units in %(mmol/mol) are as follows: -
2.15% (95% CI, -2.15, -2.14) and -0.07mmol/mol (95% CI, -0.07, -0.06).

Fig. 2. Similarity heatmap for each cluster at the GIPR locus across prior and threshold 
permutations. Traits that were estimated to colocalise are clustered together. Darker colours 
represent traits which were estimated to colocalise more often across prior and threshold 
permutations (prior 2: 0.02, 0.01 and 0.001; thresholds: 0.5, 0.6, 0.7, 0.8 and 0.9). (A) Main 
analysis. (B) Secondary analysis
Abbreviations: LDL, Low-density lipoprotein; CAD, Coronary artery disease; HDL, High-density lipoprotein; ApoB, 
Apolipoprotein B; Glucose, Non-fasted glucose; ApoA1, Apolipoprotein A1; adj., Adjusted for; WHR, Waist-to-hip ratio; 
BMI, Body mass index; T2D, Type 2 diabetes; WC, Waist circumference; HC, Hip circumference

Fig. 3. Regional association plots depicting CAD lead variants in the GIPR region. (A) The 
independent CAD lead variants in the GIPR region are labelled and their respective 
associations with CAD are shown before conditional analysis. The region around rs1800437 
(E354) is expanded in the red insert to show the LD and proximity of rs1964272 to rs1800437. 
(B). The associations of variants in the GIPR region after conditioning on rs1964272. The 
region around rs1800437 (E354) is expanded in the red insert to show the attenuation of the 
E354 signal when conditioned on rs1964272.
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Table S1. Summary of the participating studies.

Outcome
type Outcome

Cases 
overall, 

N

Non-cases (for 
case-control 
studies) or 

participants 
(for 

continuous 
trait studies) 

overall, N

Participating
study

PubMed ID for 
cohort description

Type 2 diabetes * 74,124 842,006 DIAMANTE 30297969

Type 2 diabetes (BMI adjusted) * 74,124 842,006 DIAMANTE 30297969

Coronary artery disease * 34,541 261,984 CARDIoGRAMplusC4D, 
UK Biobank 29212778

Any Stroke * 40,585

Any Ischemic Stroke * 34,217

Cardioembolic Stroke * 7,193

Large Artery Stroke * 4,373

Small Vessel Stroke * 5,386

406,111 MEGASTROKE 29531354

Abdominal Aortic Aneurysm * 1,094 366,492

Atrial Fibrillation * 16,945 350,641

Aortic Valve Stenosis * 2,244 365,342

Coronary Artery Disease * 29,278 338,308

Deep Vein Thrombosis * 9,454 358,132

Haemorrhagic Stroke (all) * 1,981 365,605

Heart Failure * 6,712 360,874

Ischaemic Cerebrovascular Disease (all) * 8,084 359,502

Pulmonary Embolism * 6,148 361,438

Peripheral Vascular Disease * 3,415 364,171

Thoracic Aortic Aneurysm * 347 367,239

Transient Ischaemic Attack * 3,962 363,624

Intracerebral Haemorrhage * 1,064 366,522

Subarachnoid Haemorrhage * 1,084 366,502

Ischaemic Stroke * 4,602 362,984
Ischaemic stroke plus haemorrhagic stroke 

plus unknown stroke (but not TIA) * 9,652 357,934

Disease outcomes

Venous Thromboembolism (all) * 14,097 353,489

UK Biobank 31756303

Fasting glucose (BMI adjusted) * 51,750 MAGIC 22581228

Non-fasted plasma glucose † 413,905 UK Biobank; InterAct 25826379

2-hr glucose (BMI adjusted) * 41,888 MAGIC 20081857

Fasting insulin (BMI adjusted) * 51,750 MAGIC 22581228

Corrected insulin response * 5,318 MAGIC 24699409

Glycaemic
outcomes

HbA1C † 451,782 UK Biobank; InterAct 25826379

Apolipoprotein A1 † 412,328

High-density lipoprotein † 450,957

Apolipoprotein B † 448,859

Low-density lipoprotein † 375,774

Lipoprotein A † 406,825

Total cholesterol † 377,031

Cardiovascular 
and lipid-related 

outcomes

Triglycerides † 450,625

UK Biobank; InterAct 25826379
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Outcome
type Outcome

Cases 
overall, 

N

Non-cases (for 
case-control 
studies) or 

participants 
(for 

continuous 
trait studies) 

overall, N

Participating
study

PubMed ID for 
cohort description

C-reactive protein † 465,067

BMI † 738,628

Hip circumference † 568,765

Hip circumference (BMI adjusted) † 633,860

Waist circumference † 654,577

Waist circumference (BMI adjusted) † 654,253

Waist-to-hip ratio † 636,672

Anthropometric 
outcomes

Waist-to-hip ratio (BMI adjusted) † 636,282

GIANT, UK Biobank 25673413; 
25826379

Albumin † 415,714

Alkaline phosphatase † 450,743

Alanine aminotransferase † 452,291

Aspartate transaminase † 450,594

Bilirubin † 448,652

Calcium † 414,173

Creatinine † 451,942

Gamma-glutamyl transpeptidase † 450,745

Additional 
biomarker 
outcomes

Urate † 451,665

UK Biobank; InterAct 25826379

Android fat mass †

Arms fat mass †

Gynoid fat mass †

Legs fat mass †

Peripheral fat mass †

Subcutaneous fat mass †

Total fat mass †

Trunk fat mass †

Visceral fat mass †

Appendicular lean mass †

Android lean mass †

Arms lean mass †

Gynoid lean mass †

Legs lean mass †

Total lean mass †

Regional adiposity 
outcomes 

(measured by bio-
impedance)

