458 research outputs found

    Bystander B cells rapidly acquire antigen receptors from activated B cells by membrane transfer: a novel mechanism for enhancing specific antigen presentation

    Get PDF
    The B cell antigen receptor (BCR) efficiently facilitates the capture and processing of a specific antigen for presentation on MHC class II molecules to antigen specific CD4+ T cells (1). Despite this, the majority of B cells are only thought to play a limited role in CD4+ T cell activation since BCRs are clonotypically expressed. Here we show, however, that activated B cells can, both in vitro and in vivo, rapidly donate their BCR to bystander B cells, a process that is mediated by direct membrane transfer between adjacent B cells and is amplified by the interaction of the BCR with specific antigen. This results in a dramatic expansion in the number of antigen-binding B cells in vivo, with the transferred BCR endowing recipient B cells with the ability to present specific antigen to antigen-specific CD4+ T cells

    Scanning Acoustic Microscopy in Materials Characterization

    Get PDF
    The scanning acoustic microscopy is a powerful tool for subsurface imaging and therefore fault detection in coated parts. In this paper several methods are established to reveal the imaging of hidden structures. First efforts were made to find out the information depth due to the various distances between lens and surface of the object. By means of a specially developed test specimen it was possible to estimate the penetration depth for monitoring structural details. The indepth analysis of layered composites is considered by the determination of the V(z)-characteristics. Furthermore the gain of image processing by means of Fourier transformed patterns and simultaneous filtering is shown by a typical example

    Technical Evaluation of the Carolo-Cup 2014 - A Competition for Self-Driving Miniature Cars

    Get PDF
    The Carolo-Cup competition conducted for the eighth time this year, is an international student competition focusing on autonomous driving scenarios implemented on 1:10 scale car models. Three practical sub-competitions have to be realized in this context and represent a complex, interdisciplinary challenge. Hence, students have to cope with all core topics like mechanical development, electronic design, and programming as addressed usually by robotic applications. In this paper we introduce the competition challenges in detail and evaluate the results of all 13 participating teams from the 2014 competition. For this purpose, we analyze technical as well as non-technical configurations of each student group and derive best practices, lessons learned, and criteria as a precondition for a successful participation. Due to the comprehensive orientation of the Carolo-Cup, this knowledge can be applied on comparable projects and related competitions as well

    Gene dose influences cellular and calcium channel dysregulation in heterozygous and homozygous T4826I-RYR1 malignant hyperthermia-susceptible muscle

    Get PDF
    Malignant hyperthermia susceptibility (MHS) is primarily conferred by mutations within ryanodine receptor type 1 (RYR1). Here we address how the MHS mutation T4826I within the S4-S5 linker influences excitation-contraction coupling and resting myoplasmi

    LFI 30 and 44 GHz receivers Back-End Modules

    Full text link
    The 30 and 44 GHz Back End Modules (BEM) for the Planck Low Frequency Instrument are broadband receivers (20% relative bandwidth) working at room temperature. The signals coming from the Front End Module are amplified, band pass filtered and finally converted to DC by a detector diode. Each receiver has two identical branches following the differential scheme of the Planck radiometers. The BEM design is based on MMIC Low Noise Amplifiers using GaAs P-HEMT devices, microstrip filters and Schottky diode detectors. Their manufacturing development has included elegant breadboard prototypes and finally qualification and flight model units. Electrical, mechanical and environmental tests were carried out for the characterization and verification of the manufactured BEMs. A description of the 30 and 44 GHz Back End Modules of Planck-LFI radiometers is given, with details of the tests done to determine their electrical and environmental performances. The electrical performances of the 30 and 44 GHz Back End Modules: frequency response, effective bandwidth, equivalent noise temperature, 1/f noise and linearity are presented

