292 research outputs found

    The Brightest Lyα\alpha Emitter: Pop III or Black Hole?

    Get PDF
    CR7 is the brightest z=6.6 Lyαz=6.6 \, {\rm Ly}\alpha emitter (LAE) known to date, and spectroscopic follow-up by Sobral et al. (2015) suggests that CR7 might host Population (Pop) III stars. We examine this interpretation using cosmological hydrodynamical simulations. Several simulated galaxies show the same "Pop III wave" pattern observed in CR7. However, to reproduce the extreme CR7 Lyα{\rm Ly}\alpha/HeII1640 line luminosities (Lα/HeIIL_{\rm \alpha/He II}) a top-heavy IMF and a massive (>107M⊙>10^{7}{\rm M}_{\odot}) PopIII burst with age <2<2 Myr are required. Assuming that the observed properties of Lyα{\rm Ly}\alpha and HeII emission are typical for Pop III, we predict that in the COSMOS/UDS/SA22 fields, 14 out of the 30 LAEs at z=6.6z=6.6 with Lα>1043.3erg s−1L_{\alpha} >10^{43.3}{\rm erg}\,{\rm s}^{-1} should also host Pop III stars producing an observable LHeII>1042.7erg s−1L_{\rm He II}>10^{42.7}{\rm erg}\,{\rm s}^{-1}. As an alternate explanation, we explore the possibility that CR7 is instead powered by accretion onto a Direct Collapse Black Hole (DCBH). Our model predicts LαL_{\alpha}, LHeIIL_{\rm He II}, and X-ray luminosities that are in agreement with the observations. In any case, the observed properties of CR7 indicate that this galaxy is most likely powered by sources formed from pristine gas. We propose that further X-ray observations can distinguish between the two above scenarios.Comment: 6 pages, 4 figure

    Probing the AGN Unification Model at redshift z ∼\sim 3 with MUSE observations of giant Lyα\alpha nebulae

    Full text link
    A prediction of the classic active galactic nuclei (AGN) unification model is the presence of ionisation cones with different orientations depending on the AGN type. Confirmations of this model exist for present times, but it is less clear in the early Universe. Here, we use the morphology of giant Lyα\alpha nebulae around AGNs at redshift z∼\sim3 to probe AGN emission and therefore the validity of the AGN unification model at this redshift. We compare the spatial morphology of 19 nebulae previously found around type I AGNs with a new sample of 4 Lyα\alpha nebulae detected around type II AGNs. Using two independent techniques, we find that nebulae around type II AGNs are more asymmetric than around type I, at least at radial distances r>30r>30~physical kpc (pkpc) from the ionizing source. We conclude that the type I and type II AGNs in our sample show evidence of different surrounding ionising geometries. This suggests that the classical AGN unification model is also valid for high-redshift sources. Finally, we discuss how the lack of asymmetry in the inner parts (r≲\lesssim30 pkpc) and the associated high values of the HeII to Lyα\alpha ratios in these regions could indicate additional sources of (hard) ionizing radiation originating within or in proximity of the AGN host galaxies. This work demonstrates that the morphologies of giant Lyα\alpha nebulae can be used to understand and study the geometry of high redshift AGNs on circum-nuclear scales and it lays the foundation for future studies using much larger statistical samples.Comment: 15 pages, 13 figures, accepted for publication in MNRA

    Unveiling the most luminous Lyman-a emitters in the epoch of reionisation

    Get PDF
    Distant luminous Lyman-a emitters are excellent targets for detailed observations of galaxies in the epoch of reionisation. Spatially resolved observations of these galaxies allow us to simultaneously probe the emission from young stars, partially ionised gas in the interstellar medium and to constrain the properties of the surrounding hydrogen in the circumgalactic medium. We review recent results from (spectroscopic) follow-up studies of the rest-frame UV, Lyman-a and [CII] emission in luminous galaxies observed 1/4500 Myr after the Big Bang with ALMA, HST/WFC3 and VLT/X-SHOOTER. These galaxies likely reside in early ionised bubbles and are complex systems, consisting of multiple well separated and resolved components where traces of metals are already present

    The Fundamental Plane of star formation in galaxies revealed by the EAGLE hydrodynamical simulations

    Get PDF
    We investigate correlations between different physical properties of star-forming galaxies in the ‘Evolution and Assembly of GaLaxies and their Environments’ (EAGLE) cosmological hydrodynamical simulation suite over the redshift range 0 ≤ z ≤ 4.5. A principal component analysis reveals that neutral gas fraction (fgas,neutral), stellar mass (Mstellar) and star formation rate (SFR) account for most of the variance seen in the population, with galaxies tracing a two-dimensional, nearly flat, surface in the three-dimensional space of fgas, neutral–Mstellar–SFR with little scatter. The location of this plane varies little with redshift, whereas galaxies themselves move along the plane as their fgas, neutral and SFR drop with redshift. The positions of galaxies along the plane are highly correlated with gas metallicity. The metallicity can therefore be robustly predicted from fgas, neutral, or from the Mstellar and SFR. We argue that the appearance of this ‘Fundamental Plane of star formation’ is a consequence of self-regulation, with the plane's curvature set by the dependence of the SFR on gas density and metallicity. We analyse a large compilation of observations spanning the redshift range 0 ≲ z ≲ 3, and find that such a plane is also present in the data. The properties of the observed Fundamental Plane of star formation are in good agreement with EAGLE's predictions

    EIGER II. first spectroscopic characterisation of the young stars and ionised gas associated with strong Hβ\beta and [OIII] line-emission in galaxies at z=5-7 with JWST