Trunk lean mass †

435,387 UK Biobank 25826379

Plasma proteins 4,979 proteins † 10,708 Fenland 27841877

Metabolites 1,008 metabolites † 11,539 EPIC-Norfolk 10466767

GIP measures Fasting and 2hr GIP * 7,828 MDC and PPP-Botnia 29093273
*Publicly available datasets, the phenotype definitions of which can be found in the original studies (PMID provided)
†In-house datasets, the phenotype definitions of which can be found in Table S3
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Table S2. Study participants.
Study Fenland * EPIC-Norfolk * UK Biobank *

Participants, N 10,708 11,539 ‡ 452,197
Age at baseline, mean years (SD) 49 (7) 60 (9) 57 (8)

Women, N (%) 5,714 (53) 6,198 (54) 245,277 (54)
Men, N (%) 4,994 (47) 5,341 (46) 206,883 (46)

BMI in kg/m2, mean (SD) 26.9 (4.9) 26.2 (3.7) 27.4 (4.8)
Waist-to-hip ratio, mean (SD) 0.74 (0.08) 0.86 (0.09) 0.87 (0.09)

Systolic blood pressure in mmHg, mean (SD) 123 (15) 136 (18) 138 (19)
Diastolic blood pressure in mmHg, mean (SD) 74 (10) 82 (11) 82 (10)
Fasting glucose in log-pg/mL, median (IQR) † 1.57 (1.50, 1.63) N/A N/A

2-hr glucose in log-pg/mL, median (IQR) † 1.63 (1.44, 1.79) N/A N/A
Fasting insulin in log-pg/mL, median (IQR) † 3.66 (3.29, 4.06) N/A N/A

Study stage

2SMR, 
colocalisation, 

conditional 
analyses

2SMR 2SMR §

Participants with prevalent T2D, N N/A || N/A ¶ 22,610
Abbreviations: N/A, not available; N, number of participants; SD, standard deviation; BMI, body mass index; mmHg; 
Millimetres Mercury; pg; Picograms; mL, Millilitres; IQR, Interquartile range
*The relevant outcomes that make use of data from each study are described in Table S1
†Glycaemic measures from Epic-Norfolk and UK Biobank were not used in this study
‡Participants used in the plasma metabolite GWAS sample
§The publicly available GWAS dataset1 included UK Biobank samples, however, this table only describes samples used for
in-house GWAS analyses. 
||Participants with prevalent T2D were excluded from the study cohort as part of the exclusion criteria
¶Only participants from the quasi-randomly selected samples were used, excluding participants with prevalent T2D
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Table S3: Description of the GWAS analyses for in-house datasets and the quality control procedures 
applied.

Cohort Trait Measurement Transformations 
applied Covariates Variant-level 

QC ‡‡

Fenland* Plasma proteins† Described in main text

Rank-based 
inverse normal 

within each 
genotyping 

subset

Age, sex, sample 
collection site and 

10 genetic principal 
components

MAF < 0.001, 
Imputation 

quality < 0.4, 
HWE P-value < 

1x10-7 ||

Fenland
Fasting insulin, 
fasting glucose, 

2hr glucose‡

Fasting glucose and insulin were 
measured in whole blood after overnight 

fast. 2hr glucose was measured in 
plasma two-hours after a 75-gram oral 
glucose challenge. Glucose levels were 

quantified using the Dimension RxL 
Integrated Chemistry System (Siemens, 

Germany). Insulin levels were quantified 
using the 1235 AutoDELFIA automatic 
immunoassay system using a two-step 
time resolved fluorometric assay (Kit 
No. B080-101, Perkin Elmer, USA). 
Individuals were excluded if they had 

prevalent type 1 or type 2 diabetes 
(defined by physician diagnosis); 

reported use of diabetes medication(s); 
or had fasting glucose levels >=7 

mmol/L, 2-hr glucose levels 
>=11.1mmol/L, or HbA1c >= 6.5%.

Fasting and 2hr 
glucose: 

untransformed; 
fasting insulin: 

natural log

Age, sex, BMI and 
the first 10 principal 

components§

Call rate (< 95%), 
HWE P<1x10-6, 

imputation 
quality < 0.4, 

MAF < 1%, tri-
allelic, MAC<3, 
SE<0, SE>10, 
missing beta or 

SE or imputation 
quality estimate ¶ 

EPIC-
Norfolk*

Plasma 
metabolites Described in main text

Natural log-
transformed and 
winsorised to 5 

SD

Age, sex and 
measurement batch

Imputation 
quality < 0.4, 

MAC < 10, HWE 
P<1x10-6, 

abs(beta) > 10, 
SE<0, SE>10, 

MAF < 0.0001 #

UK 
Biobank 

and 
InterAct*

ApoA1, HbA1c, 
HDL, ApoB, 

LDL, LpA, Total 
cholesterol, 

Triglycerides, 
CRP, Albumin, 

ALP, ALT, AST, 
Bilirubin, 
Calcium, 

Creatinine, γ-
GGT, Urate

All biomarkers in InterAct, except 
HbA1c, were measured using a Cobas® 

(Roche Diagnostics, Mannheim, 
Germany) assay on a Roche Hitachi 

Modular P analyser. HbA1c was 
measured on erythrocyte samples using a 
Tosoh (HLC-723G8) assay on a Tosoh 

G8 analyser. 

Raw measures 
regressed on age, 
age2, sex, centre 
and 10 genetic 

principal 
components to 

generate residuals 
which were then 

rank-based 
inverse normal 

transformed 
within each study 

**

Age, age2, sex, 
aliquot, genotyping 
chip, lipid lowering 
medication and the 

top 40 principal 
components

Imputation 
quality < 0.4, 

MAC < 10, HWE 
P<1x10-6, 

abs(beta) > 10, 
SE<0, SE>10, 
MAF < 0.0001
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UK 
Biobank 

and 
GIANT*

BMI, Hip 
circumference, 

Hip circumference 
adj. BMI, Waist 
circumference, 

Waist 
circumference adj. 