    Gaps and barriers in the control of blood glucose in people with type 2 diabetes

    Get PDF
    Background: Glycaemic control is suboptimal in a large proportion of people with type 2 diabetes who are consequently at an increased and avoidable risk of potentially severe complications. We sought to explore attitudes and practices among healthcare professionals that may contribute to suboptimal glycaemic control through a review of recent relevant publications in the scientific literature. Methods: An electronic search of the PubMed database was performed to identify relevant publications from January 2011 to July 2015. The electronic search was complemented by a manual search of abstracts from key diabetes conferences in 2014/2015 available online. Results: Recently published data indicate that glycaemic control is suboptimal in a substantial proportion (typically 40%-60%) of people with diabetes. This is the case across geographic regions and in both low- and higher-income countries. Therapeutic inertia appears to be an important contributor to poor glycaemic control in up to half of people with type 2 diabetes. In particular, prescribers are often willing to tolerate extended periods of 'mild' hyperglycaemia as well as having low expectations for their patients. There are often delays of 3 years or longer in initiating or intensifying glucose-lowering therapy when needed. Conclusion: Many people with type 2 diabetes are failed by current management, with approximately half not achieving or maintaining appropriate target blood glucose levels, leaving these patients at increased and avoidable risk of serious complications. Review criteria: The methodology of this review article is detailed in the 'Methods' section

    Multipoint Schur algorithm and orthogonal rational functions: convergence properties, I

    Full text link
    Classical Schur analysis is intimately connected to the theory of orthogonal polynomials on the circle [Simon, 2005]. We investigate here the connection between multipoint Schur analysis and orthogonal rational functions. Specifically, we study the convergence of the Wall rational functions via the development of a rational analogue to the Szeg\H o theory, in the case where the interpolation points may accumulate on the unit circle. This leads us to generalize results from [Khrushchev,2001], [Bultheel et al., 1999], and yields asymptotics of a novel type.Comment: a preliminary version, 39 pages; some changes in the Introduction, Section 5 (Szeg\H o type asymptotics) is extende

    Expression of distinct RNAs from 3′ untranslated regions

    Get PDF
    The 3′ untranslated regions (3′UTRs) of eukaryotic genes regulate mRNA stability, localization and translation. Here, we present evidence that large numbers of 3′UTRs in human, mouse and fly are also expressed separately from the associated protein-coding sequences to which they are normally linked, likely by post-transcriptional cleavage. Analysis of CAGE (capped analysis of gene expression), SAGE (serial analysis of gene expression) and cDNA libraries, as well as microarray expression profiles, demonstrate that the independent expression of 3′UTRs is a regulated and conserved genome-wide phenomenon. We characterize the expression of several 3′UTR-derived RNAs (uaRNAs) in detail in mouse embryos, showing by in situ hybridization that these transcripts are expressed in a cell- and subcellular-specific manner. Our results suggest that 3′UTR sequences can function not only in cis to regulate protein expression, but also intrinsically and independently in trans, likely as noncoding RNAs, a conclusion supported by a number of previous genetic studies. Our findings suggest novel functions for 3′UTRs, as well as caution in the use of 3′UTR sequence probes to analyze gene expression

    Fine sediment reduces vertical migrations of Gammarus pulex (Crustacea: Amphipoda) in response to surface water loss

    Get PDF
    Surface and subsurface sediments in river ecosystems are recognized as refuges that may promote invertebrate survival during disturbances such as floods and streambed drying. Refuge use is spatiotemporally variable, with environmental factors including substrate composition, in particular the proportion of fine sediment (FS), affecting the ability of organisms to move through interstitial spaces. We conducted a laboratory experiment to examine the effects of FS on the movement of Gammarus pulex Linnaeus (Crustacea: Amphipoda) into subsurface sediments in response to surface water loss. We hypothesized that increasing volumes of FS would impede and ultimately prevent individuals from migrating into the sediments. To test this hypothesis, the proportion of FS (1–2 mm diameter) present within an open gravel matrix (4–16 mm diameter) was varied from 10 to 20% by volume in 2.5% increments. Under control conditions (0% FS), 93% of individuals moved into subsurface sediments as the water level was reduced. The proportion of individuals moving into the subsurface decreased to 74% at 10% FS, and at 20% FS no individuals entered the sediments, supporting our hypothesis. These results demonstrate the importance of reducing FS inputs into river ecosystems and restoring FS-clogged riverbeds, to promote refuge use during increasingly common instream disturbances
    corecore