    Full text link
    We present emission-line measurements and physical interpretations for a sample of 117 [OIII] emitting galaxies at z=5.33−6.93z=5.33-6.93, using the first deep JWST/NIRCam wide field slitless spectroscopic observations. Our 9.7-hour integration is centered upon the z=6.3z=6.3 quasar J0100+2802 -- the first of six fields targeted by the EIGER survey -- and covers λ=3−4\lambda=3-4 microns. We detect 133 [OIII] doublets, but merge pairs within ≈\approx10 kpc and 600 km s−1^{-1}, motivated by their small scale clustering excess. We detect Hβ\beta in 68 and Hγ\gamma emission in two galaxies. The galaxies are characterised by a UV luminosity MUV∼−19.6_{\rm UV}\sim-19.6 (−17.7-17.7 to −22.3-22.3), stellar mass ~10810^8 (106.8−10.1)(10^{6.8-10.1}) M⊙_{\odot}, Hβ\beta and [OIII] EWs ≈\approx 850 Angstrom (up to 3000 Angstrom), young ages (~100 Myr), a highly excited interstellar medium ([OIII]/Hβ≈6\beta\approx6) and low dust attenuations. These high EWs are very rare in the local Universe, but we show they are ubiquitous at z∼6z\sim6 based on the measured number densities. The stacked spectrum reveals Hγ\gamma and [OIII]4364_{4364} which shows that the galaxies are typically dust and metal poor (E(B-V)=0.1, 12+log(O/H)=7.4) with a high electron temperature (2×1042\times10^4 K) and a production efficiency of ionising photons (ξion=1025.3\xi_{\rm ion}=10^{25.3} Hz erg−1^{-1}). We further show the existence of a strong mass-metallicity relation. The young highly ionising stellar populations, moderately low metallicities, low dust attenuations and high ionisation state in z~6 galaxies conspire to maximise the [OIII] output from galaxies, yielding an [OIII] luminosity density at z~6 that is significantly higher than at z~2, despite the order of magnitude decline in cosmic star formation. Thus, [OIII] emission-line surveys with JWST prove a highly efficient method to trace the galaxy density in the epoch of reionization.Comment: Accepted for publication in ApJ. Main text 22 pages, 20 figures. Main results in Figs 14 (Xi_ion), 15 (MEx diagram),17 (MZR), 19 ([OIII] luminosity density

    EIGER I. a large sample of [OIII]-emitting galaxies at 5.3<z<6.95.3 < z < 6.9 and direct evidence for local reionization by galaxies

    Full text link
    We present a first sample of 117 [OIII]λλ\lambda\lambda4960,5008-selected star-forming galaxies at 5.33<z<6.935.33 < z < 6.93 detected in JWST/NIRCam 3.5μ\mum slitless spectroscopy of a 6.5×3.46.5 \times 3.4 arcmin2^2 field centered on the hyperluminous quasar SDSS J0100+2802, obtained as part of the EIGER (Emission-line galaxies and Intergalactic Gas in the Epoch of Reionization) survey. Three prominent galaxy overdensities are observed, one of them at the redshift of the quasar. Galaxies are found within 200 pkpc and 105 km s−1^{-1} of four known metal absorption-line systems in this redshift range. We focus on the role of the galaxies in ionizing the surrounding intergalactic medium (IGM) during the later stages of cosmic reionization and construct the mean Lyα\alpha and Lyβ\beta transmission as a function of distance from the galaxies. At the lowest redshifts in our study, 5.3<z<5.75.3 < z < 5.7, the IGM transmission rises monotonically with distance from the galaxies. This is as expected when galaxies reside at peaks in the overdensity field of an IGM that is ionized by more or less uniform ionizing background, and has been seen at lower redshifts. In contrast, at 5.7<z<6.145.7 < z < 6.14, the transmission of both Lyα\alpha and Lyβ\beta first increases with distance, but then peaks at a distance of 5 cMpc before declining. This peak in transmission is qualitatively similar to that seen (albeit at smaller distances and higher redshifts) in the THESAN simulations. Finally, in the region 6.15<z<6.266.15 < z < 6.26 where the additional ionizing radiation from the quasar dominates, the monotonic increase in transmission with distance is re-established. This result is interpreted to represent evidence that the transmission of the IGM at z∼5.9z \sim 5.9 towards J0100+2802 results from the ``local'' ionizing radiation of galaxies that dominates over the much reduced cosmic background.Comment: 24 pages, 14 figures, submitted to ApJ, comments welcom

    Compact [C II] emitters around a C IV absorption complex at redshift 5.7

    Full text link
    The physical conditions of the circumgalactic medium are probed by intervening absorption-line systems in the spectrum of background quasi-stellar objects out to the epoch of cosmic reionization. A correlation between the ionization state of the absorbing gas and the nature of the nearby galaxies has been suggested by the sources detected either in Lyalpha or [C ii] 158 m near to respectively highly-ionized and neutral absorbers. This is also likely linked to the global changes in the incidence of absorption systems of different types and the process of cosmic reionization. Here we report the detection of two [C ii]-emitting galaxies at redshift z∼5.7z \sim 5.7 that are associated with a complex high-ionization C iv absorption system. These objects are part of an overdensity of galaxies and have compact sizes (< 2.4 kpc) and narrow line widths (FWHM ∼\sim 62--64 km s-1). Hydrodynamic simulations predict that similar narrow [C ii] emission may arise from the heating of small (≲\lesssim 3 kpc) clumps of cold neutral medium or a compact photodissociation region. The lack of counterparts in the rest-frame ultraviolet indicates severe obscuration of the sources that are exciting the [C ii] emission. These results may suggest a connection between the properties of the [C ii] emission, the rare overdensity of galaxies and the unusual high ionization state of the gas in this region.Comment: Published in Nature on 10 May 2023; authors' version; link to the paper: https://www.nature.com/articles/s41586-023-05901-
    • …
    corecore