BMI, WHR, 
WHRadjBMI

In UK Biobank, weight was measured 
using a calibrated electronic scale 

(TANITA model BC-418 MA; Tanita, 
Tokyo, Japan). Height was measured 

with a wall-mounted stadiometer (SECA 
202; Seca, Birmingham, United 
Kingdom). BMI (in kg/m2) was 

calculated as weight divided by height 
squared. Waist and hip circumferences 
were measured with a non-stretchable 

sprung tape measure (Wessex tape, 
London, United Kingdom). WHR was 

the ratio between the waist and hip 
circumferences.

Residuals were 
generated for 

each sex 
independently by 
regressing each 
outcome against 
age, age2, study-

specific 
covariates and 

BMI (if 
applicable) then 

rank-based 
inverse normal 

transformed

Age, sex, 
genotyping chip, 

and the top 40 
principal 

components. 

Imputation 
quality < 0.4, 

MAC < 10, HWE 
P<1x10-6, 

abs(beta) > 10, 
SE<0, SE>10, 

MAF < 0.0001 ††

UK 
Biobank Bio-impedance Tanita BC418MA body composition 

analyser (Amsterdam, The Netherlands)

Natural log-
transformed and 
regressed on age 

(and total fat 
mass or height2 – 

if adjusted) in 
each sex 

separately to 
generate 
residuals. 

Residuals were 
then rank-based 
inverse normal 

transformed

Age, sex, 
genotyping chip, 

and the top 40 
principal 

components. 

Imputation 
quality < 0.4, 

MAC < 10, HWE 
P<1x10-6, 

abs(beta) > 10, 
SE<0, SE>10, 
MAF < 0.0001

Abbreviations: MAF, Minor allele frequency; MAC, Minor allele count; HWE, Hardy-Weinberg equilibrium; SE, Standard 
error; BMI, Body mass index; adj., Adjusted for; WHR, Waist-to-hip ratio; ApoA1, Apolipoprotein A1; HbA1c, Glycated 
haemoglobin; HDL, High density lipoprotein cholesterol; ApoB, Apolipoprotein B; LDL, Low density lipoprotein cholesterol; 
LpA, Lipoprotein A; CRP, C-reactive protein; ALP, Alkaline phosphatase; ALT, Alanine aminotransferase; AST, Aspartate 
transaminase; γ-GGT, Gamma-glutamyl transpeptidase
*Studies or genotyping subsets were meta-analysed using inverse variance weighted fixed effect meta-analysis in METAL
†GWAS conducted using BGENIE v1.3
‡GWAS conducted using SNPTEST v2.4.1
§Fasting insulin and fasting glucose were also adjusted for age2

||Only variants present in the largest genotyping subset were taken forward
¶Only samples genotyped using the Affymetrix UK Biobank Axiom Array were included
#If BOLT-LMM failed, related individuals were excluded (IBD > 0.185) and linear regression models were run using 
SNPTEST v2.4.1, while also adjusting for the top 4 principal components
**Traits measured in UK Biobank were also rank-based inverse normal transformed within each respective aliquot.
††Variant-level QC only applies to UK Biobank, as GIANT data was publicly available
‡‡Variants were excluded if they were outside of the thresholds listed
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Table S4: Clusters of colocalised traits identified by the main analysis across the permutations of 
prior 2 and the regional and alignment thresholds (prior 2: 0.02, 0.01 and 0.001; thresholds: 0.5, 0.6, 
0.7, 0.8 and 0.9). A total of 424 variants were included.

Locus Colocalised traits PP
Coloc

Candidate
variant

PP
explained

Prior
2

Regional
and 

alignment
threshold

GIPR LDL, CAD, HDL, Total Cholesterol, Lipoprotein A,
ApoB 1 rs7412 1 0.02 0.5

GIPR Glucose, HbA1c, ApoA1, WHRadjBMI, Waist
circumference adjBMI, WHR 0.7248 rs4420638 1 0.02 0.5

GIPR
GIP SOMAmer 16292_288, Fasting GIP, 2hr GIP, 
BMI, Hip circumference, Waist circumference, 2hr 

Glucose adjBMI
0.9782 rs1800437 1 0.02 0.5

GIPR T2D, T2DadjBMI 0.979 rs8108269 0.9967 0.02 0.5

GIPR LDL, CAD, HDL, Total Cholesterol, Lipoprotein A,
ApoB 1 rs7412 1 0.02 0.6

GIPR Glucose, HbA1c, ApoA1, WHRadjBMI, Waist
circumference adjBMI, WHR 0.7248 rs4420638 1 0.02 0.6

GIPR
GIP SOMAmer 16292_288, Fasting GIP, 2hr GIP, 
BMI, Hip circumference, Waist circumference, 2hr 

Glucose adjBMI
0.9782 rs1800437 1 0.02 0.6

GIPR T2D, T2DadjBMI 0.979 rs8108269 0.9967 0.02 0.6

GIPR LDL, CAD, HDL, Total Cholesterol, Lipoprotein A,
ApoB 1 rs7412 1 0.02 0.7

GIPR Glucose, HbA1c, ApoA1, WHRadjBMI, Waist
circumference adjBMI, WHR 0.7248 rs4420638 1 0.02 0.7

GIPR
GIP SOMAmer 16292_288, Fasting GIP, 2hr GIP, 
BMI, Hip circumference, Waist circumference, 2hr 

Glucose adjBMI
0.9782 rs1800437 1 0.02 0.7

GIPR T2D, T2DadjBMI 0.979 rs8108269 0.9967 0.02 0.7

GIPR LDL, CAD, HDL, Total Cholesterol, Lipoprotein A,
ApoB 1 rs7412 1 0.02 0.8

GIPR HbA1c, ApoA1, WHRadjBMI, Waist circumference
adjBMI, WHR 0.9994 rs4420638 1 0.02 0.8

GIPR
GIP SOMAmer 16292_288, Fasting GIP, 2hr GIP, 

BMI, Glucose, Hip circumference, Waist 
circumference, 2hr Glucose adjBMI

0.9737 rs1800437 1 0.02 0.8

GIPR T2D, T2DadjBMI 0.979 rs8108269 0.9967 0.02 0.8

GIPR LDL, CAD, HDL, Total Cholesterol, Lipoprotein A,
ApoB 1 rs7412 1 0.02 0.9

GIPR HbA1c, ApoA1, WHRadjBMI, Waist circumference
adjBMI, WHR 0.9994 rs4420638 1 0.02 0.9

GIPR
GIP SOMAmer 16292_288, Fasting GIP, 2hr GIP, 

BMI, Glucose, Hip circumference, Waist 
circumference, 2hr Glucose adjBMI

0.9737 rs1800437 1 0.02 0.9

GIPR T2D, T2DadjBMI 0.979 rs8108269 0.9967 0.02 0.9

GIPR LDL, CAD, HDL, Total Cholesterol, Lipoprotein A,
ApoB 1 rs7412 1 0.01 0.5

GIPR Glucose, HbA1c, ApoA1, WHRadjBMI, Waist
circumference adjBMI, WHR 0.5725 rs4420638 1 0.01 0.5

GIPR
GIP SOMAmer 16292_288, Fasting GIP, 2hr GIP, 
BMI, Hip circumference, Waist circumference, 2hr 

Glucose adjBMI
0.9584 rs1800437 1 0.01 0.5

GIPR T2D, T2DadjBMI 0.9589 rs8108269 0.9967 0.01 0.5

GIPR LDL, CAD, HDL, Total Cholesterol, Lipoprotein A,
ApoB 1 rs7412 1 0.01 0.6

GIPR HbA1c, ApoA1, WHRadjBMI, Waist circumference
adjBMI, WHR 0.9989 rs4420638 1 0.01 0.6

GIPR
GIP SOMAmer 16292_288, Fasting GIP, 2hr GIP, 

BMI, Glucose, Hip circumference, Waist 
circumference, 2hr Glucose adjBMI

0.9499 rs1800437 1 0.01 0.6

GIPR T2D, T2DadjBMI 0.9589 rs8108269 0.9967 0.01 0.6
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GIPR LDL, CAD, HDL, Total Cholesterol, Lipoprotein A,
ApoB 1 rs7412 1 0.01 0.7

GIPR HbA1c, ApoA1, WHRadjBMI, Waist circumference
adjBMI, WHR 0.9989 rs4420638 1 0.01 0.7

GIPR
GIP SOMAmer 16292_288, Fasting GIP, 2hr GIP, 

BMI, Glucose, Hip circumference, Waist 
circumference, 2hr Glucose adjBMI

0.9499 rs1800437 1 0.01 0.7

GIPR T2D, T2DadjBMI 0.9589 rs8108269 0.9967 0.01 0.7

GIPR LDL, CAD, HDL, Total Cholesterol, Lipoprotein A,
ApoB 1 rs7412 1 0.01 0.8

GIPR HbA1c, ApoA1, WHRadjBMI, Waist circumference
adjBMI, WHR 0.9989 rs4420638 1 0.01 0.8

GIPR
GIP SOMAmer 16292_288, Fasting GIP, 2hr GIP, 

BMI, Glucose, Hip circumference, Waist 
circumference, 2hr Glucose adjBMI

0.9499 rs1800437 1 0.01 0.8

GIPR T2D, T2DadjBMI 0.9589 rs8108269 0.9967 0.01 0.8

GIPR LDL, CAD, HDL, Total Cholesterol, Lipoprotein A,
ApoB 1 rs7412 1 0.01 0.9

GIPR HbA1c, ApoA1, WHRadjBMI, Waist circumference
adjBMI, WHR 0.9989 rs4420638 1 0.01 0.9

GIPR
GIP SOMAmer 16292_288, Fasting GIP, 2hr GIP, 

BMI, Glucose, Hip circumference, Waist 
circumference, 2hr Glucose adjBMI

0.9499 rs1800437 1 0.01 0.9

GIPR T2D, T2DadjBMI 0.9589 rs8108269 0.9967 0.01 0.9

GIPR LDL, CAD, HDL, Total Cholesterol, Lipoprotein A,
ApoB 1 rs7412 1 0.001 0.5

GIPR HbA1c, ApoA1, WHRadjBMI, Waist circumference
adjBMI, WHR 0.9889 rs4420638 1 0.001 0.5

GIPR
GIP SOMAmer 16292_288, Fasting GIP, 2hr GIP, 

BMI, Glucose, Hip circumference, Waist 
circumference, 2hr Glucose adjBMI

0.6397 rs1800437 1 0.001 0.5

GIPR T2D, T2DadjBMI 0.6999 rs8108269 0.9967 0.001 0.5

GIPR LDL, CAD, HDL, Total Cholesterol, Lipoprotein A,
ApoB 1 rs7412 1 0.001 0.6

GIPR HbA1c, ApoA1, WHRadjBMI, Waist circumference
adjBMI, WHR 0.9889 rs4420638 1 0.001 0.6

GIPR
GIP SOMAmer 16292_288, Fasting GIP, 2hr GIP, 

BMI, Glucose, Hip circumference, Waist 
circumference, 2hr Glucose adjBMI

0.6397 rs1800437 1 0.001 0.6

GIPR T2D, T2DadjBMI 0.6999 rs8108269 0.9967 0.001 0.6

GIPR LDL, CAD, HDL, Total Cholesterol, Lipoprotein A,
ApoB 1 rs7412 1 0.001 0.7

GIPR HbA1c, ApoA1, WHRadjBMI, Waist circumference
adjBMI, WHR 0.9889 rs4420638 1 0.001 0.7

GIPR
GIP SOMAmer 16292_288, Fasting GIP, 2hr GIP, 

BMI, Glucose, Hip circumference, Waist 
circumference, 2hr Glucose adjBMI

0.6397 rs1800437 1 0.001 0.7

GIPR LDL, CAD, HDL, Total Cholesterol, Lipoprotein A,
ApoB 1 rs7412 1 0.001 0.8

GIPR HbA1c, ApoA1, WHRadjBMI, Waist circumference
adjBMI, WHR 0.9889 rs4420638 1 0.001 0.8

GIPR
GIP SOMAmer 16292_288, Fasting GIP, 2hr GIP, 

BMI, Glucose, Hip circumference, Waist 
circumference

0.8098 rs1800437 1 0.001 0.8

GIPR LDL, CAD, HDL, Total Cholesterol, Lipoprotein A,
ApoB 1 rs7412 1 0.001 0.9

GIPR HbA1c, ApoA1, WHRadjBMI, Waist circumference 
adjBMI, WHR 0.9889 rs4420638 1 0.001 0.9

GIPR GIP SOMAmer 16292_288, Fasting GIP, 2hr GIP, 
BMI, Hip circumference, Waist circumference 0.934 rs1800437 1 0.001 0.9

Abbreviations: PP, Posterior probability; N, Number; LDL, Low-density lipoprotein; CAD, Coronary artery disease; HDL, 
High-density lipoprotein; ApoB, Apolipoprotein B; ApoA1, Apolipoprotein A1; HbA1c, Glycated haemoglobin; WHR, Waist-
to-hip ratio; adjBMI, Adjusted for BMI; BMI, Body mass index; GIP, Gastric inhibitory polypeptide
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Table S5: Clusters of colocalised traits identified by the secondary analysis across the permutations 
of prior 2 and the regional and alignment thresholds (prior 2: 0.02, 0.01 and 0.001; thresholds: 0.5, 
0.6, 0.7, 0.8 and 0.9). A total of 5,015 variants were included.

Locus Colocalised traits PP
coloc

Candidate
variant

PP
explained

Prior
2

Regional 
and 

alignment
threshold

GIPR LDL, CAD, HDL, Total Cholesterol, 
Lipoprotein A, ApoB 1 rs7412 1 0.02 0.5

GIPR HbA1c, ApoA1, WHRadjBMI, Waist 
circumference adjBMI, WHR, T2D 0.8471 rs429358 1 0.02 0.5

GIPR BMI, Waist circumference 1 rs1800437 1 0.02 0.5
GIPR Triglycerides, Hip circumference adjBMI 0.983 rs5117 0.9328 0.02 0.5

GIPR GIP SOMAmer 16292_288, Hip 
circumference, 2hr Glucose adjBMI 0.9079 rs1800437 0.6768 0.02 0.5

GIPR LDL, CAD, HDL, Total Cholesterol, 
Lipoprotein A, ApoB 1 rs7412 1 0.02 0.6

GIPR HbA1c, ApoA1, WHRadjBMI, Waist 
circumference adjBMI, WHR, T2D 0.8471 rs429358 1 0.02 0.6

GIPR BMI, Waist circumference 1 rs1800437 1 0.02 0.6
GIPR Triglycerides, Hip circumference adjBMI 0.983 rs5117 0.9328 0.02 0.6

GIPR GIP SOMAmer 16292_288, Hip 
circumference, 2hr Glucose adjBMI 0.9079 rs1800437 0.6768 0.02 0.6

GIPR LDL, CAD, HDL, Total Cholesterol, 
Lipoprotein A, ApoB 1 rs7412 1 0.02 0.7

GIPR HbA1c, ApoA1, WHRadjBMI, Waist 
circumference adjBMI, WHR, T2D 0.8471 rs429358 1 0.02 0.7

GIPR BMI, Waist circumference 1 rs1800437 1 0.02 0.7
GIPR Triglycerides, Hip circumference adjBMI 0.983 rs5117 0.9328 0.02 0.7

GIPR GIP SOMAmer 16292_288, Hip 
circumference, 2hr Glucose adjBMI 0.9079 rs1800437 0.6768 0.02 0.7

GIPR LDL, CAD, HDL, Total Cholesterol, 
Lipoprotein A, ApoB 1 rs7412 1 0.02 0.8

GIPR HbA1c, ApoA1, WHRadjBMI, Waist 
circumference adjBMI, WHR, T2D 0.8471 rs429358 1 0.02 0.8

GIPR BMI, Waist circumference 1 rs1800437 1 0.02 0.8
GIPR Triglycerides, Hip circumference adjBMI 0.983 rs5117 0.9328 0.02 0.8

GIPR GIP SOMAmer 16292_288, Hip 
circumference, 2hr Glucose adjBMI 0.9079 rs1800437 0.6768 0.02 0.8

GIPR LDL, CAD, HDL, Total Cholesterol, 
Lipoprotein A, ApoB 1 rs7412 1 0.02 0.9

GIPR HbA1c, ApoA1, WHRadjBMI, Waist 
circumference adjBMI, WHR 0.9651 rs429358 1 0.02 0.9

GIPR BMI, Waist circumference 1 rs1800437 1 0.02 0.9
GIPR Triglycerides, Hip circumference adjBMI 0.983 rs5117 0.9328 0.02 0.9

GIPR GIP SOMAmer 16292_288, Hip 
circumference, 2hr Glucose adjBMI 0.9079 rs1800437 0.6768 0.02 0.9

GIPR LDL, CAD, HDL, Total Cholesterol, 
Lipoprotein A, ApoB 1 rs7412 1 0.01 0.5

GIPR HbA1c, ApoA1, WHRadjBMI, Waist 
circumference adjBMI, WHR, T2D 0.7384 rs429358 1 0.01 0.5

GIPR BMI, Waist circumference 1 rs1800437 1 0.01 0.5
GIPR Triglycerides, Hip circumference adjBMI 0.9665 rs5117 0.9328 0.01 0.5

GIPR GIP SOMAmer 16292_288, Hip 
circumference, 2hr Glucose adjBMI 0.8288 rs1800437 0.6768 0.01 0.5

GIPR LDL, CAD, HDL, Total Cholesterol, 
Lipoprotein A, ApoB 1 rs7412 1 0.01 0.6

GIPR HbA1c, ApoA1, WHRadjBMI, Waist 
circumference adjBMI, WHR, T2D 0.7384 rs429358 1 0.01 0.6

GIPR BMI, Waist circumference 1 rs1800437 1 0.01 0.6
GIPR Triglycerides, Hip circumference adjBMI 0.9665 rs5117 0.9328 0.01 0.6

GIPR GIP SOMAmer 16292_288, Hip 
circumference, 2hr Glucose adjBMI 0.8288 rs1800437 0.6768 0.01 0.6

GIPR LDL, CAD, HDL, Total Cholesterol, 
Lipoprotein A, ApoB 1 rs7412 1 0.01 0.7
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GIPR HbA1c, ApoA1, WHRadjBMI, Waist 
circumference adjBMI, WHR, T2D 0.7384 rs429358 1 0.01 0.7

GIPR BMI, Waist circumference 1 rs1800437 1 0.01 0.7
GIPR Triglycerides, Hip circumference adjBMI 0.9665 rs5117 0.9328 0.01 0.7

GIPR GIP SOMAmer 16292_288, Hip 
circumference, 2hr Glucose adjBMI 0.8288 rs1800437 0.6768 0.01 0.7

GIPR LDL, CAD, HDL, Total Cholesterol, 
Lipoprotein A, ApoB 1 rs7412 1 0.01 0.8

GIPR HbA1c, ApoA1, WHRadjBMI, Waist 
circumference adjBMI, WHR 0.9334 rs429358 1 0.01 0.8

GIPR BMI, Waist circumference 1 rs1800437 1 0.01 0.8
GIPR Triglycerides, Hip circumference adjBMI 0.9665 rs5117 0.9328 0.01 0.8

GIPR GIP SOMAmer 16292_288, Hip 
circumference, 2hr Glucose adjBMI 0.8288 rs1800437 0.6768 0.01 0.8

GIPR LDL, CAD, HDL, Total Cholesterol, 
Lipoprotein A, ApoB 1 rs7412 1 0.01 0.9

GIPR HbA1c, ApoA1, WHRadjBMI, Waist 
circumference adjBMI, WHR 0.9334 rs429358 1 0.01 0.9

GIPR BMI, Waist circumference 1 rs1800437 1 0.01 0.9
GIPR Triglycerides, Hip circumference adjBMI 0.9665 rs5117 0.9328 0.01 0.9

GIPR GIP SOMAmer 16292_288, Hip 
circumference 0.9614 rs1800437 0.681 0.01 0.9

GIPR LDL, CAD, HDL, Total Cholesterol, 
Lipoprotein A, ApoB 1 rs7412 1 0.001 0.5

GIPR HbA1c, ApoA1, WHRadjBMI, Waist 
circumference adjBMI, WHR 0.5827 rs429358 1 0.001 0.5

GIPR BMI, Waist circumference 1 rs1800437 1 0.001 0.5
GIPR Triglycerides, Hip circumference adjBMI 0.7428 rs5117 0.9328 0.001 0.5

GIPR GIP SOMAmer 16292_288, Hip 
circumference 0.6959 rs1800437 0.681 0.001 0.5

GIPR LDL, CAD, HDL, Total Cholesterol, 
Lipoprotein A, ApoB 1 rs7412 1 0.001 0.6

GIPR HbA1c, ApoA1, WHRadjBMI, WHR 0.8888 rs429358 1 0.001 0.6
GIPR BMI, Waist circumference 1 rs1800437 1 0.001 0.6
GIPR Triglycerides, Hip circumference adjBMI 0.7428 rs5117 0.9328 0.001 0.6

GIPR GIP SOMAmer 16292_288, Hip 
circumference 0.6959 rs1800437 0.681 0.001 0.6

GIPR LDL, CAD, HDL, Total Cholesterol, 
Lipoprotein A, ApoB 1 rs7412 1 0.001 0.7

GIPR HbA1c, ApoA1, WHRadjBMI, WHR 0.8888 rs429358 1 0.001 0.7
GIPR BMI, Waist circumference 1 rs1800437 1 0.001 0.7
GIPR Triglycerides, Hip circumference adjBMI 0.7428 rs5117 0.9328 0.001 0.7

GIPR GIP SOMAmer 16292_288, Hip 
circumference 0.6959 rs1800437 0.681 0.001 0.7

GIPR LDL, CAD, HDL, Total Cholesterol, 
Lipoprotein A, ApoB 1 rs7412 1 0.001 0.8

GIPR HbA1c, ApoA1, WHRadjBMI, WHR 0.8888 rs429358 1 0.001 0.8
GIPR BMI, Waist circumference 1 rs1800437 1 0.001 0.8

GIPR GIP SOMAmer 16292_288, Hip 
circumference 0.6959 rs1800437 0.681 0.001 0.8

GIPR LDL, CAD, HDL, Total Cholesterol, 
Lipoprotein A, ApoB 1 rs7412 1 0.001 0.9

GIPR HbA1c, ApoA1, WHR 0.9999 rs429358 1 0.001 0.9
GIPR BMI, Hip circumference 0.9806 rs1800437 1 0.001 0.9
Abbreviations: PP, Posterior probability; N, Number; LDL, Low-density lipoprotein; CAD, Coronary artery disease; HDL, 
High-density lipoprotein; ApoB, Apolipoprotein B; ApoA1, Apolipoprotein A1; HbA1c, Glycated haemoglobin; WHR, Waist-
to-hip ratio; adjBMI, Adjusted for BMI; BMI, Body mass index; GIP, Gastric inhibitory polypeptide
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Table S6. Association of rs1964272 with CAD after conditioning on E354.
Variant Chr:pos EA EAF Beta (SE) P-value Beta (SE) P-value N

rs1964272 19:46190268 G 0.5193 0.03 (0.006) 9.65x10-9 0.02 (0.006) 7.18x10-4 299519
Abbreviations: Chr, Chromosome; pos, Position; EA, Effect allele; EAF, Effect allele frequency; SE, Standard error; N, 
Number of participants
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Table S7. Association of other previously identified fasting GIP variants with CAD. The association of 
rs2287019 was not considered due to its high LD with E354.

Variant Chr:pos EA EAF Beta SE P-value Cases Controls
rs17681684 17:9792768 A 0.3082 -0.0074 0.0057 0.1925 34,541 261,984

Abbreviations: Chr, Chromosome; pos, Position; EA, Effect allele; EAF, Effect allele frequency; SE, Standard error
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Fig. S1. Association of E354 and cardiovascular disease sub-types in UK Biobank. Cardiovascular 
disease sub-types were defined in UK Biobank and tested for association with E354 using multivariable 
logistic regression adjusting for age, sex and 10 principal components2. Estimates for each disease are 
expressed per copy of E354. A Bonferroni corrected significance threshold of P<0.0029 was used.

0.6 0.8 1 1.2 1.4
OR (95% CI) for cardiovascular disease subtype 

per copy of E354

0.65Heart Failure 6,712 360,874 1.01 [0.97, 1.05]

Atrial Fibrillation 16,945 350,641 0.891.00 [0.97, 1.03]

Aortic Valve Stenosis 2,244 365,342 0.050.93 [0.86, 1.00]

Peripheral Vascular Disease 3,415 364,171 0.131.05 [0.99, 1.11]

Pulmonary Embolism 6,148 361,438 0.131.04 [0.99, 1.08]

Deep Vein Thrombosis 9,454 358,132 0.021.05 [1.01, 1.08]

Venous Thromboembolism (all) 14,097 353,489 0.031.03 [1.00, 1.06]

Abdominal Aortic Aneurysm 1,094 366,492 0.0031.19 [1.07, 1.30]

Subarachnoid Haemorrhage 1,084 366,502 0.730.98 [0.88, 1.09]

Intracerebral Haemorrhage 1,064 366,522 0.750.98 [0.88, 1.09]

Haemorrhagic Stroke (all) 1,981 365,605 0.430.97 [0.89, 1.05]

Transient Ischaemic Attack 3,962 363,624 0.911.00 [0.94, 1.05]

Ischaemic Stroke 4,602 362,984 0.971.00 [0.95, 1.05]

Ischaemic Cerebrovascular Disease (all) 8,084 359,502 0.911.00 [0.96, 1.04]

Ischaemic, haemorrhagic and unknown
stroke (but not TIA) 9,652 357,934 0.871.00 [0.97, 1.04]

Cardiovascular disease 
subtype OR (95% CI)Cases Controls P-value

Thoracic Aortic Aneurysm 347 367,239 0.10.86 [0.68, 1.04]

Abbreviations: TIA, Transient ischaemic attack; PC, principal component; OR, Odds ratio; CI, Confidence interval
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Fig. S2. Associations between E354 and regional adiposity compartments in 435,387 participants 
measured by bio-impedance. Fat mass in each compartment is shown in orange and lean mass in blue. 
Estimates for each compartment are in SD per copy of E354 (rs1800437). All estimates are adjusted for 
age, sex, genotyping chip, and the top 40 principal components. A Bonferroni significance threshold of 
P ≤ 0.003 was used to ascertain significance.
Abbreviations: CI, Confidence interval

-0.01 0 0.01 0.02 0.03 0.04

Beta (95% CI) for bio-impedance compartment per copy of E354

Visceral fat mass 4x10-310.03 (0.02, 0.03)
Trunk fat mass 6x10-360.03 (0.03, 0.04)
Total fat mass 6x10-350.03 (0.03, 0.04)
Subcutaneous fat mass 4x10-330.03 (0.03, 0.04)

Legs fat mass 4x10-290.03 (0.02, 0.03)

Trunk lean mass 2x10-240.02 (0.02, 0.03)
Total lean mass 1x10-240.02 (0.02, 0.03)
Legs lean mass 1x10-220.02 (0.02, 0.03)
Gynoid lean mass 5x10-210.02 (0.02, 0.03)
Arms lean mass 1x10-270.03 (0.02, 0.03)

Appendicular lean mass 5x10-250.02 (0.02, 0.03)
Android lean mass 1x10-230.02 (0.02, 0.03)

Gynoid fat mass 3x10-300.03 (0.02, 0.03)
Arms fat mass 4x10-370.03 (0.03, 0.04)
Android fat mass 6x10-350.03 (0.03, 0.04)

Peripheral fat mass 3x10-310.03 (0.02, 0.03)

Bio-impedance 
compartment Beta (95% CI) P-value

Lean mass
Fat mass
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Fig. S3. Associations between E354 and human protein levels. All estimates are adjusted for age, sex, 
sample collection site and 10 genetic principal components. Panel A. Volcano plot showing the 
associations between E354 and 4,979 human protein levels. The dashed line indicates the Bonferroni 
significance threshold P ≤ 1x10-5. The point size for each protein is proportional to its effect size. 
Significant protein associations with E354 are shown in blue, non-significant proteins are shown in 
yellow. Associations with significant proteins and proteins of interest are labelled. Two SOMAmers 
from the SOMAscan® 4k assay target GIP levels, both are labelled. Panels B & C. Regional association 
plots depicting the E354 (rs1800437) association with both GIP SOMAmers, X16292_288 and 
X5755_29 respectively.
Abbreviations: QPCTL, Glutaminyl-peptide cyclotransferase like; GIP, Gastric inhibitory polypeptide. 
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Fig. S4. Associations between E354 and human metabolite levels. Volcano plot showing the 
associations between E354 and the levels of 1,008 human plasma metabolites. All estimates are adjusted 
for age, sex and measurement batch. The dashed line indicates the Bonferroni significance threshold P 
≤ 5x10-5. The point size for each protein is proportional to its effect size. Metabolites are coloured 
according to their metabolite class. Significant metabolite associations with E354 are labelled in orange. 
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Fig. S5. Gaussian graphical model illustrating the partial correlation network in 11,966 participants between X-12283 and first and second order connections 
most correlated with X-12283. Positive partial correlation estimates between metabolites are denoted with solid lines whereas negative estimates are shown 
with dashed lines. Metabolites directly connected with X-12283 represent first order connections, others are second order connections. Metabolites clustered 
closest to X-12283 are more strongly correlated. Metabolite nodes are coloured by their super pathway. The table outlines the 6 metabolites with a first order 
connection to X-12283 and shows their partial correlation coefficients and related P-values.

Metabolite Partial correlation 
with X-12283 P-value

X-21821 0.41 1.98x10-252

X-17351 0.28 1.57x10-117

Indolepropionate 0.21 1.31x10-45

N-acetyltryptophan 0.16 3.81x10-38

X-12100 0.15 9.00x10-39

Indoleacetylglutamine 0.10 2.78x10-14
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Cofactors and Vitamins

Energy
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Peptide
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Fig. S6. Stacked regional association plot showing the cluster of cardiovascular-related traits which colocalise near the GIPR locus. The purple diamond 
represents the rs7412 variant, a missense variant in APOE. variant markers are coloured by their LD with rs7412, with red indicating LD (R2 > 0.8). 
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Fig. S7. Regional association plot illustrating the cluster of traits which colocalise with the GIP measures at the GIPR locus. The purple diamond represents the 
rs1800437 variant (E354). Variant markers are coloured by their LD with rs1800437, with red indicating LD (R2 > 0.8). Fasting and 2-hour GIP levels are from 
the MDC cohort of Almgren et al. 20173.
Abbreviations: GIPR, Gastric inhibitory polypeptide receptor; LD, Linkage disequilibrium; adj, Adjusted for; BMI, Body mass index; HbA1c, Glycated haemoglobin
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Fig. S8. Heatmap matrix depicting the largest pairwise colocalisation estimate between fasting GIP 
measures from SomaLogic, fasting and 2-hour GIP measures from Almgren et al. 20173, 2hr glucose 
adjusted for BMI ,BMI, LDL, CAD and T2D. Each colocalisation hypothesis is coloured differently 
with the colour saturation referring to the evidential strength. Posterior probabilities (PPcoloc) were 
considered significant if they met the following criteria: (H4 + H3 ≥ 0.9 & H4/H3 ≥ 3). Trait-pairs with 
significant posterior probability estimates of colocalisation were outlined in black. To discriminate 
between H1 and H2 hypotheses, traits along the X-axis were used as “Trait 1” in the analysis and traits 
listed on the Y-axis were used as “Trait 2”.
Abbreviations: H, Hypothesis; BMI, Body mass index; CHD, Coronary heart disease; GIP, Gastric inhibitory polypeptide; 
2hr, 2-hour; LDL, Low-density lipoprotein; T2D, Type 2 diabetes
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Fig. S9. Matrix illustrating the LD between each of the independent CAD variants and rs1800437 
(E354) estimated using 5 European populations in LDlink4. Pairwise R2 values between variants are 
shown in red in the lower triangle, whereas D’ values are shown in blue in the top triangle. Colour 
saturation represents the strength of the LD estimate between two variants. The LD between rs1800437 
and rs1964272 (R2 = 0.27) is depicted in light pink, whereas the very low LD between rs1800437 and 
the other CAD variants are shown as blank spaces.
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Fig. S10. Volcano plot showing the associations between rs1964272 and 4,979 human protein levels. 
All estimates are adjusted for age, sex, sample collection site and 10 genetic principal components. The 
dashed line indicates the Bonferroni significance threshold P ≤ 1x10-5. The point size for each protein 
is proportional to its effect size. Significant protein associations with rs1964272 are shown in blue, non-
significant proteins are shown in yellow. 
Abbreviations: QPCTL, Glutaminyl-peptide cyclotransferase like 
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